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Abstract— The present paper proposes new approaches for
recommendation tasks based on one-class support vector
machines (1-SVMs) with graph Kkernels generated from a
Laplacian matrix. We introduce new formulations for the
1-SVM that can manipulate graph kernels quite efficiently.
We demonstrate that the proposed formulations fully utilize
the sparse structure of the Laplacian matrix, which enables
the proposed approaches to be applied to recommendation
tasks having a large number of customers and products in
practical computational times. Results of various numerical
experiments demonstrating the high performance of the
proposed approaches are presented.

Index Terms—support vector machine, Laplacian matrix,
graph kernel, quadratic programming problem, collabora-
tive filtering, recommender system

I. INTRODUCTION

Recently, the importance of recommender systems has
increased rapidly with the growing availability of online
information on the Web. Customers visiting the largest e-
commerce sites often have difficulty in finding a particular
item among the enormous number of products for sale.
Many recommender systems [1], [2] have been installed
to filter out irrelevant products and locate products that
might be of interest to individual customers.

Collaborative filtering is one of the most successful
technologies for recommendation tasks, in which cus-
tomer ratings on products or historical records of pur-
chased products are exploited to extract the preferences of
individuals. Collaborative filtering calculates similarities
between customers based on the customer rating, or the
purchased products patterns of each individual. Collabo-
rative filtering then finds a set of the most similar patterns,
and recommends products for a particular individual. In
the present paper, we provide new approaches for recom-
mendation tasks using kernels defined on a graph where
the nodes correspond to data items such as the products,
and the weights of the edges correspond the relations
between the products. There have been several graph
based kernels which can be used to obtain similarities
between data points.

Very recently, Fouss et al. [3] introduced a graph
kernel, referred to as the commute time kernel and directly
applied the kernel-based dissimilarities to the recommen-
dation task. More precisely, they defined the kernel over
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a bipartite graph with two sets of nodes corresponding
to a set of customers and products. They placed edges
between the customer nodes and the product nodes when
the customer has purchased the product. They defined
a random walk model over this graph by assigning the
transition probabilities over the edges. They showed that
the average commute time between the two nodes is given
by the kernel and that it can be used as a distance measure
between the corresponding customer and product.

In the present paper, we use the 1-SVM with graph-
based kernels to select relevant products for each cus-
tomer. We introduce new formulations for the 1-SVM
that can efficiently manipulate several recently developed
graph kernels, such as [4], [5], [6], [7]. In addition, we
show that a special case of our formulation does not
require any optimization calculations. More importantly,
the new kernel matrix is significantly smaller than that
of the method reported in [3], which enables us to apply
the present approach to large e-commerce sites with a
practical amount of computation.

In Sect.Il, we briefly review the standard formulation
of the 1-SVM and its basic settings for recommendation
tasks. In Sect. III, we describe various graph kernels, and
in Sect.1V, we introduce new formulations for the 1-
SVM. Experiments using a movie dataset are presented
in Sect. V, and conclusions are presented in Sect. VL.

II. 1-SVM FOR RECOMMENDATION

The SVM was originally designed as a method for
two-class classification problems where both positive and
negative examples are required to learn discriminate func-
tions. In this section, we will describe a variant of the
SVM, called the one-class SVM (1-SVM) which can
handle problems that consider a single class of data points.
In [8], Scholkopf et al. have proposed a method for
adapting the conventional two-class SVM formulation to
the one-class problems.

Suppose that we have a set of N-dimensional data
points ¢; € RY (j = 1,2,...,1). Also, assume that we
have a function ¢(-) : RY — F that maps the data points
into a higher-dimensional feature space, denoted by F.
Hereinafter, for simplicity, we denote the mapped image
é(x;) as ¢;. Let w € F and p € R. Also, the inner
product in F is denoted as (-, -). The purpose of the 1-
SVM is to calculate a hyperplane that holds most of the
data points in its positive side, i.e., (w, ¢;) — p > 0.



28

Introducing additional variables & = (&1,&,...,&)7,
w and p are obtained by solving the following quadratic
programming problem:

Min. 3 (w, w>+%22:1§j —p

S.t. (w,¢j>+§j2p7 ijO,jZl,?,...Jh)
where v € (0,1] is a predetermined positive parameter.
Let (w*, p*) denote an optimal solution of the problem
(1). When a data point, the mapped image of which
is denoted by ¢, belongs to the negative side of the
hyperplane, i.e., (w*, ¢) — p* < 0, the pattern can be
considered to be different from the given single class of
data points.

The objective of the recommendation task is to find
products that have not yet been purchased but that would
likely be purchased by a specific customer, hereinafter
referred to as an active customer. Suppose that we are
given a set of products P = {1,2,...,M} and that,
for each product j € P, the associated feature vectors
¢; € F are obtained. In addition, let P(a) C P be a
subset of indices that are rated as preferable products, or
that have actually been purchased by the active customer
a. For simplicity, let us assume that P(a) consists of
products and is denoted as P(a) = {1,2,...,l}, which
is treated as a set of the single class of data points in the
problem (1). Let (w*, p*) denote an optimal solution of
(1). Then, for each product ¢ that has not been purchased,
ie, i € P\ P(a), the distance from the hyperplane
calculated as ((w*, ¢;) — p*) /{w*, w*) can be used
as a preference score of the product i. Ignoring the
constants, one can use the inner product (w*, ¢; ) as a
score to rank the product ¢ for the specific active customer
a. It has been shown that the parameter v enjoys the v-
property [8] described below:

Theorem 1: v is an upper bound on the fraction of the
data points lying in the negative side of the hyperplane.
Also, v is a lower bound on the fraction of the data
points lying in the nonnegative side of the hyperplane,
ie., (w*, ¢;)—p*>0.

Generating a nonlinear map ¢(-) is quite important in
SVM. Usually, this is done implicitly by kernels that are
naturally introduced by the following dual formulation of
the problem (1).

Max. =5 S0 Xy (00 65 )oiay
st Yl qaj=1, 0<a; <L =121
2

where aq, o, -+, are dual variables. Note that the
dual formulation can be defined using only the values of
the inner products, without knowing the mapped image
¢;, explicitly. In addition, let (aj,a3,---,af) be an
optimal solution of the dual problem. Then, the associated
optimal primal solution is given as w* = 2221 g,
which immediately implies that the score of the product
i is given by (w*, ¢;) = 35, ol (i, &;).

Let K = {K;;} be a symmetric matrix called a kernel
matrix, which consists of the inner products (¢; , ¢; ) as
the ¢ — 7 element. Any positive semidefinite matrices can
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be used as a kernel matrix K. It has been shown that posi-
tive semidefiniteness ensures the existence of the mapped
points, ¢;’s (see, for example, [9]). More precisely, let
U be an orthonormal matrix whose columns correspond
to the eigenvectors of K, and A be a diagonal matrix
whose diagonal elements correspond to the eigenvalues
of K. When the matrix K is positive semidefinite, one
can obtain the eigendecomposition K = UAU”. Then,
the mapped image ¢; is explicitly given as the ith column
vector of the matrix AZU7, ie.,

ATUT = [p1¢2--- ). 3)

In the next section, we will introduce recently devel-
oped kernel matrices defined on the graph.

III. LAPLACIAN OF A GRAPH AND ASSOCIATED
KERNEL

Recently, several studies [4], [5], [6], [7] have reported
the development of kernels using weighted graphs. In this
section, we will review such kernels.

First, let us introduce a weighted graph G(V, E) having
a set of nodes V' and a set of undirected edges E. The
set of nodes V' corresponds to a set of data items such as
products in a recommendation task. For each edge (i, j) €
E, a positive weight b;; > 0 representing the similarity
between the two nodes 4,j € V is assigned. We assume
that the larger the weight b;;, the greater the similarity
between the two nodes. Note that if there exists no edge
between 4 and j, then we set b;; = 0.

The edge weights b;;’s are defined in several ways. For
example, the following exponential function is often used

2
by = o (L2l W
where ¢ is a bandwidth hyperparameter. One can also use
a k-nearest-neighbor graph where we put an edge between
the node ¢ and j when the data point x; is among the &
nearest neighbors of x; or vice versa, and assign a weight
b;; as (4), or, simply, b;; = 1 for each edge (i, j). Let M
be the number of nodes in V, and let B be an M x M
symmetric matrix with elements b;; for (i, j) € E.

Next, let us introduce the Laplacian matrix L of the
graph G(V,E) as L = D — B, where D is a diagonal
matrix, the diagonal elements d;; of which are the sum
of the ith row of B, i.e., d;; = Zj bi;. Throughout this
paper, we assume that the graph G(V, E) is connected.
This implies that the rank of the matrix L is M — 1,
and that the null space of L is the one-dimensional space
spanned by the vector of all ones, i.e., Le = 0. Also, It
has been known that L is positive semidefinite (see [10]
for further details).

There are several methods for generating kernel matri-
ces based on L. Fouss et al. [3] considered a random
walk model on the graph G, in which, for each edge
(i,7), the transition probability p;; is defined as p;; =
bij/ Z,J:[:l b;). Intuitively, at each node ¢, the transition
probability to the node j is proportional to the weight
b;;. They considered the average commute time n(, j),
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which represents the average number of steps that a
random walker, starting from node ¢, will take to enter
node j for the first time and then return to node <. They
indicated that the average commute time n(i,j) can be
used as a dissimilarity measure between any two data
points corresponding to the nodes of the graph, and that
n( j) is given as n(i, j) = Ve (I3 +1;; — 21;;) , where

=>;;bij and I jisthei—j element of the Moore-
Penrose pseudoinverse of L, which is denoted by LT.
Fouss et al. [3] also showed that as long as the graph
is connected, the pseudoinverse L™ is explicitly given as
follows:

-1
Lt = (L—eeT/M) +eel' /M, (5)
where e is a vector of all ones. Since L is positive
semidefinite [10], so is its pseudoinverse L™, which
implies that L™ can act as a kernel matrix [3].

Here, L and L™ share the common eigenvectors. Let
v1,V2,...,v and A1, Ag, ..., Ay be the eigenvectors
and the corresponding eigenvalues of L, respectively.
It is well-known that L is decomposed into L =
Zf\il Ai(v;v]), and that the pseudoinverse is also given
as

M
AL AfA#£0
+_ + (ay.0rT +_
L™ = E Al (vv; ), where A { 0 A= 0,
(6)
We note that
Lte=0. 7)

Several variants of the above equation have been pro-
posed. Zhu et al. [11] introduced the following regularized
Laplacian kernel matrix

M

> (1+tA)”

i=1

(I+tL)™". (8)

Ztk

Moreover, by introducing the modified Laplacian L, =
rD — B with a parameter 0 < r < 1, Ito et al. [7] defined
the modified Laplacian regularized kernel matrix as

(I+tL,)~". 9)

In particular, when r = 0 this kernel matrix is the von
Neumann diffusion kernel, which is defined as

ith’“ = (
k=0

_ Furthermore, introducing the normalized Laplacian
L = DY2LD~2, Smola and Kondor [5] proposed
several kernel matrices such as the diffusion kernel

I—tB)™". (10)

exp(—tL) (11)

and a normalized variant of the regularized Laplacian
kernel defined as follows:

(r+ tﬂ)_l. (12)

© 2006 ACADEMY PUBLISHER

29

IV. LEARNING 1-SVMSs WITH GRAPH KERNELS

Next, we will describe recommendation methods based
on the 1-SVM using the kernel matrices described in the
previous section. Recall that we are given a set of M
products P = {1,2,..., M} and a subset P(a) C P,
which have been purchased by the active customer a. We
assume that P(a) = {1,2,...,l}. In addition, the ele-
ments of the kernel matrix K represent the inner products
of the feature vectors corresponding to the products.

Let us first rewrite the primal formulation. To this end,
introducing M variables o = (1, g, - - 7aM)T, let us
assume that w € F is given as a linear combination of
M points as follows:

M
w = Z ij(ﬁj.
j=1

Substituting this equation into the primal problem (1), the
following formulation is obtained:

. l
Min. ja’Ka+ L3 & -
M .
s.t. <Zi=1ai¢i7¢j>+§j2paj:1727"'7l7
& >0,7=1,2,...,1L
(13)
Note that the norm of w can be written as follows:

<Zaj¢,7zaj¢,>_a

Let a* = (af,a3,...,a%,)T be an optimal solution of
this problem. Then, the preference score of the product i
is given as the ith element of the vector Ka*, i.e.,

M
<Za§¢m¢j>=(Ka*)i- (14)
j=1

Here, generating the kernel matrices given in Sect. ITI
requires calculation of the inverse of the matrices as
described in (5) and (8). The inverse operations require a
significant computational effort, which prevents us from
using these kernel matrices for the recommendation tasks
when the number of products is large. Moreover, in
general, these kernel matrices become fully dense, which
causes difficulty in holding the kernel matrices in memory
during the time required for solving the problem (13).
In the subsequent subsections, however, we will propose
new formulations of 1-SVMs with kernel matrices the
inverse of which are readily available. Exploiting the
special structures of the kernel matrices, we will derive
simpler formulations for solving 1-SVM with the kernel
matrices (5) and (8).

A. Regularized Laplacian Kernel

Suppose that the kernel matrix K is the regularized
Laplacian kernel matrix (8). Let us first introduce a new
vector of variables 3 = (f1, B2, . - . ,ﬁM)T e RM, and
define 3 = K a. Note that

M
B = (Ka); = <Zai¢ia ¢j>
=1
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holds for each j. It follows that
a=K'B=(I+tL)B

holds. Furthermore, a straightforward calculation reveals
that
o'Ka=p" (I+tL)B.

Therefore, the problem (13) can be equivalently formu-
lated with respect to the new variable 3 as follows:

Min, 18T (I+tL)B-p+ 55 & (15)

S.t. /Bj-f—szp, ijO,jZLZ,...,l.

Associated with this formulation, we have the following
theorem.

Theorem 2: The problem (15) has an optimal solution
(B*,€", p*) which satisfies

0<8; <p*, j=12,....,M.
Proof: By the Karush—Kuhn-Tucker (KKT) con-
ditions, there exist nonnegative Lagrangian multipli-
ers v; (j = 1,...,1) such that the optimal solution

(8%, p*, &") satisfies
v, Vi=1,2,...1,

(I+tL)B )j:{ 0, Vj=I1+1,142,...,M,
(16)
and the complementarity conditions

v (B; +& —p") =0,

Moreover, we note that any optimal solutions must satisfy
the following

é-;k :max{07p*_ﬁ;}a

It follows from the definition of the Laplacian matrix
L that the left hand side of (16) can be written in the
following way:

Vi=1,2,...,1. (7

Vi=1,2,...,I. (18)

M
(I +L)B%); = 85+ bsi (57 = B)
i=1
which is nonnegative. This holds true for an index k
attaining the minimum of 3;’s
k = argmin{f;|j = 1,2,..., M}.

Therefore, since ¢ is a positive parameter,

M
By ==ty b (B — B7) >0,
1=1

which implies that 57 is nonnegative for all j =
1,2,..., M, and that p* > 0.

Next, on the contrary, let us assume that there exists
an index h such that 3} > p*. Without loss of generality,
we also assume that

h = argmax{f3;|j = 1,2,..., M}.
It follows that
M
(T+tL)BY)), =B+t bui (B —B;) > 0. (19)

=1

© 2006 ACADEMY PUBLISHER

JOURNAL OF COMPUTERS, VOL. 1, NO. 3, JUNE 2006

From the KKT conditions (16), the index should be h < [,
which implies that the associated Lagrangian multiplier is
positive ((I +tL)3%), = v, > 0.

It follows from (18) that, however, we have & = 0,
which results in

Br+& —p" >0.

This contradicts the complementarity conditions (17),

which completes the proof. [ ]
It follows from this theorem and the conditions (18) that

the optimal solution satisfies the following equalities:

g]:p_ﬁ]7 ]:172771

Substituting &; into the problem (15), we then have a
simpler formulation given below:

Min. 18" (I+tL)B+L4p— L

l 3
i=1Pi (p
s.t. B; <p, j=12,...,L (20

In many practical situations, the Laplacian matrix L is
very sparse and can be stored in main memory even if the
number of data points is very huge. Moreover, it has been
shown that this problem can be equivalently optimized by
solving an unconstrained minimization problem using an
implicit Lagrangian function. A more detailed description
can be found in [12].

B. Commute Time Kernel

Let us consider the case when we use the commute
time kernel matrix Lt as K in (13), i.e.,

Min. a”Lta+ 4 2221 & —p
st. (Lre); +&2p, j=1,2,...,1, (1)
& >0,j=12..,L

We will also show that a simpler formulation can be
derived.

First, let (a*, p*,£€") be an optimal solution of (21).
It follows from (7) that, for any real number 6§ € R, we
have

LT (a* +ef) = LTa*.

This implies that the solution (a* + ef, p*,£*) is also
optimal. Thus, there exists an optimal solution satisfying
the following equality constraint

ela=1, (22)
which can be added to the problem (21).

Next, as in the previous section, let us introduce a
vector of variables 3 = (01, 02, . .. ,ﬂM)T, and let us
define

B=(L"—ee”/M)a+e/M. (23)
For each j, if « satisfies the added constraint (22), then
e

e
Bj = (L*a - MeTa + M)j = (L"e);

M
_ <zai¢i, ¢j>
=1
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holds. Therefore, it follows from (5) and (23) that

(L‘W) (5-3%)

holds. In addition, we can easily verify that the constraint
(22) is written as

(24)

T

ot (1-57) (o-3)
(o)

Then the variable 3 has to satisfy e” 3 = 0. Furthermore,
oTLta = BTLB holds if B satisfies e?B .
Therefore, the problem (21) with the constraint (22) can
be equivalently formulated as follows:
Min. $8TLB—p+ 530 &
s.t. /BJ+§]ZP7 gJZOa]::LQaalv
e’B=0.
Let (8%, &%, p*) be an optimal solution of the problem
(25). We have the following theorem.
Theorem 3: The optimal solution (3%, £", p*) satisfies
B <p-forallj=1,..., M.
Proof: Let

B=max{f; |j=12,...,M}.

For the purpose of contradiction, let us assume that 3 >
p*. We will show that a better solution can be constructed.
Let I be a set of indices of the vector 3" defined as

1= {ilp; =5}
Note that any optimal solutions must satisfy the following
-0}, Vi=1,2,...,L (26)

This implies that £ = O for any ¢ € I. Then, for a
sufficiently small € > 0, let us define a new solution

B = (B, P2, ,Bu), where

(25)

¢ = max {0, p*

. G—e ifiel
Pi= 8 + M‘+‘\I\€ otherwise

It is obvious to see that B satisfies eTf)' = 0. Also, when
€ satisfies
0<e < p* - Ba

ﬁAi + & > p* still hold true for all ¢ = 1,2,...,1.
Therefore, the point (B,ﬁ*, p*) is a feasible solution of
the problem (25).

On the other hand, it follows from the definition of the
matrix L, we have

1 *T * 1.7 -
SBILE - A LB
D IR {CETCE
iel jgI

which implies that the solution (3, £", p*) yields a better
objective function value than that of (3, £, p*) when ¢
satisfies

1
0<6<min{p —ﬁ, ||

G-} et
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- 0 *T *
ﬂj M—‘I|€) }> ’ Ea Ko =+
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which is a contradiction. [ ]
From Theorem3 and (26), we can claim that the
optimal solution (3%, £", p*) of the problem (25) satisfies

Bi+& =p" Vi=12,..L

Consequently, by substituting {; = p — 3;, the problem
(25) can be simplified as follows:

Min. $8"LA+2p— L
S.L. ﬂj§p7j=1,27...7l,
eT/B =0,
which is also reduced into an unconstrained minimization
problem using an implicit Lagrangian function [12].

=1 ﬁl
(27

C. Some Special Cases

It has been shown that the 1-SVM formulation given in
(1) can be solved analytically when v = 1.0. This is also
true for our formulation given in (13) with any types of
kernel matrices given in Sect. III. We have the following
theorem:

Theorem 4. Let (a*, £, p*) be an optimal solution of
(13) with v = 1.0, i.e.,

. !
Min. ja’Ka+ § Y &i—p

s.t. <Z£10éi¢i7¢j>+€j2p,j:1,2,...,l,
£ 2>0,5=12,...,1L
(28)
Then, the following inequalities hold true.

<Za ¢1,¢]>_ , Vi=12,...,1

Proof: Let us assume, to the contrary, that there
exists an index k such that <Z¢:1 af i, ¢k> > p* It
should be noted that & = 0.

Next, let A = <Zi]‘ila;‘¢i, q§k> — p* > 0. Then,

we can define a new solution & = (&,...,&) and p as
follows:
c [ EG+A ifj#E -

It is straightforward to verify that the solution (a*, €, p)
also satisfies the constraints of the problem (28). In
particular, we note that the equality

M ~
<Za;‘¢i,¢k>+fk=ﬁ
=1

holds true because ék =0.
The objective value of the solution (c
lated as

* €, p) is calcu-

Jj=1
1, 1
= 5aTKa 725 +A)+ gk P —A
75
1 *T * 1 * * A



32

which contradicts the optimality of the solution
(a*,&", p*). This completes the proof. [ |
This theorem also ensures that

M
§;=p*—<2a’:¢mj>
i=1

holds for each 57 = 1,2,...,[. Then, substituting these
equations into the objective function of the problem (28),
the following unconstrained minimization is obtained:

| Min. W(a)=1a"Ka-1y"Ka (29)
where y = (y1,v2, ..., yar)T is an M-dimensional vector
whose elements are defined as follows:

1 ifj=1,2,...,1,
Z/j:{ 0

ifj=14+114+2,...,M.
Note that y is a binary vector representing the purchased
products by the active customer.
The problem (29) can be solved analytically. Since the
gradient of the objective function W () is described as

ViV(a) = Ka — %Ky,

a* = %y is an optimal solution of the problem (29).

Recall that the optimal preference score of the product ¢
is given in (14). Also, for each active customer a, lety, €
R be an M-dimensional binary vector representing the
purchased products. Then, when we use the regularized
Laplacian kernel matrix (8), for instance, a vector of the
optimal scores is given by

(I+tL) 'y, (30)

Also, when we use the commute time kernel matrix (5),
the associated score is expressed as

T —_ 1
ee
(L — W) Y, (3 1 )
Note that the constant terms are omitted in the above two

expressions.

Especially, when we use the normalized variant of the
regularized Laplacian kernel given in (12), the score is
expressed as follows:

-1 -1

(I + tL) y, = (I (I - D*1/2BD*1/2)) Y,

_ L (-t prgpe - vy, (32)
14+t 14+t @

which is equivalent to the method studied in [13].

V. COMPUTATIONAL EXPERIMENTS

To evaluate the performances of the proposed ap-
proaches, numerical experiments are conducted using a
real-world dataset. We use the MovieLens dataset devel-
oped at the University of Minnesota. This dataset contains
1,000,209 ratings of approximately 3,900 movies made by
6,040 customers. We use 100,000 randomly selected rat-
ings [14] containing 943 customers and 1682 movies. This
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set of ratings is divided into five subsets to perform five-
fold cross-validation. The divided dataset can be retrieved
from http://www.grouplens.org/data/. More-
over, in order to demonstrate the scalability of the pro-
posed approach, we use the original full dataset, which
is also randomly divided into five subsets to perform the
cross-validation.

In these experiments, all of the rating values are con-
verted into binary values, indicating whether a customer
has rated a movie. This conversion has been used in
several papers, including [14], [3]. Let M and N be the
number of movies and customers, respectively. Then the
dataset is represented as an IV x N binary matrix A, where
the ¢ — j element A;; = 1 if customer ¢ has rated movie
7.

In order to generate the graph-based kernels, we need
construct a k-nearest-neighbor graph G(V, E) where the
set of nodes V' corresponds to that of the movies. For
each node j € V, let A; denote the jth column vector of
the matrix A. Based on the cosine similarities

AT A;

[ A [ Al
between movie ¢ and movie j, when movie 7 iS among
the & nearest neighbors of movie j, or when movie j is
among those of movie ¢, we place an edge (i,j) € F
and assign a unit weight b;; = 1. We report the results
obtained by the commute time kernel matrix (CT), the
regularized Laplacian kernel matrix (RL), the normalized
variant of the regularize Laplacian kernel matrix (NL) and
the diffusion kernel matrix (DF).

For each kernel matrix, we consider the 1-SVM with
the parameter v = 1.0 for generating the preference
scores, which can be achieved by solving a system of
linear equations as described in Sect.IV-C. More pre-
cisely, for each active customer a, let y,, € R™ be an M-
dimensional binary vector representing the rated movies.
Then, the preference score of each movie ¢ is given as
the ¢th element of the vectors which are given as (30)
through (32).

The cross-validation is conducted using the training
and test set splits described above. We first calculate the
score of the movies using the training set. Note that,
for each active customer, the movies contained in the
corresponding test set are not contained in the training set.
Then, if the score is ideally correct, these movies have to
be ranked higher than any other movies not rated in the
training set. The performance of the proposed method is
evaluated in the manner described in [3] using the degree
of agreement, which is the proportion of pairs ranked in
the correct order with respect to the total number of pairs.
Therefore, a degree of agreement of 0.5 will be generated
by the random ranking, whereas a degree of agreement
of 1.0 is the correct ranking.

The average degrees of agreement of the five-fold
cross-validation are given in Figs.1 through 6, as well
as in Tablel. Figs.2 through 4 show the results for the
100,000 selected ratings, while Figs. 5 and 6 corresponds
to the full MovieLens dataset with more than one million
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Figure 2. Results of the selected dataset by RL

ratings. These results are obtained by the four kernels,
CT,RL,NL and DF, which are constructed by changing
the number of neighbors ranging from & = 4 to k = 100,
as well as the parameter ¢ in (8), (11) and (12), which
ranges from ¢ = 2719 to ¢ = 219, Note that the contour
lines that are less than 0.893 are omitted from Figs.2
through 4, and those that are less than 0.911 are omitted
from Figs.5 and 6.

From Figs. 1 through 4, we see that the performance
of the three kernels, RL, NL and DF, are almost the
same and slightly better than that of CT. We can see
that the best performance is achieved when the number of
neighbors (k) is around 30 for all the kernels. On the other
hand, the best results are obtained when the parameter
t is around 10~2 for RL, and ¢t = 1 for NL and DF,
both of which are defined by the normalized Laplacian,
L = DY/2LD=1/2_ It should be emphasized that the
proposed method offers fairly high performance in a wide
range of parameter settings. Furthermore, Figs.5 and 6
indicate that almost the same parameter settings generate
the highest performance for the case when we use the full
dataset.

For comparison, we also perform the same five-fold
cross-validation using a previously proposed scoring
method by Fouss et al. [3], whose results are listed
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in Tablel. We also summarize the highest performance
obtained by the four kernels. We can see from this table
that, for both selected and full datasets, the three kernels
(RL, NL and DF) achieve almost the same performance
which are better than CT, and significantly better than the
method by Fouss et al. [3] when we use the full dataset.

VI. CONCLUSION

We have introduced new methods for recommendation
tasks based on the 1-SVM. Using special structures of
graph kernels, we show that the 1-SVM can be formulated
as rather simple quadratic programming problems. In
addition, the formulations can take advantage of the
sparsity of the Laplacian matrix, which results in handling
recommendation tasks with over one million ratings.
Numerical experiments indicate that the quality of our
recommendations is high.

TABLE I
COMPARISON OF THE BEST DEGREE OF AGREEMENTS

Dataset || Fousseral[3] | CT | RL | NL | DF |

Selected 0.878 0.880 | 0.899 | 0.898 | 0.898
Full 0.889 0.902 | 0.920 | 0918 | 0.918
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