
Fault Tolerance in a Multi-Layered DRE System:

A Case Study

Paul Rubel, Joseph Loyall, Richard E. Schantz, Matthew Gillen
BBN Technologies, Cambridge, MA, USA

Email: {prubel,jloyall,schantz,mgillen}@bbn.com

Abstract— Dynamic resource management is a crucial part
of the infrastructure for emerging distributed real-time
embedded systems, responsible for keeping mission-critical
applications operating and allocating the resources
necessary for them to meet their requirements. Because of
this, the resource manager must be fault-tolerant, with
nearly continuous operation. This paper describes our
efforts to develop a fault-tolerant multi-layer dynamic
resource management capability and the challenges we
encountered, some due to the fault tolerance requirements
we needed to meet and others due to characteristics of the
resource management software. The challenges include the
need for extremely rapid recovery; supporting the
characteristics of component middleware, including peer-to-
peer communication and multi-tiered calling semantics;
supporting multiple languages; and the co-existence of
replicated and non-replicated elements. Making our multi-
layer dynamic resource manager fault-tolerant required
simultaneously overcoming all of these challenges,
presenting a significant fault tolerance research challenge.

Index Terms—fault tolerance, multi-layer dynamic resource
management, component middleware, distributed real-time
embedded systems

I. INTRODUCTION
Fault tolerance is an important characteristic of many

systems, especially mission critical systems that are
prevalent in medical, industrial, military, and
telecommunications domains. Many of these are
distributed real-time and embedded (DRE) systems,
combining the challenges of networked systems (e.g.,
distribution, dynamic environments, and
nondeterminism) with the challenges of embedded
systems (e.g., constrained resources and real-time
requirements). For these systems, failure of critical
elements can lead to catastrophic consequences.

One of the most critical elements of large DRE
systems is the dynamic resource management capability.
As part of the DARPA ARMS program, and in

conjunction with a team of researchers from several
organizations, we have been developing a Multi-Layer
dynamic Resource Management (MLRM) capability for
the total ship computing environment [1]. This MLRM
system controls the allocation of computing and
communication resources to applications (some critical
and others non-critical) and reallocation of resources
when failures occur and when missions change, while
maximizing operational capability.

MLRM is a critical piece of common infrastructure
because it enables the deployment of mission-critical
applications and enables them to continue functioning
after failures by redeploying them. In order to maintain
operation of the applications, the MLRM must itself be
able to survive failures. However, MLRM has some
characteristics, typical of similar DRE systems, that
present challenges to making it fault-tolerant. In this
paper, we describe our efforts to make the MLRM fault-
tolerant, concentrating on the following characteristics
and challenges:

• Rapid recovery – Because MLRM functionality is

critical to keeping applications running and supporting
ongoing missions, it is important that it be available
continuously. Therefore, if MLRM fails it must
recover as rapidly as possible, aiming for near zero
recovery time.

• Component middleware – MLRM and the applications
it deploys are developed using emerging component
middleware that offers many advantages, but exhibits
deployment and architectural characteristics that differ
from the object-based middleware most existing fault-
tolerant software supports.

• Peer-to-peer communication – Much established fault
tolerance software supports only pure client-server
semantics, i.e., clients calling replicated servers. In
component software, and in the MLRM software,
components can simultaneously be clients and servers.

• Multi-tiered semantics – Traditional fault tolerance
concentrates on a single tier, in which a call from a
non-replicated client to a replicated server returns
without spawning additional calls to additional servers.
MLRM exhibits multi-tiered semantics, in which a call
to a server frequently calls additional servers, and
clients and multiple tiers of servers can be replicated.

This work was supported by the Defense Advanced Research
Projects Agency (DARPA) under contract NBCHC030119. Approved
for Public Release, Distribution Unlimited

Based on “Adding Fault-Tolerance to a Hierarchical DRE System”,
by P. Rubel, J. Loyall, R. Schantz, and M. Gillen, which appeared in
the Proceedings of the 6th IFIP WG 6.1 International Conference, DAIS
2006, Bologna, Italy, June, 2006. © 2006 Springer-Verlag.

JOURNAL OF COMPUTERS, VOL. 1, NO. 6, SEPTEMBER 2006 43

© 2006 ACADEMY PUBLISHER

This complicates fault tolerance because of the need to
manage consistency and replication across multiple
component boundaries.

• Multiple languages – MLRM contains both C++ and
Java elements and multiple ORBs. Most existing fault-
tolerant solutions support one or the other.

• Large numbers of elements with various degrees of
fault tolerance needs – The MLRM and the total ship
computing environment in which it operates are large
distributed systems, with many interoperating
elements, not all of which need to be fault-tolerant to
the same degree. Traditional fault tolerance solutions
that require all elements to be part of a single approach
fault tolerance infrastructure are unsuitable.

This paper describes how we overcame these

challenges to create a rapidly recovering fault-tolerant
MLRM. First, we describe the MLRM architecture and
its characteristics. Then we address each of the challenges
in more detail and describe the solutions we developed to
overcome them. We then evaluate the fault tolerance
exhibited in the MLRM and the speed with which it
recovers. We then discuss related work and present
conclusions.

II.

III.

FITTING FAULT TOLERANCE INTO A MULTI-
LAYERED DRE STRUCTURE

The MLRM architecture, illustrated in Fig. 1, has the
following layers:

• The Infrastructure Layer deploys missions (consisting

of sets of interacting applications known as
application strings), assigns them to resource pools
and security domains, and determines their relative
priorities. This layer works to ensure that high-level
mission objectives can be met while delegating
particular decisions to lower layers. It can choose to
deploy or redeploy application strings as failures occur
or mission needs change and is also responsible for
deciding which application strings should be run when
sufficient resources are not available to meet all needs.

• The Pool and Application String Layer coordinates
groups of related computing nodes (pools) and related
applications grouped into application strings. It

receives deployment commands from the
infrastructure layer and is responsible for choosing the
hosts on which individual applications will run, taking
into account such factors as resource utilization,
collocation benefits, interdependencies between
applications in a string, as well as other needs. It also
coordinates the shutting down of applications within
its pool. The Pool and Application String Layer also
aggregates status reports from pool level resources and
reports events to the infrastructure layer.

• The Node layer controls access to individual
computing and communication resources. It is
responsible for managing applications on a single host
and for reporting status to the Pool and Application
String Layer elements.

 The pool structure uses diversity in location and
clustering to protect against large-scale damage or major
system failures affecting a large portion of computing
resources. With pools of computing hardware spread in
different locations, the failure of one pool of resources
still leaves sufficient computing capability for critical
operations.

Whereas the pool and node layers rely on redundancy
and redeployment to deal with failures, the infrastructure
layer cannot, since the infrastructure layer applications
must themselves be deployed on hosts in pools and the
loss of a single host or pool cannot be allowed to take the
MLRM down with it. This paper concentrates on making
the Infrastructure Layer MLRM elements fault-tolerant.
In order to ensure that the MLRM remains available, we
use replication to spread its functionality over multiple
hosts and pools. This ensures that even after catastrophic
pool failures the MLRM is available to carry out its job of
deploying or redeploying applications and application
strings to the remaining hosts and pools. When a pool
fails, the infrastructure MLRM elements of the surviving
pools take over and initiate the actions necessary to
deploy critical functionality across the remaining pools.
In this case, there is no need to replicate the pool or node
level MLRM elements, since they will still exist in the
surviving pools.

CHALLENGES AND SOLUTIONS IN MAKING THE
MLRM FAULT-TOLERANT

Making the MLRM fault-tolerant presented a number
of challenges. Some of these were challenges in quantity,
such as providing rapid responses to failures or efficiently
supporting a large number of applications. Others were
challenges of quality, where we needed a specific type of
solution due to the way in which the MLRM was
developed or deployed. Supporting component
middleware, multiple implementation languages, peer-to-
peer interactions, and multi-tiered communication
semantics on account of the existing MLRM
infrastructure exemplify this type of challenge.

Application Substring
Manager

Pool
Manager

Resource
Allocator

RSS

Infrastructure
Allocator

Application String
Manager - Global

RSS

As shown in Fig. 1, the Infrastructure Layer of the
MLRM is not a monolithic whole but rather consists of
four interacting management applications: the
Infrastructure Allocator and Application String Manager-

Infrastructure Layer (Global)

Pool Layer (per pool)

Node Layer
(per host)

Node
Provisioner RSSApplication

Proxy

Ba
nd

wi
dth

 B
ro

ke
r

Figure 1. The MLRM has a layered architecture that deploys
applications across pools and hosts. The Infrastructure Layer

functionality is critical infrastructure that must be fault tolerant.

44 JOURNAL OF COMPUTERS, VOL. 1, NO. 6, SEPTEMBER 2006

© 2006 ACADEMY PUBLISHER

Global (collectively known as the IA/ASM-G due to the
fact that both components are collocated within a single
process); the Resource Status Service (RSS), which
monitors and disseminates information about the state of
the system; and the Bandwidth Broker (BB), which
ensures bandwidth is allocated appropriately. Each of
these management applications has different
characteristics, which contributed to the design of our
fault-tolerant MLRM.

A. Rapid Recovery from Failures
Since the MLRM has responsibility for recovering
application functionality in the face of a node or pool
failure and the application functionality cannot be
recovered until the MLRM has recovered, the
infrastructure layer MLRM functionality must be
constantly available. Therefore, the primary requirement
for our MLRM fault tolerance is speed of recovery.
Because of the very short recovery requirements, and
since our fault model is concerned with node loss rather
than misbehavior, we employ a tolerance strategy that
actively replicates [2] elements when possible and
passively replicates [3] only when necessary (i.e., when
the application semantics are inappropriate for active
replication). This tolerance strategy allows us to recover
quickly while maintaining flexibility.

In an active scheme, each replica processes incoming
messages and sends out responses. Ideally, the failure of a
replica should not affect existing replicas, which will
keep on receiving and replying to messages, and recovery
from a failure should be instantaneous. As long as at least
one replica out of n has not failed, any remaining replica
will be able to carry on and n-1 simultaneous failures can
be tolerated.

To ensure that the responses of one replica are
indistinguishable from another one taking its place, active
replication requires that replicas are deterministic in their
processing of messages. That is, the same input messages
must result in the same output messages at each replica.
Of the MLRM elements, only the IA/ASM-G is
deterministic and suitable for active replication. For the
other elements, we had to make a determination whether
to try to make the RSS and BB deterministic or to use an
alternative replication scheme for them.

We concluded that a warm passive replication scheme
was the best alternative for providing fast recovery for the
BB and RSS. Making them deterministic would
materially change their behavior in unacceptable ways
and would have been a substantial engineering effort.

In a warm passive approach, many replicas are running
but only one of them, the leader, is processing messages
and sending replies. When the leader finishes processing
and before it sends its response, the leader sends its state
to the other replicas. This allows the other replicas to take
over in case of a leader failure and have the same state as
the leader when it sent its latest message. The non-leader
replicas integrate the leader’s state when they see the
reply sent by the leader. At this point they are ready to
take over for the leader in the case of a failure. Passive
replication, like active, can survive n-1 failures with n
replicas.

Passive replication is not as fast as active, due to the
overhead of gathering state in addition to message
processing, but in some cases it is the best available
alternative as it is applicable to more types of
applications. Its resource utilization can also be less than
active if the processing of messages is more expensive
than the gathering of state at the leader and setting of
state at the non-leader(s).

The BB provided an additional challenge for
replication as it made use of a commercial open-source
database, MySQL, as illustrated in Fig. 2. The BB
functionality was split between a stateless front-end and a
MySQL DB that stored information on the back-end. In
order to not have a single point of failure both of these
elements needed to be made fault-tolerant. We replicated
the front-end using a warm passive scheme that was
optimized for interactions with a DB. This extra
optimization was necessary because the MySQL DB was
not a CORBA application, unlike the rest of the MLRM,
and could not make use of our middleware to guarantee
message delivery. Instead of relying on guaranteed
delivery, we used DB guarantees to ensure that actions
were only taken once. Our solution replicated the DB
using an off-the-shelf clustering solution modified to
detect and recover quickly from failures. By carefully
configuring the DB tuning parameters and making a
small source code change to allow DB identifiers to be
specified at configuration-time rather than coordinated at
the time of a failure (saving time and reducing timing
variance), we were able to quickly recovery from DB
failures.

Our replication schemes: active, for use with the
IA/ASM-G; warm passive, for use with the RSS; and an
optimized warm passive, for use with the BB, were
implemented using the Spread [4] group communication
system for sending messages and the MEAD [5] fault
tolerance framework for interception of application
messages to be sent using Spread, suppression of
duplicate messages, and reconstituting replicas. Both of
these were customized, and in the case of MEAD,
extended and enhanced, for use with the MLRM.

Spread is a group communication system that utilizes a
per-host daemon and a library that gets linked with each
application that needs to communicate with the local

Infrastructure
Allocator (IA)

Application
String

Manager (ASM)

Resource
Status

Service (RSS)

Bandwidth
Broker (BB)

BB
Database

MLRM ManagementMLRM Management

MLRM Management and BB DatabaseMLRM Management and BB Database

Actively Actively
ReplicatedReplicated

Passively Passively
ReplicatedReplicated

ReplicatedReplicated
using using MySQLMySQL
clusteringclustering

Figure 2. We replicated the Infrastructure Layer MLRM functionality

using a combination of techniques (active, passive, MySQL clustering)
suited to the characteristics of the elements.

JOURNAL OF COMPUTERS, VOL. 1, NO. 6, SEPTEMBER 2006 45

© 2006 ACADEMY PUBLISHER

daemon. The Spread daemon coordinates the sending
and receiving of messages between group members, in
such a way as to provide messaging characteristics
necessary for replication, such as total-ordering and
reliable delivery.

The Spread daemon also detects node failures and
issues group membership changes for each group that has
a member on the failed node. However, the default
configuration that Spread has “out of the box” can take
over 5 seconds to detect node failures. We needed faster
reaction time from the Spread daemon. Based on
previous work that documented Spread tuning [6], we
adjusted the timeout parameters in Spread to obtain
failure detection times under 200 milliseconds. These
included increasing the frequency of failure detection
messages and decreasing the quiescent time required
between the loss of a member and the declaration of a
new group membership.

 While these tuned timeouts made the node-failure
detection time faster, they also made the Spread daemon
more susceptible to false-positives caused by latency
related to processor scheduling at the operating system
level. Our initial testing showed that a high CPU load on
a node would cause the Spread daemon to get scheduled
less often than required, which in turn caused the other
nodes to report the high-load node as failed. The daemon
needed to run frequently for very small amounts of time.
We solved this problem by making the Spread daemon
the highest priority process on every node. Given the
default scheduling time-slice on Linux (1 ms), this was
sufficient to guarantee that the Spread daemon got a
chance to run as often as it needed to.

The changes made to MEAD were not done to increase
the speed of recovery but rather to support qualities of
MLRM that MEAD did not previously support. These
included supporting component middleware, multi-tiered
semantics, and multiple application development
languages, discussed in the next sections.

B. Integrating Fault tolerance with the CORBA
Component Model

Many fault tolerance concepts, and existing code bases
(including MEAD), were designed to work with
replicated servers in client-server architectures, such as
CORBA 2 [7]. MLRM has been developed using the
CORBA Component Model (CCM, or CORBA 3 [8]),
which has many advantages including lifecycle support
and availability of design tools. However, there were
three main challenges associated with providing fault
tolerance in a CCM environment that needed to be
overcome in order to make the MLRM fault-tolerant.

The first challenge was that the MLRM, and CCM in
general, exhibits a peer-to-peer structure, where
components can play the role of both client and server
simultaneously. While such behavior was possible in
CORBA 2, it was not nearly as common and a solution
that did not support it was often still acceptable. The
initial MEAD software base only supported replicated
servers with duplicate suppression of responses from
replicated servers back to non-replicated clients. We
extended this code base to support the replication of both

clients and servers, and by monitoring and controlling the
CORBA message request identifiers, we were able to
provide the suppression of duplicate requests (from
replicated clients) and responses (from replicated
servers). This allowed the MLRM to continue to function
as it was designed.

The second challenge was that the MLRM has multi-
tiered interactions. In these interactions, a client may
make a call on a server, which in turn makes a call on
another server, any and all of which can be replicated.
These interactions can, if not handled properly lead to
non-determinism or deadlock in active replicas and loss
of synchronization in passive replicas. We dealt with this
problem through a combination of techniques. We
extended the active replication scheme to support
callbacks in a single-threaded manner to prevent deadlock
while preserving determinism.

The passive scheme proved more challenging and was
less amenable to a single solution for multi-tiered
interactions. The most straightforward solution from a
middleware provider point of view is to gather the state
whenever a request or reply is delivered to the replica.
While this is easier for the middleware provider, it can be
more difficult for the application developer due to
complexities in gathering state. Getting the state after a
reply is relatively straightforward as it is just another
sequential call on the replica. Getting state after a request
is more difficult as it entails a nested call and the state
needs to reflect that a call is in progress.

Another solution is to allow the application to notify
the middleware when the state changes. This requires the
application developer to be involved in the fault
tolerance, but may be preferable to forcing them to
develop a set of complex get and set state routines. This
application-driven state transfer approach is particularly
useful if the replicas communicate using one-way
messages or change their state when they are not sending
or receiving messages, for example by making use of
timers.

Due to the fact that the RSS made use of timers and
one-way messages and that we felt comfortable making
fault tolerance changes in the application logic, we chose
to manually trigger state transfer for the passively
replicated RSS at appropriate times.

The third challenge was that the deployment
architecture of CCM is more complicated than most
CORBA 2 solutions. Before a component can be
deployed using CIAO [9], an open-source C++ CCM
implementation, a Node Daemon (ND) starts up a Node
Application (NA), which acts as a container for new
components, as illustrated in Fig. 3. The ND makes
CORBA calls on the NA, instructing it to start

Host

Execution
Manager

Node
Daemon

Process (replicated)

ComponentNode
Application

Load ComponentNode
Application

LoadDeployDeploy

Figure 3. CIAO includes infrastructure elements that are used to deploy
components, only some of which need to be replicated.

46 JOURNAL OF COMPUTERS, VOL. 1, NO. 6, SEPTEMBER 2006

© 2006 ACADEMY PUBLISHER

components, which are not present at NA start up time.
Note that the components, when instantiated in the NA,
need to be replicated, but the NDs should not be.

To illustrate this point, consider an existing fault-
tolerant component when a new replica is started. Since
MEAD ensures that all messages to and from one replica
are seen at every replica, the existing replicas will receive
an extra set of bootstrap interactions each time a new
replica is started. This will not only confuse the existing
replicas, but the responses from the new replica will also
confuse the existing NDs. In order to stop this confusion
and allow replicas to be deployed, we developed a way to
allow direct point-to-point interactions during the
bootstrapping process and then switch to using reliable,
ordered, group communications once the replicas are
started. This is further discussed in subsection D.

The CCM envisions components interacting within a
large-scale assembly. Architecturally, the current MLRM
is made up of multiple assemblies. This decision was a
pragmatic one since the ability to dynamically redeploy
applications within an assembly was not supported at the
time by CIAO. This meant that we could not add new
replicas to the system during execution time, but only at
startup time if we used a large-scale assembly. Using
multiple assemblies allows us to set our unit of fault
tolerance, the process, to the unit of CCM deployment,
simplifying the task of making the MLRM fault
tolerance. We chose processes as our unit of fault
tolerance since it is easier to control and order input and
output into a process than other smaller or larger
application units.

C. Supporting a Multi-Paradigm, Multi-Language
Environment

The MLRM environment is not a simple homogeneous
one. It contains C++ components intermixed with Java
and C++ CORBA objects as well as different ORBs,
aspects of which need to be made fault-tolerant and
interoperable. This heterogeneity requires a fault
tolerance solution that can support components and
objects programmed in both Java and C++. Initially
MEAD only supported C++ and TAO [10]. It did not
support Java, due to difficulties stemming from non-
determinism such as garbage collection and threading. In
order to be able to run the MLRM we enhanced MEAD
so that it worked with the two ORBs used by the MLRM:
JacORB [11], a Java ORB, and CIAO, TAO’s CCM
implementation. In adding support for JacORB into
MEAD we did not remove all sources of non-
determinism from Java, but rather dealt with the
threading of network IO in such a way that JacORB
behaved deterministically when used with active
replication and could be used with passive replication.

Whereas C++ applications developed with TAO use
non-blocking mechanisms, such as the select system call,
to wait for responses, the JVM often makes a new thread
for each operation and blocks, waiting for the operation
to finish. This call style is quite different from what
MEAD initially supported and in order to deal with it we
added code to the read and write calls that effectively
blocked the application while registering a callback.

When data was available the waiting thread would be
called back and allowed to progress. This preserved the
semantics expected by the JVM while allowing us to
deliver messages in the ordered manner necessary to
make our fault tolerance solution work, all without
application knowledge.

Interactions between CORBA components and objects,
whether using TAO, CIAO, or JacORB, went quite
smoothly compared to the differences encountered
supporting Java and C++. Due to the standardization
provided by CORBA and a common use of Spread these
interactions were not problematic.

D. Limiting the Effects of the Fault Tolerance
Infrastructure

In order to keep replicas consistent, our fault tolerance
code uses the Spread group communication system
(GCS) to ensure that messages are reliably delivered to
each replica in the same consistent order. Without these
guarantees, replica state could diverge and the replicas
would no longer duplicate one another. Imagine active
replicas that take in arithmetic operations to perform on
their present value. With an initial value of 5 receiving
‘add 2’ and then ‘multiply by 10’ leads to quite a
different value than receiving ‘multiply by 10’ and then
‘add 2’. At this point the instances are no longer replicas.
Similar problems with consistency can occur for passive
replicas if a failure occurs as a response is being
delivered. To prevent this from happening, any
interactions with a replica, after the initial CCM
bootstrapping, must pass through Spread. Previously, in
the context of small example systems, it was acceptable
to force the entire system to sit atop this GCS
infrastructure and many research-grade fault tolerance
solutions did so, including MEAD. The overhead was a
secondary concern to being able to provide fault
tolerance.

This assumption does not hold in the MLRM case,
where we not only need to replicate the Infrastructure
Layer but must also conserve resources for the use of the
Node Layer, where the important work, from the user’s
point of view, is accomplished.

It would be prudent to limit the use of Spread/MEAD
solely to the Infrastructure Layer. Unfortunately, due to
consistency concerns, illustrated above, elements in the
Pool Layer must interact with the Infrastructure Layer
using Spread/MEAD. However, since the Pool and Node
Layers are not replicated, they do not need the same
consistency guarantees when interacting among one
another. Furthermore, from a usability and performance
perspective, we do not want to force the Spread/MEAD
infrastructure on the Node Layer, which can include
hundreds of components with real-time constraints doing
the actual work of the system. Even a small unnecessary
processing, memory, or network overhead at the Node
Layer would limit the amount of work that could be done
by the nodes.

To provide acceptable performance for components
that do not require Spread/MEAD and to more efficiently
use resources, we implemented functionality that limits
the use of Spread/MEAD to where it is strictly necessary.

JOURNAL OF COMPUTERS, VOL. 1, NO. 6, SEPTEMBER 2006 47

© 2006 ACADEMY PUBLISHER

In our approach to fault tolerance, Spread/MEAD is
strictly necessary for the replicas, all of which are
contained in the MLRM’s Infrastructure Layer, and each
replica is required to use Spread/MEAD for all its
communications. However, every entity that does not
interact with a replicated entity, for example, the contents
of the Node Layer, does not need to use Spread/MEAD.
For those components that interact with both replicated
and non-replicated entities, as happens in the Pool Layer,
we developed new functionality to ensure that they
respond to a request in the same manner they received the
request. If a request is received over TCP it is responded
to over TCP and similarly for Spread. When initiating a
request, MEAD compares the destination IP and port
combination against a list of combinations for which
Spread should be used. If the destination port is on this
list the message will go out over Spread, otherwise it will
use TCP as if MEAD were not present. This effectively
limits Spread/MEAD to only the areas where it is strictly
required, freeing resources for other uses and simplifying
major parts of the rest of the system.

This same mechanism is used to deploy new replicas.
Until a replica has been started the ND and NA interact
without group communication as neither is replicated.
Once the replicated component starts, no more ND/NA
interactions are necessary and the replicas use only
Spread. Currently the list of IP address and port
combinations that will use Spread rather than TCP must
be known at system start time. A planned improvement
to the MEAD software includes removing this
requirement in favor of auto-configuration.

Note that this technique improves over previous
approaches to this challenge. Previously, the solutions
were to either force everything in the system to use the
GCS, which is unreasonable in large, highly dynamic
systems; or to insert special gateway elements [12],
which have to be made fault tolerant themselves and add
overhead. In contrast, our technique simply introduces an
additional role for already existing elements, those at the
edge of a GCS group, that enables them to communicate
with replicated and non-replicated elements.

Fig. 4 illustrates this scheme and shows two replicated
components, in the Spread clouds, interacting with three
transition components, which in turn interact with four
components that are unaware of the underlying Spread
infrastructure.

IV. EXPERIMENTAL VALIDATION
In order to support our claims about the fault tolerance

attributes of the MLRM, we ran a number of experiments.
Our initial experiments measured the time to recover
from a failure under two failure scenarios, a single pool
failure, and two cascading pool failures. We also gathered
experimental data on the time needed to deploy and
integrate a new replica into an existing group of replicas,
which is necessary to maintain a certain level of fault
tolerance over time in the presence of faults.

A. Experiment Setup
Fig. 5 depicts a network setup used to test our claim of

providing rapid recovery from failure. Our experiments
were carried out using 2.8GHz Xeon PCs running Linux
and using 100Mbit Ethernet. The hosts were split into
three pools of three hosts each and were connected using
a multi-homed Linux router.

We ran two types of experiments to measure recovery
speed. In both cases we measured the time required for
our fault tolerance MLRM applications to detect and
recover from failures. In this case recovery meant that the
MLRM was able to redeploy applications. We did not
measure the time to complete the redeployment but rather
measured the time from failure until it would be possible
to start redeployment, due to the MLRM having
recovered and being stable. We did, however, check that
the redeployment succeeded to ensure our recovery had
been successful.

For our first scenario, A, we used two pools of three
hosts and measured the effects of a single pool failure. In
this scenario a whole pool is lost (from the perspective of
the mission-critical software's user) instantaneously, as
would happen during a major power failure or if the
hosting facility was destroyed. In the second scenario, B,
we used three pools and crafted the scenario to showcase
the robustness of our fault tolerance solution. For this
experiment we failed one pool and before the failover
was complete introduced a failure in one of the remaining
two pools. In order to ensure that we had two cascading
failures rather than two sequential failures, or two
simultaneous failures, we post-processed our runs and
reported on only those where the failures were cascading.
When introducing the cascading failure we waited 10 ms,
an experimentally derived value that gave us a good
probability of having a cascading failure, between pool
failures.

In both scenarios we simulated failure by creating a
network partition so that packets sent to or from hosts in
the failed cluster would be dropped at the router. This
partitioning accurately simulates the instantaneous failure
of the pool while also allowing us to note the exact time
the failure occurred (as opposed to trying to obtain a
timestamp for physically pulling a plug). We did not

Spread and TCP
Spread Cloud

TCP
Spread

Figure 4. Our fault tolerance solution enables the coexistence of
group communication (Spread) and non-group communication,

where elements at the edge of the interaction communicate via both
means.

Figure 5. Experimental topology

48 JOURNAL OF COMPUTERS, VOL. 1, NO. 6, SEPTEMBER 2006

© 2006 ACADEMY PUBLISHER

simulate a failure by killing processes, which would
allow the operating system to close sockets. If we had
allowed the OS to close the sockets the failure detection
time would have been much faster, due to the OS sending
notification of the closed socket, but would not have
accurately simulated the complete loss of the pool. We
chose catastrophic pool failure in an attempt to simulate
the most severe failure for our purposes.

To run the experiments in a realistic configuration, we
started the MLRM infrastructure on the pools in use and
deployed 10 application strings with 15 applications per
string using the MLRM. The application strings were
deployed on the first pool to fail. This ensured that the
pool failure would tax the system to the maximum extent,
as each string would need to be redeployed at least once,
and perhaps twice in the B scenario.

B. Experiment Results for Failure Recovery
For each experiment, A and B, we made five runs. On

each of these runs we measured the time of the initial
failure injection, the time that each MLRM element noted
the failure (except for the BB DB, which, due to its
COTS nature, was not instrumented to note failure
detection time) and the time at which each MLRM
element recovered from the failure. For the BB we
measured both the time for the BB front-end to recover as
well as the back-end BB DB to successfully reply to a
simple query. We split the BB measurements due to the
large difference in recovery strategies, the front-end using

our fault tolerance infrastructure and the back-end using
MySQL clustering.

Table I, Table II, Fig. 6, and Fig. 7 show recovery
times for the A and B scenarios. In the tables we show
values for both the time taken from fault injection until
recovery and from fault detection to recovery. The figures
report the times from injection until recovery. The time of
fault detection is the earliest time that any replica detects
that a fault has occurred (using Spread’s group
membership consensus protocol). In either case recovery
is complete when the last replica has completed its
recovery. Note that due to the distributed nature of the
failure detection some applications may receive
notification before others and in some cases this may
allow recovery to proceed in parallel with detection if one
application is recovering while another is still trying to
detect the failure. In the data presented here this occurred
in run 1 in Fig. 7. The IA/ASM-G, which usually detects
the fault first, and is also the fastest to recover from a
failure due to being actively replicated, detected the
failure after the RSS and BB, which were recovering
while the IA/ASM-G was still waiting for notification of
the failure. This manifests itself in quicker MLRM
recovery.

As noted in Table I, the recovery of the MLRM is
complete after a single failure in less than 150 ms from
fault injection and less than 20 ms from detection. For the
B scenario, shown in Table II, recovery from two
cascading failures is complete in less than 330 ms from

TABLE I.

RECOVERY TIME FOR SCENARIO A

Failure to Recovery (FtR)
Detection to Recovery (DtR)

Management
Only(ms)

Management
and BB DB(ms)

FtR - Average 128 142
FtR - Minimum 118 134
FtR - Maximum 136 162

FtR - Standard Deviation 7.0 10.5
DtR - Average 17.2 31.9

DtR - Minimum 16.8 17.5
DtR - Maximum 17.5 60.6

DtR – Standard Deviation 0.3 16.7

TABLE II.

RECOVERY TIME FOR SCENARIO B

Failure to Recovery (FtR)
Detection to Recovery (DtR)

Figure 6. Time to recover after a single pool failure

Management
Only (ms)

Management
and BB DB(ms)

FtR - Average 265 306
FtR - Minimum 260 272
FtR - Maximum 272 329

FtR - Standard Deviation 4.2 19.1
DtR - Average 18.9 59.4

DtR - Minimum 18.4 22.9
DtR - Maximum 19.5 84.1

DtR - Standard Deviation 0.4 20.2

Figure 7. Time to recover after 2 cascading pool failures

JOURNAL OF COMPUTERS, VOL. 1, NO. 6, SEPTEMBER 2006 49

© 2006 ACADEMY PUBLISHER

the introduction of the failures and in less than 70 ms
from the time of detecting the faults. While providing
constant availability of the MLRM is a relative term we
feel that we have achieved it in the context of the MLRM
in these experiments.

C. Results for Starting a New Replica
While failover time is important in the short-term to

continue after a failure, over the long-term being able to
reintegrate or reconstitute a new replica into the system is
also important so that periodic failures do not eventually
lead to complete system failure.

Deployment of a new MLRM application replica takes
just a few seconds. During all but a tiny part of that time,
the MLRM functionality (i.e., the surviving MLRM
replicas) is up and running and fully functional. There is a
brief interruption (on the order of a few 10s of
milliseconds) when the MLRM synchronizes its state
with the new replicas and is unavailable to handle new
requests for service. The interruption is necessitated by
the fact that the state must be consistent while it is being
gathered and for this to happen, replica processing must
stop while the state is gathered. The timeline shown in
Fig. 8 shows the replica reconstitution process and the
brief interruption of MLRM functionality as state from an
existing replica is transferred to the new replica.

As shown in Fig. 9, the time to start up a new replica is
application dependent. A large application will take
longer to load into the system and complicated
applications may take longer to prepare to execute. For
the IA/ASM element, the time to deploy a new replica
component consists mainly of the time to deploy new
CIAO components. With the BB and RSS, it is the time
associated with starting new Java processes, including
starting the JVM, loading classes, and so on. All of this is
independent of the fault tolerance infrastructure over
which they are running. As shown in Fig. 9, any of the
three MLRM replicas are fully integrated into the system
after approximately 2.1 seconds in the worst case.

 While the absolute time for starting up a new replica is
important in order to maintain the continuous uptime of
the system we want to minimize the downtime to the
replicas where no work can be done due to state
synchronization with the new replica. Fig. 10 shows the
downtime measured at the three MLRM applications due
to state gathering. Note that this is also important in the
failure-free case for passive replicas, as the leader of a
group of passive replicas will gather its state with each

message. This state gathering time is relative to the
complexity of the state being gathered. In the case of the
BB, which has no application state, the gathering is done
almost immediately. The IA/ASM-G state is gathered in
approximately 25 ms while the RSS, the application with
the most complex state takes approximately 55 ms to
gather its state.

Figure 9. Time to start a new replica

Figure 10. MLRM downtime during replica restart

V. Related Work

Fault tolerance for distributed systems is an active area
of research and many projects have made significant
contributions. Early replicated object work was done in
the ISIS [13] system. This was followed by systems like
the CORBA service oriented OpenDreams [14] and the
interception based Eternal [15], and AQuA [16], all of
which supported replicated server objects using CORBA.

The Fault Tolerant CORBA standard [8] specifies
reliability support through the replication of CORBA
servers, and the subsequent distribution of the replicas
across the nodes in the system. The FT CORBA
specification has not kept up with the change in CORBA
3 and so does not support the CORBA component model
and is in fact in the process of being superceded by a real-
time/fault-tolerant specification currently in the request
for proposal phase.

Another, more recent, solution for providing fault
tolerance for CCM applications is found in
CARDAMOM [17]. The CARDAMOM system provides
partial CCM support on top of TAO and JacORB and
implements portions of the FT CORBA specification to
provide warm-passive replication.

The AspectIX [18] project also provides fault tolerance
for non-CCM CORBA applications using Java and
JacORB through middleware, which provide
communication as well as deterministic threading for
Java applications. Calls to the middleware are inserted

MLRM operation
interrupted

time

Get stateGet state
from existingfrom existing

replicareplica

ReplicasReplicas
failfail Replica Replica

ready to ready to
runrun

InitiateInitiate
replicareplica

creationcreation
DeployDeploy

new replicanew replica
MLRMMLRM

recoversrecovers
Set stateSet state
in new replicain new replica

Figure 8. Replica reconstitution timeline

50 JOURNAL OF COMPUTERS, VOL. 1, NO. 6, SEPTEMBER 2006

© 2006 ACADEMY PUBLISHER

using source transformation tools that insert calls into the
application source code.

Work has also been done to provide support for multi-
tiered replication. Kemme [19] presents a solution for a
passively replicated middle-tier interacting with a non-
replicated client and replicated DB back-end. Kistijantoro
[20] presents additional work integrating independent
replication solutions for multi-tiered transactional
systems.

VI. CONCLUSIONS

Providing fault tolerance in DRE systems involves
carefully crafting and integrating techniques to not only
meet reliability requirements, but also to match the
characteristics of the systems. The work that we report in
this paper not only provides a practical case study of
inserting fault tolerance into a complex system of
interacting components, but also provides several
significant results in fault tolerance for DRE systems.
First, it improves the design and implementation of
several fault tolerance constituent elements, making them
applicable to larger classes of systems and problems.
These improvements include the following:

• The coexistence of GCS and non-GCS, making

GCS systems more suitable for large DRE
systems with a mixture of replicated and non-
replicated applications.

• Support for peer-to-peer and multi-tiered
semantics, which are more prevalent in DRE
systems than the pure client-server, single-tiered
replication semantics that were previously
supported.

• Replication of component applications written in
multiple languages and using multiple ORBs,
removing some of the limitations in using fault
tolerance solutions in modern software
architectures.

While several of these have been investigated before, a

second significant result is that providing fault tolerance
in DRE systems similar to the MLRM requires all of
them. We can conclude that this is the more typical case,
since many DRE systems are networked systems of
independently developed subsystems (as the MLRM is),
with many interoperating elements (some critical, others
less so), written in different languages and on different
middleware platforms.

A third result of this work is the identification and
management of the tradeoffs involved in building fault
tolerance for DRE systems. The mission-critical nature of
the MLRM system clearly identified a requirement for
nearly continuous availability, which in turn motivated
the use of active replication to mask faults. However,
aspects of some MLRM elements made them
inappropriate for using active replication. The techniques
that we used to integrate multiple techniques, each
matched to the characteristics of specific system
elements, resulting in fault tolerance with very rapid

recovery, should be generally useful to developers of
large mission-critical DRE systems.

ACKNOWLEDGMENT

We would like to thank our colleagues at CMU for
their help with MEAD, particularly Aaron Paulos and
Priya Narasimhan. Vanderbilt University’s Distributed
Object Computing (DOC) group has been invaluable in
helping with CIAO and component deployment.
Telcordia and SRC have also made valuable contributions
to our work.

REFERENCES

[1] R. Campbell et al, “Toward an approach for specification
of QoS and resource information for dynamic resource
management,” in Second RTAS Workshop on Model-
Driven Embedded Systems (MoDES '04), Toronto, Canada,
May 25-28, 2004

[2] F. B. Schneider, “Implementing fault-tolerant services
using the state machine approach: a tutorial,” ACM
Computing Surveys, 22(4) pp. 299--319, December 1990.

[3] N. Budhijara, K. Marzullo, F. Schneider, and S. Toueg,
Distributed Systems, chapter, “The primary-backup
approach”, pp 199-216. Addison-Wesley, Wokingham,
2nd edition, 1993.

[4] Y. Amir, C. Danilov, M. Miskin-Amir, J. Schultz, and J.
Stanton, “The spread toolkit: architecture and
performance,” Johns Hopkins University, Center for
Networking and Distributed Systems (CNDS) Technical
report CNDS-2004-1

[5] P. Narasimhan et al, “MEAD: support for real-time fault-
tolerant CORBA,” in Concurrency and Computation:
Practice and Experience, vol. 17, no. 12, 2005, pp. 1527-
1545.

[6] R. Kukura and T. Bracewell, “Raytheon company DARPA
program composition for embedded systems (PCES) final
report”, June 30, 2005.

[7] Object Management Group, The Common Object Request
Broker: Architecture and Specification, 2.3 ed., June 1999.

[8] Object Management Group, The Common Object Request
Broker: Architecture and Specification, 3.0.3 ed., March
2004.

[9] N. Wang et al. “QoS-enabled middleware”, in Middleware
for Communications, Qusay Mahmoud, Ed. Wiley and
Sons, New York, 2003

[10] D. C. Schmidt, B. Natarajan, C. Gill, N. Wang, and A.
Gokhale, “TAO: a pattern-oriented object request broker
for distributed real-time and embedded systems,” IEEE
Distributed Systems Online, vol. 3, no. 2, Feb. 2002

[11] G. Brose, “JacORB: implementation and design of a java
ORB,” in IFIP WG 6.1 International Working Conference
on Distributed Applications and Interoperable Systems –
DAIS’97, Cottbus, Germany, Chapman & Hall 1997.

[12] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith.
“Gateways for accessing fault tolerance domains”, in
Proceedings of Middlwware 2000, Lecture Notes in
Computer Science 1795, pp. 88-103, April 2000

[13] K. Birman, "The process group approach to reliable
computing," CACM, 36, 12, pp. 37-53, December 1993.

[14] R. Guerraoui, P. Felber, B. Garbinato and K. Mazouni.
“System support for object groups”, in ACM Conference
on Object Oriented Programming Systems, Languages and
Applications, OOPSLA 98, 1998

JOURNAL OF COMPUTERS, VOL. 1, NO. 6, SEPTEMBER 2006 51

© 2006 ACADEMY PUBLISHER

[15] L. E. Moser, P. M. Melliar-Smith and P. Narasimhan,
"Consistent object replication in the eternal system", in
Theory and Practice of Object Systems, vol. 4, no. 2
(1998).

[16] Y. (J.) Ren et al, “AQuA: an adaptive architecture that
provides dependable distributed objects,” in IEEE
Transactions on Computers, vol. 52, no. 1, January 2003,
pp. 31-50.

[17] A. Corsaro, “CARDAMOM: a next generation mission and
safety critical enterprise middleware,” in Third IEEE
Workshop on Software Technologies for Future Embedded
and Ubiquitous Systems (SEUS 2005), 16-17 May 2005,
Seattle, WA, USA. IEEE Computer Society 2005

[18] H. P. Reiser, R. Kapitza, J. Domaschka, and F. J. Hauck,
“Fault-tolerant replication based on fragmented objects,” in
6th IFIP WG 6.1 International Conference on Distributed
Applications and Interoperable Systems - DAIS 2006,
(June 14-16, 2006, Bologna, Italy). 2006, pp. 256-271.

[19] B. Kemme, M. Patino-Martinez, R. Jimenez-Peris, and J.
Salas, “Exactly-once interaction in a multi-tier
architecture,” in VLDB Workshop on Design,
Implementation, and Deployment of Database Replication,
Trondheim, Norway, August 2005.

[20] A. I. Kistijantoro, G. Morgan, S. K. Shrivastava, and M. C.
Little, "Component replication in distributed systems: a
case study using enterprise java beans," in 22nd
International Symposium on Reliable Distributed Systems
(SRDS'03), 2003.

Paul Rubel received B.S. degrees in Computer Science and
Computer Engineering from Washington University in St. Louis
in 1998 and his M.S. in computer science from the University of
Illinois at Urbana-Champaign in 2000. Mr. Rubel is a Staff
Scientist in the Distributed Systems Technology group at BBN
Technologies. His research focuses on providing fault tolerance
and survivability for adaptive distributed systems. He is a
member of the IEEE.

Joseph Loyall received his B.S. degree in computer science
from Indiana University in 1985 and his M.S. and Ph.D. in
computer science from the University of Illinois in 1988 and
1991, respectively. Dr. Loyall is a Division Scientist and one of
the leads of the Distributed Systems Technology Group at BBN
Technologies. He has been the PI for several research programs
in the areas of quality of service, resource management, real-
time systems, adaptive middleware, embedded systems,
software engineering, and fault tolerance. Dr. Loyall is a senior
member of the IEEE and a member of the ACM and the AIAA.
He holds three patents and is the author of over 50 publications,
including book chapters, journal articles, conference papers, and
workshop papers.

 Richard E. Schantz received his Ph. D. degree in Computer
Science from the State University of New York at Stony Brook,
in 1974, and an undergraduate degree in Mathematics from
NYU in 1968. Dr. Schantz is a principal scientist at BBN
Technologies in Cambridge, Mass., where he has been a key
contributor to advanced distributed computing R&D for the past
32 years. His research has been instrumental in defining and
evolving the concepts underlying middleware since its

emergence in the early days of the Arpanet and Internet. Most
recently, he has led research efforts toward developing and
demonstrating the effectiveness of middleware support for
adaptively managing realtime end-to-end Quality of Service and
system survivability. He is a Fellow of the ACM.

Matthew Gillen received his B.S. degree in computer science
from Ohio University in 2000. Mr. Gillen is a Staff Scientist in
the Distributed Systems Technology Group at BBN
Technologies. His primary research focus is distributed systems
and resource management. He also has experience with
embedded systems and robotics.

52 JOURNAL OF COMPUTERS, VOL. 1, NO. 6, SEPTEMBER 2006

© 2006 ACADEMY PUBLISHER

