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Abstract— Dynamic resource management is a crucial part 
of the infrastructure for emerging distributed real-time 
embedded systems, responsible for keeping mission-critical 
applications operating and allocating the resources 
necessary for them to meet their requirements. Because of 
this, the resource manager must be fault-tolerant, with 
nearly continuous operation. This paper describes our 
efforts to develop a fault-tolerant multi-layer dynamic 
resource management capability and the challenges we 
encountered, some due to the fault tolerance requirements 
we needed to meet and others due to characteristics of the 
resource management software. The challenges include the 
need for extremely rapid recovery; supporting the 
characteristics of component middleware, including peer-to-
peer communication and multi-tiered calling semantics; 
supporting multiple languages; and the co-existence of 
replicated and non-replicated elements. Making our multi-
layer dynamic resource manager fault-tolerant required 
simultaneously overcoming all of these challenges, 
presenting a significant fault tolerance research challenge. 
  
Index Terms—fault tolerance, multi-layer dynamic resource 
management, component middleware, distributed real-time 
embedded systems 
  

I. INTRODUCTION 
Fault tolerance is an important characteristic of many 

systems, especially mission critical systems that are 
prevalent in medical, industrial, military, and 
telecommunications domains. Many of these are 
distributed real-time and embedded (DRE) systems, 
combining the challenges of networked systems (e.g., 
distribution, dynamic environments, and 
nondeterminism) with the challenges of embedded 
systems (e.g., constrained resources and real-time 
requirements). For these systems, failure of critical 
elements can lead to catastrophic consequences. 

One of the most critical elements of large DRE 
systems is the dynamic resource management capability. 
As part of the DARPA ARMS program, and in 

conjunction with a team of researchers from several 
organizations, we have been developing a Multi-Layer 
dynamic Resource Management (MLRM) capability for 
the total ship computing environment [1]. This MLRM 
system controls the allocation of computing and 
communication resources to applications (some critical 
and others non-critical) and reallocation of resources 
when failures occur and when missions change, while 
maximizing operational capability. 

MLRM is a critical piece of common infrastructure 
because it enables the deployment of mission-critical 
applications and enables them to continue functioning 
after failures by redeploying them. In order to maintain 
operation of the applications, the MLRM must itself be 
able to survive failures. However, MLRM has some 
characteristics, typical of similar DRE systems, that 
present challenges to making it fault-tolerant. In this 
paper, we describe our efforts to make the MLRM fault-
tolerant, concentrating on the following characteristics 
and challenges: 

 
• Rapid recovery – Because MLRM functionality is 

critical to keeping applications running and supporting 
ongoing missions, it is important that it be available 
continuously. Therefore, if MLRM fails it must 
recover as rapidly as possible, aiming for near zero 
recovery time. 

• Component middleware – MLRM and the applications 
it deploys are developed using emerging component 
middleware that offers many advantages, but exhibits 
deployment and architectural characteristics that differ 
from the object-based middleware most existing fault-
tolerant software supports. 

• Peer-to-peer communication – Much established fault 
tolerance software supports only pure client-server 
semantics, i.e., clients calling replicated servers. In 
component software, and in the MLRM software, 
components can simultaneously be clients and servers. 

• Multi-tiered semantics – Traditional fault tolerance 
concentrates on a single tier, in which a call from a 
non-replicated client to a replicated server returns 
without spawning additional calls to additional servers. 
MLRM exhibits multi-tiered semantics, in which a call 
to a server frequently calls additional servers, and 
clients and multiple tiers of servers can be replicated. 
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This complicates fault tolerance because of the need to 
manage consistency and replication across multiple 
component boundaries. 

• Multiple languages – MLRM contains both C++ and 
Java elements and multiple ORBs. Most existing fault-
tolerant solutions support one or the other. 

• Large numbers of elements with various degrees of 
fault tolerance needs – The MLRM and the total ship 
computing environment in which it operates are large 
distributed systems, with many interoperating 
elements, not all of which need to be fault-tolerant to 
the same degree. Traditional fault tolerance solutions 
that require all elements to be part of a single approach 
fault tolerance infrastructure are unsuitable. 
 
This paper describes how we overcame these 

challenges to create a rapidly recovering fault-tolerant 
MLRM. First, we describe the MLRM architecture and 
its characteristics. Then we address each of the challenges 
in more detail and describe the solutions we developed to 
overcome them. We then evaluate the fault tolerance 
exhibited in the MLRM and the speed with which it 
recovers. We then discuss related work and present 
conclusions. 

II. 

III. 

FITTING FAULT TOLERANCE INTO A MULTI-
LAYERED DRE STRUCTURE 

The MLRM architecture, illustrated in Fig. 1, has the 
following layers:  

 
• The Infrastructure Layer deploys missions (consisting 

of sets of interacting applications known as 
application strings), assigns them to resource pools 
and security domains, and determines their relative 
priorities. This layer works to ensure that high-level 
mission objectives can be met while delegating 
particular decisions to lower layers. It can choose to 
deploy or redeploy application strings as failures occur 
or mission needs change and is also responsible for 
deciding which application strings should be run when 
sufficient resources are not available to meet all needs.   

• The Pool and Application String Layer coordinates 
groups of related computing nodes (pools) and related 
applications grouped into application strings. It 

receives deployment commands from the 
infrastructure layer and is responsible for choosing the 
hosts on which individual applications will run, taking 
into account such factors as resource utilization, 
collocation benefits, interdependencies between 
applications in a string, as well as other needs.  It also 
coordinates the shutting down of applications within 
its pool. The Pool and Application String Layer also 
aggregates status reports from pool level resources and 
reports events to the infrastructure layer.  

• The Node layer controls access to individual 
computing and communication resources. It is 
responsible for managing applications on a single host 
and for reporting status to the Pool and Application 
String Layer elements. 

 
 The pool structure uses diversity in location and 
clustering to protect against large-scale damage or major 
system failures affecting a large portion of computing 
resources. With pools of computing hardware spread in 
different locations, the failure of one pool of resources 
still leaves sufficient computing capability for critical 
operations.  

Whereas the pool and node layers rely on redundancy 
and redeployment to deal with failures, the infrastructure 
layer cannot, since the infrastructure layer applications 
must themselves be deployed on hosts in pools and the 
loss of a single host or pool cannot be allowed to take the 
MLRM down with it. This paper concentrates on making 
the Infrastructure Layer MLRM elements fault-tolerant. 
In order to ensure that the MLRM remains available, we 
use replication to spread its functionality over multiple 
hosts and pools. This ensures that even after catastrophic 
pool failures the MLRM is available to carry out its job of 
deploying or redeploying applications and application 
strings to the remaining hosts and pools. When a pool 
fails, the infrastructure MLRM elements of the surviving 
pools take over and initiate the actions necessary to 
deploy critical functionality across the remaining pools. 
In this case, there is no need to replicate the pool or node 
level MLRM elements, since they will still exist in the 
surviving pools. 

CHALLENGES AND SOLUTIONS IN MAKING THE 
MLRM FAULT-TOLERANT 

Making the MLRM fault-tolerant presented a number 
of challenges. Some of these were challenges in quantity, 
such as providing rapid responses to failures or efficiently 
supporting a large number of applications. Others were 
challenges of quality, where we needed a specific type of 
solution due to the way in which the MLRM was 
developed or deployed. Supporting component 
middleware, multiple implementation languages, peer-to-
peer interactions, and multi-tiered communication 
semantics on account of the existing MLRM 
infrastructure exemplify this type of challenge.  
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As shown in Fig. 1, the Infrastructure Layer of the 
MLRM is not a monolithic whole but rather consists of 
four interacting management applications: the 
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Figure 1. The MLRM has a layered architecture that deploys 
applications across pools and hosts. The Infrastructure Layer 

functionality is critical infrastructure that must be fault tolerant. 
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Global (collectively known as the IA/ASM-G due to the 
fact that both components are collocated within a single 
process); the Resource Status Service (RSS), which 
monitors and disseminates information about the state of 
the system; and the Bandwidth Broker (BB), which 
ensures bandwidth is allocated appropriately. Each of 
these management applications has different 
characteristics, which contributed to the design of our 
fault-tolerant MLRM. 

A. Rapid Recovery from Failures  
Since the MLRM has responsibility for recovering 
application functionality in the face of a node or pool 
failure and the application functionality cannot be 
recovered until the MLRM has recovered, the 
infrastructure layer MLRM functionality must be 
constantly available. Therefore, the primary requirement 
for our MLRM fault tolerance is speed of recovery. 
Because of the very short recovery requirements, and 
since our fault model is concerned with node loss rather 
than misbehavior, we employ a tolerance strategy that 
actively replicates [2] elements when possible and 
passively replicates [3] only when necessary (i.e., when 
the application semantics are inappropriate for active 
replication).  This tolerance strategy allows us to recover 
quickly while maintaining flexibility.   

In an active scheme, each replica processes incoming 
messages and sends out responses. Ideally, the failure of a 
replica should not affect existing replicas, which will 
keep on receiving and replying to messages, and recovery 
from a failure should be instantaneous. As long as at least 
one replica out of n has not failed, any remaining replica 
will be able to carry on and n-1 simultaneous failures can 
be tolerated.  

To ensure that the responses of one replica are 
indistinguishable from another one taking its place, active 
replication requires that replicas are deterministic in their 
processing of messages. That is, the same input messages 
must result in the same output messages at each replica. 
Of the MLRM elements, only the IA/ASM-G is 
deterministic and suitable for active replication. For the 
other elements, we had to make a determination whether 
to try to make the RSS and BB deterministic or to use an 
alternative replication scheme for them.  

We concluded that a warm passive replication scheme 
was the best alternative for providing fast recovery for the 
BB and RSS. Making them deterministic would 
materially change their behavior in unacceptable ways 
and would have been a substantial engineering effort.  

In a warm passive approach, many replicas are running 
but only one of them, the leader, is processing messages 
and sending replies.  When the leader finishes processing 
and before it sends its response, the leader sends its state 
to the other replicas. This allows the other replicas to take 
over in case of a leader failure and have the same state as 
the leader when it sent its latest message. The non-leader 
replicas integrate the leader’s state when they see the 
reply sent by the leader. At this point they are ready to 
take over for the leader in the case of a failure. Passive 
replication, like active, can survive n-1 failures with n 
replicas.  

Passive replication is not as fast as active, due to the 
overhead of gathering state in addition to message 
processing, but in some cases it is the best available 
alternative as it is applicable to more types of 
applications. Its resource utilization can also be less than 
active if the processing of messages is more expensive 
than the gathering of state at the leader and setting of 
state at the non-leader(s). 

The BB provided an additional challenge for 
replication as it made use of a commercial open-source 
database, MySQL, as illustrated in Fig. 2. The BB 
functionality was split between a stateless front-end and a 
MySQL DB that stored information on the back-end. In 
order to not have a single point of failure both of these 
elements needed to be made fault-tolerant. We replicated 
the front-end using a warm passive scheme that was 
optimized for interactions with a DB. This extra 
optimization was necessary because the MySQL DB was 
not a CORBA application, unlike the rest of the MLRM, 
and could not make use of our middleware to guarantee 
message delivery. Instead of relying on guaranteed 
delivery, we used DB guarantees to ensure that actions 
were only taken once. Our solution replicated the DB 
using an off-the-shelf clustering solution modified to 
detect and recover quickly from failures. By carefully 
configuring the DB tuning parameters and making a 
small source code change to allow DB identifiers to be 
specified at configuration-time rather than coordinated at 
the time of a failure (saving time and reducing timing 
variance), we were able to quickly recovery from DB 
failures. 

Our replication schemes: active, for use with the 
IA/ASM-G; warm passive, for use with the RSS; and an 
optimized warm passive, for use with the BB, were 
implemented using the Spread [4] group communication 
system for sending messages and the MEAD [5] fault 
tolerance framework for interception of application 
messages to be sent using Spread, suppression of 
duplicate messages, and reconstituting replicas. Both of 
these were customized, and in the case of MEAD, 
extended and enhanced, for use with the MLRM.  

Spread is a group communication system that utilizes a 
per-host daemon and a library that gets linked with each 
application that needs to communicate with the local 
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Figure 2. We replicated the Infrastructure Layer MLRM functionality 

using a combination of techniques (active, passive, MySQL clustering) 
suited to the characteristics of the elements. 
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daemon.  The Spread daemon coordinates the sending 
and receiving of messages between group members, in 
such a way as to provide messaging characteristics 
necessary for replication, such as total-ordering and 
reliable delivery.   

The Spread daemon also detects node failures and 
issues group membership changes for each group that has 
a member on the failed node.  However, the default 
configuration that Spread has “out of the box” can take 
over 5 seconds to detect node failures.  We needed faster 
reaction time from the Spread daemon.  Based on 
previous work that documented Spread tuning [6], we 
adjusted the timeout parameters in Spread to obtain 
failure detection times under 200 milliseconds. These 
included increasing the frequency of failure detection 
messages and decreasing the quiescent time required 
between the loss of a member and the declaration of a 
new group membership. 

 While these tuned timeouts made the node-failure 
detection time faster, they also made the Spread daemon 
more susceptible to false-positives caused by latency 
related to processor scheduling at the operating system 
level.  Our initial testing showed that a high CPU load on 
a node would cause the Spread daemon to get scheduled 
less often than required, which in turn caused the other 
nodes to report the high-load node as failed. The daemon 
needed to run frequently for very small  amounts of time. 
We solved this problem by making the Spread daemon 
the highest priority process on every node. Given the 
default scheduling time-slice on Linux (1 ms), this was 
sufficient to guarantee that the Spread daemon got a 
chance to run as often as it needed to.  

The changes made to MEAD were not done to increase 
the speed of recovery but rather to support qualities of 
MLRM that MEAD did not previously support. These 
included supporting component middleware, multi-tiered 
semantics, and multiple application development 
languages, discussed in the next sections. 

B. Integrating Fault tolerance with the CORBA 
Component Model 

Many fault tolerance concepts, and existing code bases 
(including MEAD), were designed to work with 
replicated servers in client-server architectures, such as 
CORBA 2 [7]. MLRM has been developed using the 
CORBA Component Model (CCM, or CORBA 3 [8]), 
which has many advantages including lifecycle support 
and availability of design tools. However, there were 
three main challenges associated with providing fault 
tolerance in a CCM environment that needed to be 
overcome in order to make the MLRM fault-tolerant.  

The first challenge was that the MLRM, and CCM in 
general, exhibits a peer-to-peer structure, where 
components can play the role of both client and server 
simultaneously. While such behavior was possible in 
CORBA 2, it was not nearly as common and a solution 
that did not support it was often still acceptable. The 
initial MEAD software base only supported replicated 
servers with duplicate suppression of responses from 
replicated servers back to non-replicated clients. We 
extended this code base to support the replication of both 

clients and servers, and by monitoring and controlling the 
CORBA message request identifiers, we were able to 
provide the suppression of duplicate requests (from 
replicated clients) and responses (from replicated 
servers). This allowed the MLRM to continue to function 
as it was designed.  

The second challenge was that the MLRM has multi-
tiered interactions. In these interactions, a client may 
make a call on a server, which in turn makes a call on 
another server, any and all of which can be replicated. 
These interactions can, if not handled properly lead to 
non-determinism or deadlock in active replicas and loss 
of synchronization in passive replicas. We dealt with this 
problem through a combination of techniques. We 
extended the active replication scheme to support 
callbacks in a single-threaded manner to prevent deadlock 
while preserving determinism.  

The passive scheme proved more challenging and was 
less amenable to a single solution for multi-tiered 
interactions. The most straightforward solution from a 
middleware provider point of view is to gather the state 
whenever a request or reply is delivered to the replica. 
While this is easier for the middleware provider, it can be 
more difficult for the application developer due to 
complexities in gathering state. Getting the state after a 
reply is relatively straightforward as it is just another 
sequential call on the replica. Getting state after a request 
is more difficult as it entails a nested call and the state 
needs to reflect that a call is in progress.  

Another solution is to allow the application to notify 
the middleware when the state changes. This requires the 
application developer to be involved in the fault 
tolerance, but may be preferable to forcing them to 
develop a set of complex get and set state routines. This 
application-driven state transfer approach is particularly 
useful if the replicas communicate using one-way 
messages or change their state when they are not sending 
or receiving messages, for example by making use of 
timers. 

Due to the fact that the RSS made use of timers and 
one-way messages and that we felt comfortable making 
fault tolerance changes in the application logic, we chose 
to manually trigger state transfer for the passively 
replicated RSS at appropriate times.  

The third challenge was that the deployment 
architecture of CCM is more complicated than most 
CORBA 2 solutions. Before a component can be 
deployed using CIAO [9], an open-source C++ CCM 
implementation, a Node Daemon (ND) starts up a Node 
Application (NA), which acts as a container for new 
components, as illustrated in Fig. 3. The ND makes 
CORBA calls on the NA, instructing it to start 
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Load ComponentNode 
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Figure 3. CIAO includes infrastructure elements that are used to deploy 
components, only some of which need to be replicated.
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components, which are not present at NA start up time. 
Note that the components, when instantiated in the NA, 
need to be replicated, but the NDs should not be.  

To illustrate this point, consider an existing fault-
tolerant component when a new replica is started. Since 
MEAD ensures that all messages to and from one replica 
are seen at every replica, the existing replicas will receive 
an extra set of bootstrap interactions each time a new 
replica is started. This will not only confuse the existing 
replicas, but the responses from the new replica will also 
confuse the existing NDs. In order to stop this confusion 
and allow replicas to be deployed, we developed a way to 
allow direct point-to-point interactions during the 
bootstrapping process and then switch to using reliable, 
ordered, group communications once the replicas are 
started. This is further discussed in subsection D. 

The CCM envisions components interacting within a 
large-scale assembly. Architecturally, the current MLRM 
is made up of multiple assemblies. This decision was a 
pragmatic one since the ability to dynamically redeploy 
applications within an assembly was not supported at the 
time by CIAO. This meant that we could not add new 
replicas to the system during execution time, but only at 
startup time if we used a large-scale assembly. Using 
multiple assemblies allows us to set our unit of fault 
tolerance, the process, to the unit of CCM deployment, 
simplifying the task of making the MLRM fault 
tolerance. We chose processes as our unit of fault 
tolerance since it is easier to control and order input and 
output into a process than other smaller or larger 
application units.  

C. Supporting a Multi-Paradigm, Multi-Language 
Environment 

The MLRM environment is not a simple homogeneous 
one. It contains C++ components intermixed with Java 
and C++ CORBA objects as well as different ORBs, 
aspects of which need to be made fault-tolerant and 
interoperable. This heterogeneity requires a fault 
tolerance solution that can support components and 
objects programmed in both Java and C++. Initially 
MEAD only supported C++ and TAO [10]. It did not 
support Java, due to difficulties stemming from non-
determinism such as garbage collection and threading. In 
order to be able to run the MLRM we enhanced MEAD 
so that it worked with the two ORBs used by the MLRM: 
JacORB [11], a Java ORB, and CIAO, TAO’s CCM 
implementation. In adding support for JacORB into 
MEAD we did not remove all sources of non-
determinism from Java, but rather dealt with the 
threading of network IO in such a way that JacORB 
behaved deterministically when used with active 
replication and could be used with passive replication. 

Whereas C++ applications developed with TAO use 
non-blocking mechanisms, such as the select system call, 
to wait for responses, the JVM often makes a new thread 
for each operation and blocks, waiting for the operation 
to finish. This call style is quite different from what 
MEAD initially supported and in order to deal with it we 
added code to the read and write calls that effectively 
blocked the application while registering a callback. 

When data was available the waiting thread would be 
called back and allowed to progress. This preserved the 
semantics expected by the JVM while allowing us to 
deliver messages in the ordered manner necessary to 
make our fault tolerance solution work, all without 
application knowledge. 

Interactions between CORBA components and objects, 
whether using TAO, CIAO, or JacORB, went quite 
smoothly compared to the differences encountered 
supporting Java and C++. Due to the standardization 
provided by CORBA and a common use of Spread these 
interactions were not problematic. 

D. Limiting the Effects of the Fault Tolerance 
Infrastructure 

In order to keep replicas consistent, our fault tolerance 
code uses the Spread group communication system 
(GCS) to ensure that messages are reliably delivered to 
each replica in the same consistent order. Without these 
guarantees, replica state could diverge and the replicas 
would no longer duplicate one another. Imagine active 
replicas that take in arithmetic operations to perform on 
their present value. With an initial value of 5 receiving 
‘add 2’ and then ‘multiply by 10’ leads to quite a 
different value than receiving ‘multiply by 10’ and then 
‘add 2’. At this point the instances are no longer replicas. 
Similar problems with consistency can occur for passive 
replicas if a failure occurs as a response is being 
delivered. To prevent this from happening, any 
interactions with a replica, after the initial CCM 
bootstrapping, must pass through Spread. Previously, in 
the context of small example systems, it was acceptable 
to force the entire system to sit atop this GCS 
infrastructure and many research-grade fault tolerance 
solutions did so, including MEAD. The overhead was a 
secondary concern to being able to provide fault 
tolerance. 

This assumption does not hold in the MLRM case, 
where we not only need to replicate the Infrastructure 
Layer but must also conserve resources for the use of the 
Node Layer, where the important work, from the user’s 
point of view, is accomplished.  

It would be prudent to limit the use of Spread/MEAD 
solely to the Infrastructure Layer. Unfortunately, due to 
consistency concerns, illustrated above, elements in the 
Pool Layer must interact with the Infrastructure Layer 
using Spread/MEAD. However, since the Pool and Node 
Layers are not replicated, they do not need the same 
consistency guarantees when interacting among one 
another. Furthermore, from a usability and performance 
perspective, we do not want to force the Spread/MEAD 
infrastructure on the Node Layer, which can include 
hundreds of components with real-time constraints doing 
the actual work of the system. Even a small unnecessary 
processing, memory, or network overhead at the Node 
Layer would limit the amount of work that could be done 
by the nodes. 

To provide acceptable performance for components 
that do not require Spread/MEAD and to more efficiently 
use resources, we implemented functionality that limits 
the use of Spread/MEAD to where it is strictly necessary.  
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In our approach to fault tolerance, Spread/MEAD is 
strictly necessary for the replicas, all of which are 
contained in the MLRM’s Infrastructure Layer, and each 
replica is required to use Spread/MEAD for all its 
communications. However, every entity that does not 
interact with a replicated entity, for example, the contents 
of the Node Layer, does not need to use Spread/MEAD. 
For those components that interact with both replicated 
and non-replicated entities, as happens in the Pool Layer, 
we developed new functionality to ensure that they 
respond to a request in the same manner they received the 
request. If a request is received over TCP it is responded 
to over TCP and similarly for Spread. When initiating a 
request, MEAD compares the destination IP and port 
combination against a list of combinations for which 
Spread should be used. If the destination port is on this 
list the message will go out over Spread, otherwise it will 
use TCP as if MEAD were not present. This effectively 
limits Spread/MEAD to only the areas where it is strictly 
required, freeing resources for other uses and simplifying 
major parts of the rest of the system. 

This same mechanism is used to deploy new replicas. 
Until a replica has been started the ND and NA interact 
without group communication as neither is replicated. 
Once the replicated component starts, no more ND/NA 
interactions are necessary and the replicas use only 
Spread. Currently the list of IP address and port 
combinations that will use Spread rather than TCP must 
be known at system start time.  A planned improvement 
to the MEAD software includes removing this 
requirement in favor of auto-configuration. 

Note that this technique improves over previous 
approaches to this challenge. Previously, the solutions 
were to either force everything in the system to use the 
GCS, which is unreasonable in large, highly dynamic 
systems; or to insert special gateway elements [12], 
which have to be made fault tolerant themselves and add 
overhead. In contrast, our technique simply introduces an 
additional role for already existing elements, those at the 
edge of a GCS group, that enables them to communicate 
with replicated and non-replicated elements. 

Fig. 4 illustrates this scheme and shows two replicated 
components, in the Spread clouds, interacting with three 
transition components, which in turn interact with four 
components that are unaware of the underlying Spread 
infrastructure. 

IV. EXPERIMENTAL VALIDATION 
In order to support our claims about the fault tolerance 

attributes of the MLRM, we ran a number of experiments. 
Our initial experiments measured the time to recover 
from a failure under two failure scenarios, a single pool 
failure, and two cascading pool failures. We also gathered 
experimental data on the time needed to deploy and 
integrate a new replica into an existing group of replicas, 
which is necessary to maintain a certain level of fault 
tolerance over time in the presence of faults. 

A. Experiment Setup  
Fig. 5 depicts a network setup used to test our claim of 

providing rapid recovery from failure. Our experiments 
were carried out using 2.8GHz Xeon PCs running Linux 
and using 100Mbit Ethernet. The hosts were split into 
three pools of three hosts each and were connected using 
a multi-homed Linux router.  

We ran two types of experiments to measure recovery 
speed. In both cases we measured the time required for 
our fault tolerance MLRM applications to detect and 
recover from failures. In this case recovery meant that the 
MLRM was able to redeploy applications. We did not 
measure the time to complete the redeployment but rather 
measured the time from failure until it would be possible 
to start redeployment, due to the MLRM having 
recovered and being stable. We did, however, check that 
the redeployment succeeded to ensure our recovery had 
been successful.  

For our first scenario, A, we used two pools of three 
hosts and measured the effects of a single pool failure. In 
this scenario a whole pool is lost (from the perspective of 
the mission-critical software's user) instantaneously, as 
would happen during a major power failure or if the 
hosting facility was destroyed.  In the second scenario, B, 
we used three pools and crafted the scenario to showcase 
the robustness of our fault tolerance solution. For this 
experiment we failed one pool and before the failover 
was complete introduced a failure in one of the remaining 
two pools. In order to ensure that we had two cascading 
failures rather than two sequential failures, or two 
simultaneous failures, we post-processed our runs and 
reported on only those where the failures were cascading. 
When introducing the cascading failure we waited 10 ms, 
an experimentally derived value that gave us a good 
probability of having a cascading failure, between pool 
failures.  

In both scenarios we simulated failure by creating a 
network partition so that packets sent to or from hosts in 
the failed cluster would be dropped at the router. This 
partitioning accurately simulates the instantaneous failure 
of the pool while also allowing us to note the exact time 
the failure occurred (as opposed to trying to obtain a 
timestamp for physically pulling a plug). We did not 

Spread and TCP
Spread Cloud

TCP
Spread

Figure 4. Our fault tolerance solution enables the coexistence of 
group communication (Spread) and non-group communication, 

where elements at the edge of the interaction communicate via both 
means. 

 
Figure 5. Experimental topology 
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simulate a failure by killing processes, which would 
allow the operating system to close sockets. If we had 
allowed the OS to close the sockets the failure detection 
time would have been much faster, due to the OS sending 
notification of the closed socket, but would not have 
accurately simulated the complete loss of the pool. We 
chose catastrophic pool failure in an attempt to simulate 
the most severe failure for our purposes. 

To run the experiments in a realistic configuration, we 
started the MLRM infrastructure on the pools in use and 
deployed 10 application strings with 15 applications per 
string using the MLRM. The application strings were 
deployed on the first pool to fail. This ensured that the 
pool failure would tax the system to the maximum extent, 
as each string would need to be redeployed at least once, 
and perhaps twice in the B scenario.  

B. Experiment Results for Failure Recovery 
For each experiment, A and B, we made five runs. On 

each of these runs we measured the time of the initial 
failure injection, the time that each MLRM element noted 
the failure (except for the BB DB, which, due to its 
COTS nature, was not instrumented to note failure 
detection time) and the time at which each MLRM 
element recovered from the failure. For the BB we 
measured both the time for the BB front-end to recover as 
well as the back-end BB DB to successfully reply to a 
simple query. We split the BB measurements due to the 
large difference in recovery strategies, the front-end using 

our fault tolerance infrastructure and the back-end using 
MySQL clustering. 

Table I, Table II, Fig. 6, and Fig. 7 show recovery 
times for the A and B scenarios. In the tables we show 
values for both the time taken from fault injection until 
recovery and from fault detection to recovery. The figures 
report the times from injection until recovery. The time of 
fault detection is the earliest time that any replica detects 
that a fault has occurred (using Spread’s group 
membership consensus protocol). In either case recovery 
is complete when the last replica has completed its 
recovery. Note that due to the distributed nature of the 
failure detection some applications may receive 
notification before others and in some cases this may 
allow recovery to proceed in parallel with detection if one 
application is recovering while another is still trying to 
detect the failure. In the data presented here this occurred 
in run 1 in Fig. 7. The IA/ASM-G, which usually detects 
the fault first, and is also the fastest to recover from a 
failure due to being actively replicated, detected the 
failure after the RSS and BB, which were recovering 
while the IA/ASM-G was still waiting for notification of 
the failure. This manifests itself in quicker MLRM 
recovery.  

As noted in Table I, the recovery of the MLRM is 
complete after a single failure in less than 150 ms from 
fault injection and less than 20 ms from detection. For the 
B scenario, shown in Table II, recovery from two 
cascading failures is complete in less than 330 ms from 

 
TABLE I.  

RECOVERY TIME FOR SCENARIO A  

Failure to Recovery (FtR) 
Detection to Recovery (DtR) 

Management 
Only(ms) 

Management 
and BB DB(ms) 

FtR - Average 128 142 
FtR - Minimum 118 134 
FtR - Maximum 136 162 

FtR - Standard Deviation 7.0 10.5 
DtR - Average 17.2 31.9 

DtR - Minimum 16.8 17.5 
DtR - Maximum 17.5 60.6 

DtR – Standard Deviation 0.3 16.7 
 

 
TABLE II.  

RECOVERY TIME FOR SCENARIO B 

Failure to Recovery (FtR) 
Detection to Recovery (DtR) 

 
Figure 6. Time to recover after a single pool failure 

Management 
Only (ms) 

Management 
and BB DB(ms) 

FtR - Average  265 306 
FtR - Minimum  260 272 
FtR - Maximum  272 329 

FtR - Standard Deviation  4.2 19.1 
DtR - Average  18.9 59.4 

DtR - Minimum  18.4 22.9 
DtR - Maximum  19.5 84.1 

DtR - Standard Deviation 0.4 20.2 
 

 
Figure 7. Time to recover after 2 cascading pool failures

JOURNAL OF COMPUTERS, VOL. 1, NO. 6, SEPTEMBER 2006 49

© 2006 ACADEMY PUBLISHER



the introduction of the failures and in less than 70 ms 
from the time of detecting the faults. While providing 
constant availability of the MLRM is a relative term we 
feel that we have achieved it in the context of the MLRM 
in these experiments. 

C. Results for Starting  a New Replica 
While failover time is important in the short-term to 

continue after a failure, over the long-term being able to 
reintegrate or reconstitute a new replica into the system is 
also important so that periodic failures do not eventually 
lead to complete system failure.  

Deployment of a new MLRM application replica takes 
just a few seconds. During all but a tiny part of that time, 
the MLRM functionality (i.e., the surviving MLRM 
replicas) is up and running and fully functional. There is a 
brief interruption (on the order of a few 10s of 
milliseconds) when the MLRM synchronizes its state 
with the new replicas and is unavailable to handle new 
requests for service. The interruption is necessitated by 
the fact that the state must be consistent while it is being 
gathered and for this to happen, replica processing must 
stop while the state is gathered. The timeline shown in 
Fig. 8 shows the replica reconstitution process and the 
brief interruption of MLRM functionality as state from an 
existing replica is transferred to the new replica.  

As shown in Fig. 9, the time to start up a new replica is 
application dependent. A large application will take 
longer to load into the system and complicated 
applications may take longer to prepare to execute. For 
the IA/ASM element, the time to deploy a new replica 
component consists mainly of the time to deploy new 
CIAO components. With the BB and RSS, it is the time 
associated with starting new Java processes, including 
starting the JVM, loading classes, and so on. All of this is 
independent of the fault tolerance infrastructure over 
which they are running. As shown in Fig. 9, any of the 
three MLRM replicas are fully integrated into the system 
after approximately 2.1 seconds in the worst case.  

 While the absolute time for starting up a new replica is 
important in order to maintain the continuous uptime of 
the system we want to minimize the downtime to the 
replicas where no work can be done due to state 
synchronization with the new replica. Fig. 10 shows the 
downtime measured at the three MLRM applications due 
to state gathering. Note that this is also important in the 
failure-free case for passive replicas, as the leader of a 
group of passive replicas will gather its state with each 

message. This state gathering time is relative to the 
complexity of the state being gathered. In the case of the 
BB, which has no application state, the gathering is done 
almost immediately. The IA/ASM-G state is gathered in 
approximately 25 ms while the RSS, the application with 
the most complex state takes approximately 55 ms to 
gather its state.  

Figure 9. Time to start a new replica 

 
Figure 10. MLRM downtime during replica restart 

V. Related Work 

Fault tolerance for distributed systems is an active area 
of research and many projects have made significant 
contributions. Early replicated object work was done in 
the ISIS [13] system. This was followed by systems like 
the CORBA service oriented OpenDreams [14] and the 
interception based Eternal [15], and AQuA [16], all of 
which supported replicated server objects using CORBA.  

The Fault Tolerant CORBA standard [8] specifies 
reliability support through the replication of CORBA 
servers, and the subsequent distribution of the replicas 
across the nodes in the system. The FT CORBA 
specification has not kept up with the change in CORBA 
3 and so does not support the CORBA component model 
and is in fact in the process of being superceded by a real-
time/fault-tolerant specification currently in the request 
for proposal phase.  

Another, more recent, solution for providing fault 
tolerance for CCM applications is found in 
CARDAMOM [17]. The CARDAMOM system provides 
partial CCM support on top of TAO and JacORB and 
implements portions of the FT CORBA specification to 
provide warm-passive replication.  

The AspectIX [18] project also provides fault tolerance 
for non-CCM CORBA applications using Java and 
JacORB through middleware, which provide 
communication as well as deterministic threading for 
Java applications. Calls to the middleware are inserted 

MLRM operation 
interrupted

time

Get stateGet state
from existingfrom existing

replicareplica

ReplicasReplicas
failfail Replica Replica 

ready to ready to 
runrun

InitiateInitiate
replicareplica

creationcreation
DeployDeploy

new replicanew replica
MLRMMLRM

recoversrecovers
Set stateSet state
in new replicain new replica

 
Figure 8. Replica reconstitution timeline 
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using source transformation tools that insert calls into the 
application source code.  

Work has also been done to provide support for multi-
tiered replication. Kemme [19] presents a solution for a 
passively replicated middle-tier interacting with a non-
replicated client and replicated DB back-end. Kistijantoro 
[20] presents additional work integrating independent 
replication solutions for multi-tiered transactional 
systems. 

VI. CONCLUSIONS 

Providing fault tolerance in DRE systems involves 
carefully crafting and integrating techniques to not only 
meet reliability requirements, but also to match the 
characteristics of the systems. The work that we report in 
this paper not only provides a practical case study of 
inserting fault tolerance into a complex system of 
interacting components, but also provides several 
significant results in fault tolerance for DRE systems. 
First, it improves the design and implementation of 
several fault tolerance constituent elements, making them 
applicable to larger classes of systems and problems. 
These improvements include the following: 

 
• The coexistence of GCS and non-GCS, making 

GCS systems more suitable for large DRE 
systems with a mixture of replicated and non-
replicated applications. 

• Support for peer-to-peer and multi-tiered 
semantics, which are more prevalent in DRE 
systems than the pure client-server, single-tiered 
replication semantics that were previously 
supported. 

• Replication of component applications written in 
multiple languages and using multiple ORBs, 
removing some of the limitations in using fault 
tolerance solutions in modern software 
architectures. 

 
While several of these have been investigated before, a 

second significant result is that providing fault tolerance 
in DRE systems similar to the MLRM requires all of 
them. We can conclude that this is the more typical case, 
since many DRE systems are networked systems of 
independently developed subsystems (as the MLRM is), 
with many interoperating elements (some critical, others 
less so), written in different languages and on different 
middleware platforms. 

A third result of this work is the identification and 
management of the tradeoffs involved in building fault 
tolerance for DRE systems. The mission-critical nature of 
the MLRM system clearly identified a requirement for 
nearly continuous availability, which in turn motivated 
the use of active replication to mask faults. However, 
aspects of some MLRM elements made them 
inappropriate for using active replication. The techniques 
that we used to integrate multiple techniques, each 
matched to the characteristics of specific system 
elements, resulting in fault tolerance with very rapid 

recovery, should be generally useful to developers of 
large mission-critical DRE systems. 
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