

Simultaneous Multi-processor Cores for Efficient
Embedded Applications

Earle Jennings

CTO, QSigma, Inc., Sunnyvale, CA 94089, USA, US Citizen.

Corresponding author. Tel.: +1 510 292 8328; email: earle.jennings@qsigmainc.com
Manuscript submitted April 15, 2017; accepted July 20, 2017.
doi: 10.17706/jcp.13.4.371-382

Abstract: This paper introduces Simultaneous Multi-Processor (SMP) cores. These SMP cores offer a high

performance, efficient application target for the embedded system developer. SMP cores can be

reprogrammed like a microprocessor in response to application requirement changes. They do not require

caching, or superscalar instruction processing, greatly reducing silicon size and energy consumption. Also

the power to any unused resources is gated off each clock cycle. This new class of instruction processors is

discussed and shown through a core architecture implementing multiple simultaneous processes. This

approach solves an inherent problem in VLIW instruction processing, giving the advantages of VLIW, while

dramatically reducing instruction memories, and eliminating the need for instruction caching. Examples are

given of the simultaneous processes of multiple threads. Merging these processes is shown. The SMP cores

achieve the effect of superscalar instruction processing and multi-thread control, through a compile time

procedure, without any additional hardware.

Key words: Caches, embedded controllers, SOC, superscalar microprocessors.

1. Background

Today, an embedded application developer chooses from three implementation targets, scalar

microprocessors, superscalar microprocessors, or customized IP cores tailored to a specific purpose.

Customized IP cores are efficient because they leave out components unnecessary for their purpose.

However, significant redesign is needed for them to meet changing application requirements, delaying

product entry into the market. Scalar microprocessors have limited performance, but can be reprogrammed

as application requirements change. Superscalar microprocessors improve the performance of

microprocessor applications through a combination of caching and superscalar instruction interpretation,

with multi-thread control. However, both caches and super-scalar mechanisms require a large silicon and

energy overhead.

Today’s computer architectures are derived from the von Neumann architecture first deployed in the

1950’s [1]. The von Neumann architecture implements a central processing unit (CPU), which operates a

program counter. An instruction is fetched, based upon the program counter, by accessing a location in a

memory. The CPU responds to the fetched instruction by translating it into some internal sequence of states,

generally referred to as executing the instruction. The program counter may be altered, and the CPU repeats

the process of fetching and executing instructions. Three early computers, built on this architecture [2],

pioneered features commonly incorporated into today’s microprocessors.

Journal of Computers

371 Volume 13, Number 4, April 2018

These three computers are the IBM 360, with its use of caching, the VAX-11, with its multi-tasking and

virtual memory environment, and the Pentium, as representative of superscalar microprocessors. The IBM

360 introduced caches as a way to interface slow, but large, memories to the CPU. The VAX-11 successfully

ran many different programs on the same CPU during a small time interval, where each program could

pretend that it ran in a huge memory space. A superscalar microprocessor interprets an intermediate

language of a simpler architecture, such as the 80486, or the Arm 7, into smaller (pico) instructions [3]. The

pico-instructions are scheduled into streams that simultaneously operate data processing resources, such as

floating point arithmetic units, at far higher performance than the intermediate language supports. All of

these innovations make for better general-purpose computers. However, they are inefficient in addressing

the situation of high performance computers (HPC) [4], the power requirements for Digital Signal

Processing (DSP) circuits, and the requirements for System On a Chip (SOC) components [5]. The

Simultaneous Multi-Processor (SMP) core research results are applicable to DSP and HPC, however this

paper focuses on embedded cores for SOC.

2. A New Class of Instruction Processors

Fig. 1 shows, on the left, executing an Amdahl compliant algorithm [6] with a parallel part (PP) and a

sequential part (SP). Shown on the right is a Simultaneous Multi-Processor (SMP) core, implementing a

process state calculator simultaneously issuing at least two process state indexes for executing multiple

simultaneous processes. Each simultaneous process separately owns the instructed resources of the core.

Each owned instructed resource includes its own local instruction processor, which simultaneously responds

to the process state of its owning process, to generate a local instruction that directs the instructed resource’s

operation as part of the owning process. Data processing resources, such as a data memory port, an adder,

and so on, are called instructed resources. Each process owns separate instructed resources so that the

Parallel Part (PP) and the Sequential Part (SP) need not stall each other. Owning a resource means that one,

and only one, process within a task stimulates its instruction processing with its process state.

Fig. 1. An amdahl-compliant algorithm and its components implemented by the SMP core.

A SMP core program designates the resources owned by the specific simultaneous processes of a task. A

Journal of Computers

372 Volume 13, Number 4, April 2018

process state calculator issues a process index for each of the simultaneous processes. Local resources

performing data processing, memory access, I/O and feedback are each owned and operated by specific

processes, or are not used at all by that task. Ownership may vary for different tasks, but within one task is

fixed.

2.1. Benefits of the SMP Core

The SMP core simultaneously performs both processes PP and SP as shown in Fig. 2. This is compared to

the conventional computer (scalar microprocessor) that may execute, at most, one of the processes at a

time.

Fig. 2. Timeline of von Neumann computer compared to SMP core.

Before superscalar microprocessors, there was an inherent problem with conventional microprocessors.

They did not give fine enough control of each data processing resource. This fundamentally limited their

performance. In the 1990’s two approaches were considered, Very Long Instruction Word (VLIW) machines

and superscalar microprocessors. The VLIW machines had very detailed instructions for each resource, but

required very long, and deep, instruction memories to be effective, which increased the instruction memory

demands. Consider a third alternative, the SMP core. Assume that the PP and SP processes each have a range

of 8 process states (instructions). This new core is driven by separately accessible, process-owned local

instructions, shown in Fig. 3.

Fig. 3. Local, process-owned instruction memories range over eight instructions.

A VLIW instruction memory supporting these same independent operations requires a much larger VLIW

memory of 64 instructions, as shown in Fig. 4. The simultaneous processes, and the local instructions for

their owned instructed resources, remove this otherwise required large VLIW memory. They also remove

the need for instruction caching. Starting from the core, the sequential part and parallel parts of the

conventional computer become the simultaneous processes, and incorporate the advantages of three new

features. First, all feedback is external to arithmetic components, such as the FP adders. The operation of

accumulating feedback is triggered by the state of the feedback queues. This feedback scheme supports an

Journal of Computers

373 Volume 13, Number 4, April 2018

alternative to FP multiply-accumulate operations, which runs at the speed of the multiplier, without concern

for how the adders are implemented, or the latency of the adders. Second, the adders are extended to support

comparisons with the winning input operand, and its index, sent as the adder output. Winners may be the

maximum, or the minimum, as specified by the program. Third, communication between the parallel part

and the sequential part is through feedback, with the feedback queue status triggering actions in the

receiving process.

Fig. 4. VLIW instruction memory accessed by a single instruction pointer.

2.2. Block Diagram of the Core

Fig. 5 shows a block diagram of a core that includes a multiplier and an instruction pipeline organized into

five instruction pipe stages. The execution wave front passes through the instruction pipe stages in a fixed

pattern. Each instruction pipe includes one or more pipe stages. The latency for the execution wave front to

traverse instruction pipes may differ. The process state calculator is in pipe 0. Each process operates based

upon a process index, and possibly loop output(s), by generating an instruction at each instructed resource

to perform the execution wave front as it passes through that resource. Assume that up to four simultaneous

processes can execute in each SMP core as shown.

Feedback paths do not go through the arithmetic. Instead, feedback is in separate hardware with a

consistent status structure used to trigger process state changes based upon data availability. This allows for a

simple, consistent software notation that controls all computing actions based upon when the data is available,

Journal of Computers

374 Volume 13, Number 4, April 2018

whether it is from a local arithmetic resource, or across a computer floor of several hundred cabinets. All the

power for the next execution wave front is gated off, if no operations are to be performed.

The core is shown executing four simultaneous processes by generating four process indexes that each

drive instruction processing for the instructed resources owned by one of these processes. Each instructed

resource is instructed by a local instruction generated in response to the process index of the owning

simultaneous process. Both the parallelizable and sequential parts may be implemented as simultaneous

processes that do not stall each other as they execute.

Fig. 5. SMP core block diagram.

Locally generated instructions selected from multiple process indexes insure operational diversity in

controlling the resources, while minimizing instruction redundancy. Matrix inversion by Gaussian elimination

requires less than 24 local instructions. Large external VLIW memories and instruction caches are not

required, greatly improving energy efficiency.

The execution wave front replaces a traditional buss and provides substantial benefits. Multiple queues in a

single feedback output port enable a hierarchical response to data availability, allowing a single adder to act

like a cascading adder network for accumulation in FIRs and dot products, as well as pivot entry calculation in

matrix inversion and LU decomposition. All of these algorithms are implemented so that the multiplications

do not stall, independent of core clock frequency, or the number of pipe stages in the arithmetic circuits. The

other circuitry keeps up with the multiplications providing maximum performance, at the least energy cost

for the required operations.

2.3. The Flat Time Execution Model

The flat time execution model is a semantically accurate portrayal of the performance of the execution

wave front through the instruction pipes. The flat time execution model is designed to reveal all the relevant

states of each execution wave front as it traverses the core. This helps the application developer quickly

diagnose and fix programs. The flat time model shows the process ownership within each instruction pipe,

whether the instructed resource is used, and if used, presents the following: The local performed instruction,

the selected inputs, any operations performed upon the inputs to create the operands used in the resource’s

data processing, and if applicable, the output from the resource. The data memory read ports do not have data

inputs, but have read addresses, which are shown. Similarly, data memory write ports have address inputs

and data inputs, but have no outputs. This not only simplifies the programming, but also optimizes

Journal of Computers

375 Volume 13, Number 4, April 2018

concurrency and task switching characteristics. The execution wave front insures all data results coming out

of the instruction pipe are based on data that went into the instruction pipe with the execution wave front.

Further simplicity results from requiring the inputs of each instruction pipe to come from the outputs of the

previous instruction pipe.

2.4. Power Management and Monitoring

Fig. 6 shows the process state calculator generating a usage vector for each of the processes that indicates

which instructed resources are owned, and used, by a process on this execution wave front.

Fig. 6. A simultaneous process state calculator generates the usage vector.

Fig. 7 assumes the power domain of an instructed resource is CMOS-like logic and power technology. One

component of the usage vector, Use bit is shown driving a power gate. A gated resource power is generated

by the power gate in response to the Use bit of the usage vector. The instructed resource uses the gated

resource power as the execution wave front traverses the instructed resource. When the use bit is off, the

instructed resource does not consume power, When on, it does. Some implementations may gate the clock to

effect control of the power.

Fig. 7. Gating off power to an instructed resource based upon the usage vector.

3. Programming the SMP Core

Programming is all about defining the simultaneous processes required to operate the SMP core. A thread

is one, or more, simultaneous processes benefiting from being in one core. The first step in defining the

processes of each thread is to define what instructed resources are owned by each of the processes. These

owned resources may include input queues, feedback queues, memory read port queues, arithmetic units,

feedback portals, output portals, and memory write ports. The SMP core contains two adders. To simplify

programming, both adders can perform the same operations. These include an inline comparison that may

be chained, without branching, to calculate the pivot for matrix inversion, or the maximum, or minimum, of a

vector or matrix.

Four threads are commonly found in application programs in real-time systems such as Systems On a Chip

Journal of Computers

376 Volume 13, Number 4, April 2018

(SoC). The first is a vector dot product, the second is a Finite Impulse Response (FIR) filter, the third is a Fast

Fourier Transform (FFT) and the fourth calculates the maximum, or minimum, of a vector. In these examples,

assume that the arithmetic is in single precision, floating point.

3.1. Vector Dot Products and Overcoming the Myth of Multiply-Accumulate

A SMP core performs the vector dot product on two vectors acting as inputs. They may either reside in the

core, or be presented as streams to the core. In most standard implementations of dot products, some form of

multiply-accumulate is used [7]. There are two problems with this approach. First, the feedback of the adder

is needed for accumulating the next multiplication. In high speed (at least 100 MHz clock cycles), the floating

point adders require at least two pipe stages, and accumulation cannot occur more often than once every two

clock cycles. The multiplier has to wait for the accumulated result and therefore stalls at least 50% of the time.

Second, each accumulation incurs a rounding error. The rounding error bounds grow linearly with the

number of products being summed. Both of these problems are addressed by proper configuration of the

SMP core. In the SMP core, the multiplier receives the two corresponding vector components and generates

the vector product component, which is fed back from the multiplier to a product queue feeding a C-adder

(see Fig. 5, Pipe 3). The C-adder can operate on three operands in each execution wave front. Rather than

accumulate one product every clock cycle as in multiply-accumulate, it more efficiently adds three products

together to make a first level sum. The first level sums are fed back to a first level sum queue, which has a

higher priority trigger. When there are enough elements in this queue to initiate an execution wave front

using three first level sums, the C-adder operates on these three sums to create a second level sum of

products. The C-adders output incorporates up to nine products into one entry. This entry is fed back into a

second level sum queue, and so on. This thread resolves both dot product problems. First, the multiplier is

not stalling and the adder is keeping up, rather than stalling the multiplier until the adder can finish. Second,

one rounding error is accumulated for each level of sums, so that the rounding error bound is on the order of

ceiling(log3(N)) * ½ LSB, as opposed to the conventional bound for multiply-accumulates of O(N) * ½ LSB.

3.2. FIR Filters

Assume for the moment that the FIR has n tap coefficients , 0,..., 1ia i n  acting upon a sample

stream
jB . The output of the filter is

1

0

n

i j j ij
out a B




 . Because the taps and a buffer providing a window

onto the data are required, pointer roll over must be supported to associate the correct tap with the correct

data. Conventionally microprocessors use application coding to do this. However, the memory processors of

the SMP cores are required to perform these pointer operations so that the multiplications never stall.

3.3. FFTs

FFT’s are very common vector functions in signal processing. There are two implementation issues

targeting the SMP cores. First, FFT’s require addressing a data store in two distinct modes. First, a bit-flipped

address needs to be generated. This flips the top bit and the bottom bit, the first from the top and the first

from the bottom, and so on. Second, more standard addressing occurs in all but the early pass of an FFT.

Bit-flipping addressing and standard addressing are commonly handled in applications coding. However, the

memory processor of the SMP cores fulfills this address generation requirement internally, removing this

burden from the application coding. Second, FFT’s perform complex number multiplications, which are

accumulated as complex number temporary values, to generate each step operating on the input (or

previous pass) data. This can naturally and efficiently be performed with the three operand C-adders.

3.4. Finding a Maximum (or Minimum) of a Vector

Journal of Computers

377 Volume 13, Number 4, April 2018

Traditionally, the maximum (or minimum) of two numbers is iteratively formed, by subtracting one entry

from a running maximum/minimum tally. The tally is initialized to the first entry. Using the arithmetic

operation’s sign result (less than 0 or greater than 0), either the old running tally or the current entry is

selected as the new tally. This approach is inherently inefficient, because each comparison step must flush

the adder pipes and then assemble the result. In the SMP core, two or three operands can be compared and

their result generated in one execution wave front, sending these results back through a first level feedback

queue. When enough (two or more) entries are in this queue, it’s status triggers an execution wave front that

takes the top two, or three, partial comparisons and generates a second level comparison, which is then fed

back to a second level comparison queue, and so on. There is no dependence upon flushing the adder’s pipes

and then subsequently building the comparison result. Rather than performing this thread in about O(n)*

(adder_pipe_latency + comparison result construction), the result is generated in at most O(n)+

ceiling(O(log3(n))) * (adder_pipe_latency+feedback_overhead).

4. Multi-threading as a Compile Time Operation

Table 1. Input Processes of the Threads
Instructed

resource

Dot product

input process

FIR filter

input process

FFT

input process

Calculate

maximum

In queues Dot-A, Dot-B FIR-In FFT-In

Feedback queues

Memory read queue Tap-Read,

FIR-in

FFT-coef read

FFT-pass data

Multiplier Yes Yes Yes

C-adder 0

C-adder 1

Memory write ports FIR-in FFT-in

Feedback in Product Fdbk In FIR product 1 term FFT product 1 term

Output portal

Table 2. Accumulation Processes of the Threads
Instructed

resource

Dot product

accumulate

process

FIR filter

accumulate

process

FFT

accumulate

process

Calculate

maximum

process

In queues Max-in queue

Feedback queues
Product fdbk 1,

Dot accum 1 to n

Max-fdbk 2

to max-n

Memory read queue
Tap-Read,

FIR-in

FFT-coef read

FFT-pass data

Multiplier

C-adder 0 Yes Yes Yes Yes

C-adder 1

Memory write ports FIR-write accumulate FFT-in

Feedback in
Dot accumulate

fdbk in
FIR accumulate FFT accumulate CMax fdbk in

Output portal Yes Yes Yes Yes

The four threads discussed above, each require no more than two SMP processes. One process performs

the multiplications and the other accumulates the additive results. For example, assume the following:

 The dot product vectors are each of length = 729 = 36. The dot product initial process generates all the

Journal of Computers

378 Volume 13, Number 4, April 2018

dot product terms, A[i]*B[i] with one multiplication for each product, thereby requiring one execution

wave front per input pair A[i] and B[i]. In this example, the vectors are not stored internally. These

product terms are accumulated by feedback to a first queue. When three dot product terms are in the

queue, the process state triggers output of these three terms, which are added in one C-adder, and then

fed back through a second feedback path to a second queue for accumulation. Six queues, including the

first queue for the dot product terms, are operated to accumulate the dot product.

 The FIR has n = 27 taps. FIR’s first process performs n products for each output. With each new input,

all n taps can be processed against that input to generate the incremental values needed for n

successive outputs.

 The FFT performs a 1K complex FFT [8], which can be implemented as 5 radix 4 steps. Each radix 4 step

inputs the partially processed data from the previous step, or the initial input as real numbers, each

representing one of two components of a complex number. Each of these real numbers is multiplied by

two coefficients to form the components needed for a complex number multiplication. Bit flipping

occurs in the first radix step, otherwise the other steps do not use bit flipping.

 The vector being calculated for its maximum also has a length = 729 = 36. Calculating the maximum of a

vector does not store the vector to simplify this discussion.

These four processes are commonly found in a variety of applications including statistical analysis [9].

The first three of these four threads has an input process as shown in Table 1.

Each of these four threads has an accumulation process as shown in Table 2.

4.1. Multi-threading

The four threads discussed above include three input SMP processes and four accumulation SMP

processes. These threads illustrate corresponding processes that can be merged. Their arithmetic resources

are the same, and their use of queues is non-overlapping. For example, a merged thread composed of the

four threads discussed above operates in one SMP core as two merged processes. At this point, the real-time

system requirements become relevant. Two examples involving the same merged thread in the SMP core

illustrate this. In a first real-time system, all input processes are continuously receiving data on every clock

cycle. The merged input process cannot keep up with the inputs. In a second real-time system, the four

threads need to generate their outputs once every millisecond, and the SOC operates with a 400 MHz clock.

The merged threads can efficiently operate within one SMP core, requiring only the energy needed for the

calculations. In SMP cores, management of multi-thread mergers is the responsibility of the programmer

using compile-time tools.

4.1.1. Merging the input processes

Fig. 8. Input processes of three threads merged into one process.

Journal of Computers

379 Volume 13, Number 4, April 2018

Fig. 8 shows the individual process lists on the left and the merged process list on the right. Assume that

the input processes have the following process states: the vector dot product has two, the FIR has three, and

the FFT has twenty. These process states are ordered so the most probable process states have lowest priority.

This insures that the process states with the least probability have the highest priority, which is shown as the

top process state of their process. To merge these threads requires merging these separate process state lists

into a single process state list. The merged process resource ownership is the union of the owned resources

of the merged processes.

4.1.2. Merging the accumulation processes

Fig. 9 shows the individual accumulation process lists on the left and the merged accumulation process list

on the right. These processes have the following process states: the vector dot product has seven, the FIR has

three, the FFT has four, and calculating the maximum has eight.

Fig. 9. The accumulation processes of four threads merged into one process.

5. Conclusion

Simultaneous Multi-Processor (SMP) cores offer a new, high performance, efficient target for the

embedded application developer. SMP cores can be reprogrammed like a microprocessor in response to

application requirement changes [10], [11]. These cores have the advantages of VLIW architecture, but

require only a small fraction of the instruction space. Simultaneous processes of the programmed core

provide the performance of the superscalar microprocessor, without the runtime hardware overhead of

superscalar instruction interpretation. Multi-threading is under the application developers’ control and also

has no runtime hardware overhead. The execution wave front replaces a traditional buss. The flat-time model

of the execution wave front revolutionizes, by simplifying, program code development. This model reveals all

the relevant information the code developer needs to verify their program through the execution wave front’s

traversal of the instruction pipes.

The next research goal is to insure that any program for an existing superscalar microprocessor can be

correctly implemented in these SMP cores. This is achieved by considering the known good superscalar

microprocessor, and it’s Intellectual Property (IP) [12]-[14], as a prototype for the compile-time tools, and

the target SMP cores. This IP includes models of the data processing unit and the superscalar instruction

Journal of Computers

380 Volume 13, Number 4, April 2018

interpreter. It also includes the verification and test sets confirming the microprocessor for industrial release.

Compile-time tools can be generated from the hardware scheduler of the superscalar instruction interpreter.

This utility will collect the threads of an application program for later merging and placement. These SMP

cores can be generated in a series of steps that prove, by construction, that the operational semantics of the

microprocessor’s data processor are preserved. The data processor will be organized into the instruction

pipes. The data processor is then augmented through a correct-by-construction insertion of queues. This

creates the initial SMP cores. These cores can be proven to perform correctly as the target of programs, by

using the existing microprocessor verification and test set. Next, these initial SMP cores can be semantically

extended to account for more than two operand additions, comparisons, non-linear operations, etc.. These

can be inserted into a subsequent SMP core to extend its performance and efficiency.

Acknowledgment

The author thanks Heather Murphree for her inspired support and feedback since 1984. The author also

thanks George Landers and Lavelle Gibson for the pleasure and honor of working with them since 1991.

References

[1] Goldstine, B., & Neumann, V. (1946). Preliminary discussion of the logical design of an electronic

computing instrument. John von Neumann Collected Works, MacMillan Co., 5, 34-79.

[2] Patterson, D., & Hennessey, J. (1990). Computer Architecture: A Quantitative Approach. Morgan

Kauffmann Publisher.

[3] Johnson, W. (1991). Superscalar Microprocessor Design, P. T. R. Prentice Hall.

[4] Lucas, R. (2014). Top Ten Exascale Research Challenges DOE ASCAC Subcommittee Report. Sponsored by

the US Department of Energy, Office of Science, Office of Advanced Scientific Computing Research.

[5] Shalf, J. (2013). Computer architecture for the next decade. Proceedings of EEHPC Workshop.

[6] Amdahl, G. (1967). The validity of the single processor approach to achieving large-scale computing

capabilities. Proceedings of AFIPS Spring Joint Computer Conference (pp. 483–85).

[7] Muller, J. (2006). Elementary Functions: Algorithms and Implementation (2nd ed.). Boston: Birkhauser.

[8] Van Loan, C. (1992). Computational Frameworks for the Fast Fourier Transform. Philadephia: SIAM.

[9] Rizzo, M. L. (2008). Statistical Computing with R. Chapman and Hall.

Earle Jennings is a member of IAENG. He was born in Bozeman, Montana and began

designing computers at the age of 14. His first design was a relay based computer made of

salvaged parts from a local telephone switching station. He received the bachelor’s degree in

mathematics from Thomas Edison University in 1989 and the master’s degree in applied

mathematics from the University of Texas at Dallas in 1996. He passed the US patent and

trademark office patent registration examination in 1999 to become a patent agent.

Journal of Computers

381 Volume 13, Number 4, April 2018

[10] Jennings, E. (2010). Breaking Amdahl’s law by changing the execution architecture. Retrieved from

http://www.qsigmainc.com/?page_id=99

[11] Jennings, E. (2016). Introduction to an integrated exascale computing architecture: Part one. Retrieved

from http://www.qsigmainc.com/?page_id=99

[12] Perry, D. (1994). VHDL (2nd ed.). New York: McGraw-Hill, Inc.

[13] Mishra, K. (2013). Advanced chip design: Practical examples in verilog. Retrieved from

www.amazon.com

[14] Bhasker, J. (2004). A SystemC Primer (2nd ed.). Allentown: Star Galaxy Publishing.

He designed the first solid state disk drive to interface to a micoprocessor in 1980 when he was the lead

designer at Pullman Software Systems in Pullman, Washington. Currently, He is the chief technical officer of

QSigma, Inc., a start-up committed to researching fundamental solutions to fundamental problems, in

Sunnyvale, CA. He is a patent agent who operates a patent legal practice and also an associate of bell and

associates, LLP, of San Francisco, CA. Further employment details may be found on his linkedin.com page. His

research interests include compiler related topics, parallel processors, digital signal processing, real-time

systems, communications related topics, VLSI, FPGA, programmable logic, computer arithmetic, and

instruction processing. His compiler related topics include circuitry compilation, merged syntactic and

semantic processing, code generation and optimization, intermediate languages, and interpreters. His

communications related topics include wireline and wireless protocols, routers, access points, error

correcting codes, fault detection, recovery and resilience, networks in a chip and messaging protocols for

simultaneous multi-processor cores and modules of these cores.

Jennings is a member of the institute for electric and electronic engineers (IEEE), the association of

computing machinery (ACM), the society for industrial and applied mathematics (SIAM), the American

society of mechanical engineers (ASME), and the national association of patent practitioners (NAPP). Patents

listing him as an inventor can be provided upon request. Many of his relevant writings can be found either

on the linkedin page or the QSigma website. Jennings has written hundreds of US patent applications and is

an expert in international patent law.

Journal of Computers

382 Volume 13, Number 4, April 2018

