Devising An Application to Decrease Procrastination

Felianne Teng!*, Yu Sun?
1Troy High School, 2200 Dorothy Ln, Fullerton, CA, 92831, USA.

ZComputer Science Department, California State Polytechnic University, Pomona, Pomona, CA, 91768, USA.

* Corresponding author. Tel.: +1(909)662-7178; email: ftengdev@gmail.com
Manuscript submitted January 6, 2019; accepted March 8, 2019.
doi: 10.17706/jcp.14.3.152-160

Abstract: As an issue that increases stress and decreases work quality worldwide, procrastination requires
easily accessible solutions. In order to create one, I designed and implemented a mobile application that
enforces healthy work habits. The application contains a text editor that can be locked while the user is
working, preventing the user from leaving the app until he or she inputs a set number of words. It also
connects to a physical locker, which locks while the app is locked. The app also contains a task manager,
allowing the user to manage his or her tasks effectively. Overall, the application prevents the user from
becoming distracted from outside sources and keeps him or her focused on the required work.

Key words: Android, mobile development, procrastination, Raspberry Pi.

1. Introduction

Procrastination is a large problem in the work lives of many people. It can be defined as the practice of
putting off work for a later time because of an unwillingness to do it. Procrastination has several negative
results associated with it. Studies have shown that it tends to lead to poorly done work and higher stress
levels, likely a result of the work being done in a shorter amount of time [1]. Two major causes of
procrastination are the fear of failure and the reluctance to complete certain tasks. The fear of failure is
when people may not begin working because they believe their work is not adequate enough to satisfy
others, often indicating a low self-esteem. But more common is the averseness to completing work, which is
when people try to delay work because they do not enjoy it [2]. They do not want to have to do the task, so
they try to keep from doing it as long as possible.

Conversely, even when people do try to work on their tasks, their devices or social media may distract
them. This leads again to more work piling up and more stress alongside it. With the amount of distractions
and forms of entertainment found in the world today, it can be difficult to stay focused.

My solution to this problem is to create an application that increases productivity for work completed on
an electronic medium. It does so by removing distractions and limiting the user to using only a text editor
found in a downloaded application on the device, keeping the user focused on the current task. The user is
urged to work and thus remains on task with his or her written work. By setting a word limit and locking
the application, the user is unable to leave the application until the number of words typed reaches the
required word count. Additionally, the application can connect to a physical locker controlled by a
Raspberry Pi Zero W that can lock other distractions when the user is working. Users can store additional

152 Volume 14, Number 3, March 2019

devices or objects that may draw away attention while occupied. The application and the locker are locked
concurrently. The application also contains a task manager to keep record of tasks outside of writing in
order to reduce stress from the enormity of a task. This feature prevents users from forgetting what tasks
need to be completed. In general, the application is targeted towards both students and people in work
fields requiring typed documents that find that their attentions become preoccupied with disturbances
while working. For instance, students writing reports may use the application to maintain focus while
working. The physical locker is meant for users who may find that they need more aid in keeping them from
becoming distracted.

The rest of the paper is structured with Section Il discussing a motivating example for the development of
the application, Section III identifying the problems to be solved by this project, Section IV discussing the
implementation of the project, Section V describing how the results of the project, Section VI relating
previous works to this project, and Section VII summarizing the report and applying it to future situations.

2. Motivating Example

Personally, as a student, | generally receive a combined large amount of classwork from all of my classes.
At times, assignments may be given several weeks in advance of their due date. For these assignments, |
often assume that I have plenty of time to complete them, so I put them off to do at a later time. Then, when
their due date approaches, I tend to feel overwhelmed by the increased amount of work I have given myself
as opposed to spreading it out over a longer period of time. Additionally, while completing my course work,
I can become distracted easily by text messages and notifications from my devices, leading me to take more
time in completing my work and getting less sleep as a result. Increased stress levels and less time to do the
assignments leads to poor work quality and health as a whole.

Upon speaking to my peers, [found that such a problem is not unique to me. Many students at my school
sleep very few hours, if at all, often due to procrastination and other distractions. Our negligence leads to
poor health and increased levels of stress. Thus, I designed a project that would help to solve the problem of
procrastination due to distractions.

3. Challenges

3.1. Challenge 1: Distractions from Outside Sources Impeding Work

Distractions can come from a variety of sources for people attempting to work. For someone working on
his or her computer, the Internet and other applications are likely candidates. Alternatively, a nearby device
such as a mobile phone could display notifications of text messages to divert attention. These disturbances
tend to draw away focus, prolonging a task beyond its expected completion length.

3.2. Challenge 2: Putting off Tasks due to Their Scale

During periods when a lot of tasks must be completed, one might feel overwhelmed by the amount of
work. In such cases, the worker might delay the tasks in order to worry about them later because of the
seemingly endless amount of them. Completing them all may seem like an impossible task. Unfortunately,
this only leads to a reduced amount of time to complete the tasks and greater stress later on.

3.3. Challenge 3: Motivation for Completion of Tasks

At times, work may feel like nothing more than a chore because of its monotony or its apparent lack of
reward. Many people may put tasks off because they do not get anything out of doing them beyond the
satisfaction of finally completing what they were required to do. Often, their only motivation may be that

153 Volume 14, Number 3, March 2019

they have to do the work either way, increasing reluctance to complete it.

4. Solution

The application created to help solve the problem of procrastination consists of two main features. The
primary feature is a text editor. While using the text editor, the user has the ability to choose a word limit
based on however many words he or she needs to type for his or her work. The user then can start a lock
using a button on the text editor screen. During the lock, the user will be unable to leave the application on
his or her device. The locking mechanism used in the software itself is the “Screen Pinning” feature found in
Android devices. The feature restricts the user to using solely the text editor application and blocks
notifications from other applications. In addition, the application can communicate with a physical locker so
that when the application is locked, the locker locks as well. The application becomes unlocked when the
number of words typed by the user reaches the chosen word limit, and at that point, the user can leave the
application and the physical locker will become unlocked.

The secondary feature of the application is a task manager. The user can document the tasks that he or
she needs to complete by adding them to a list in the application, which can help him or her remember what
needs to be done. Each task displayed has a check box, which helps the user keep track of which tasks have
already been completed. The tasks can also be deleted at the user’s discretion.

Development of the application was done using Android Studio with Java [3]. It has four functional
screens: the main menu, the text editor, the task manager, and the settings. Each screen has a corresponding
activity for its functionality and a .xml file for its layout. The Butter Knife library was used to bind the Ul
components to the references in the code [4]. The main menu screen contains buttons leading to the other
three screens as well as the title of the application, “Locked In”. It is the default screen that opens when the
application is first started. Upon starting the application for the first time on a particular device, the
application creates a random six character user ID for the user and stores it in the Shared Preferences of the
device as persistent data. For subsequent boots of the application, the same user ID will be retrieved, rather
than newly generated. The application checks if it should create a new user ID by checking if there is already
an existing ID in the Shared Preferences when opening.

SharedPreferences sharedPreferences = getPreferences(Context.MODE_PRIVATE);
SharedPreferences.Editor editor = sharedPreferences.edit();
if (sharedPreferences.getString(s: "username”, s1: null) == null)

{
username = UUID.randomUUID().toString().substring(@, 6);
editor.putString(s: "username", username);
editor.apply();
1
else
username = sharedPreferences.getString(s: "username", s1: null);

Fig. 1. Code snippet of saving and retrieving the user ID in shared preferences.

The text editor screen has an interface containing buttons to change screens to the main menu and
settings, a textbox, a button to start the lock and a word count displaying how close the user is to reaching
the word limit. This screen is the main screen where the user does his or her work. After something is typed
into the textbox, the number of words typed is counted based on the amount of spaces used in the text and
compared to the word limit. If the lock is enabled, then the application will become unlocked when the
number of words typed reaches the word limit. I chose to base the lock off of the number of words rather
than a timer because it forces the user to work, whereas if a timer was used, the user would be able to stall
for the duration of the lock.

154 Volume 14, Number 3, March 2019

W08
Locked In

Home Q

f&c/%e‘éﬂ—n

TEXT EDITOR

TASK LIST

Fig. 2. Image of the main menu screen.

¥ laa7
Locked In

< Editor o

START LOCK

5/50

Today, | would like lo\

4 0] o

Fig. 3. Image of the text editor screen.

.0 e
Locked In

< Task List t o]
ADD TASK REMOVE TASK
Get groceries
Walk the dog (]
Wash the car O
g o [m]

Fig. 4. Image of the task manager screen.

155 Volume 14, Number 3, March 2019

The task manager screen consists of navigation buttons to the settings page and main menu, two buttons
for adding and removing tasks respectively, and a ListView of individual tasks. Each task is an object of class
Task with the properties Description, a String, and Completed, a Boolean value. A separate layout file was
created to represent each Task object, with Text to display the Description and a check box to represent the
Completed value. A subclass of the ListAdapter was then used to connect the layout file and the Task class,
so that it could be added to the ListView. When the user clicks on the “Add Task” button, a custom Dialog
Fragment window opens, prompting the user to enter a name for the task. Once the user enters a
description, the task is added to the ListView. Whenever the user taps on a task, the app keeps track of
which task was last clicked on, and upon clicking the “Delete Task” button, the currently selected task will
be removed from the list.

Finally, the settings screen contains a button to return to the screen that the settings page was accessed
from, options to change the word limit and show or hide the word count on the text editor screen, and text
displaying the user’s ID. This screen can be accessed from any other screen in the application. While the
application is locked, the word limit cannot be changed, to prevent the user from intentionally changing it to
a lower amount to unlock the app. All of the settings and data from the application are stored both locally
when the app is running and in an online database in order to store them persistently. The data include the
words typed in the text editor, the current word count, the current set word limit, whether the application is
locked, whether the word count in the text editor screen is visible, and the tasks in the task manager. The
user ID, which is stored in the device’s local storage, is used to uniquely identify each user of the application
in the online database, and the data are stored under that ID. The online database used is Google Firebase,
and data are called from it each time the application is opened [5]. If it is the first time the user opens the
app, the data will be assigned default values. The data in Firebase are updated every time the application is
closed or the data are changed. The local copies of the data are saved throughout the app using the Intent
class to pass them to the next screen whenever the screen is changed.

@Ooverride

protected void onPause() {
super.onPause();
FirebaseDatabase database = FirebaseDatabase.getInstance();
DatabaseReference dref = database.getReference(username);
dref.child("wordLimit").setValue(wordLimit);
dref.child("numWords").setValue(numWords);
dref.child("showProgress").setValue(showProgress);
dref.child("typed").setValue(typed);
dref.child("tasks").setValue(tasks);
dref.child("locked").setValue(locked);

Fig. 5. Code snippet of saving data to Firebase.

A physical locker is used in conjunction with the application and can be controlled with it. The box itself
consists of a wooden box containing a Raspberry Pi Zero W screwed down to prevent movement, connected
to a 4000 milliampere-hour rechargeable battery for power. The Raspberry Pi is soldered to a Servo motor
that controls a lock for the locker. Upon booting up, the Raspberry Pi runs an infinitely running Python
program that checks Firebase every three seconds under a specified user ID for whether the application is
locked. When the locker detects that the application is locked, the Raspberry Pi changes the pulsewidth of
the Servo motor through its GPIO pin, commanding the motor to turn 90 degrees counterclockwise,
activating the locking mechanism and preventing the locker from opening. It imports and utilizes the pigpio
Python library to accomplish this [6]. While locked, the device continues to check if the application is
locked, and once it is unlocked, the motor receives another signal to turn 90 degrees clockwise, unlocking

156 Volume 14, Number 3, March 2019

the locker. The process is done wirelessly through the Internet, so there is no need to connect the locker to
an exterior device. Connection with another computer is only necessary when first setting up the locker.
Upon obtaining the physical locker, the user must set it up by connecting it to his or her wifi network
through and entering his or her specific user ID. The command line is used set up the Raspberry Pi. The
amount of power remaining in the battery can be determined through the number of lights remaining in the
battery indicator, with four being the maximum. The battery can be charged through a micro-USB

connection.
¥a076
Locked In

< Settings
Word limit &

Show progress: (i

User ID: 711chd

Fig. 6. Image of the settings screen.

Fig. 7. The physical locker exterior.

Fig. 8. The physical locker interior.

157 Volume 14, Number 3, March 2019

pigpie
time
firebase firebase[Il

firebase = firebase.FirebaseApplication({'https://lockedin-b2c@89.firebaseio.com/", None)
pil = pigpio.pif)
userid = "ccdfdl”
True:
result = firebase.get{'/' + userid + "/locked', Mone)
result == True :
pil.set_servo_pulsewidth{12, 1788) #locked
result == False :

pil.set_servo_pulsewidth(12, E88) #open
time.sleep(3)

Fig. 9. Code snippet for the Raspberry Pi to lock and unlock the locker by sending commands to the
Servo motor.

5. Empirical Results

The application addresses the previously mentioned problems as follows:

5.1. Challenge 1: Distractions from Outside Sources Impeding Work

The application limits the user to solely using it while the lock is activated in the text editor. The user
cannot use any of the menu buttons commonly found on an Android device to leave the application. This
prevents the user from becoming distracted by notifications or other applications on the device itself. Also,
for the physical locker, the user can store other distracting devices such as a phone or tablet, so he or she
will be unable to use them during the duration of the lock. By restricting access to other devices and
applications, the developed software limits attention drawn to other materials while working.

5.2. Challenge 2: Putting off Tasks due to Their Scale

The task manager feature of the application helps to solve this problem. By using a list to write out each
individual task that must be completed, the user can see what needs to be done in a visual form. Having
each step and task laid out allows the user to engage the work step by step, making the overall
responsibility less overwhelming. The user can easily decompose larger tasks into smaller ones.
Additionally, the ability to check off completed tasks is an easily visible indicator for keeping track of what
tasks have been and still need to be completed.

5.3. Challenge 3: Motivation for Completion of Tasks

As the user can place anything he or she wishes into the physical locker, the locker can be used as a
reward system as well. Rather than merely putting distracting devices into the box, for instance, the user
can place candy or food into the box before locking it through the application. The user will not be able to
access the food until he or she is finished with his or her work, allowing for a reward system and motivation
for completing work. The user will have a reason for finishing the necessary tasks beyond simply because

they are required.

6. Related Work

There have been similar studies conducted to solve the problem of delaying work. In one case, a class was
given to college age students covering aspects of procrastination and encouraging them to improve their
own habits. Students were given a questionnaire at the beginning of the course, which determined that 38%
of the students found procrastination to be a large problem in their lives. At the end of the course, 15
students who were originally part of the 38% were again questioned, with 10 of them improving their

158 Volume 14, Number 3, March 2019

habits to some extent [7]. The research conducted in my study aims to accomplish the same task, reducing
procrastination in work, but it is more accessible to people of all age groups because it is a mobile
application, rather than a college level course. The class offered more personal guidance for the students,
who were allowed to research procrastination and think more deeply about how it affected them. Students
could engage in discussion about the topic among themselves and their instructors.

Other mobile applications exist to combat the same issue as well. For instance, the mobile application
Procraster for i0OS offers similar features to the app I developed. It aims to prevent procrastination by letting
the user input his or her reasoning to why he or she is procrastinating, and offers personalized advice to
ameliorate work habits. Its various features include a task manager, a timer, and statistics for productivity
[8]. Rather than being the actual interface where the user works, this app serves as a tracker for the user’s
duties and productivity levels. In contrast, for my app, users work directly within the application utilizing
the provided text editor. Also, although Procraster contains a timer, it does not prevent the user from
leaving the app nor does it have a physical locker for other devices. Users may still be distracted by outside
sources and can leave the app to respond to notifications at anytime, thus rendering the problem of
unproductivity unresolved. It focuses more on the task manager portion, having more advanced sorting
features for tasks and allows the user to set notifications for each task. As a whole, my application is more
forceful in persuading the user to work on the given task, because it keeps him or her engaged in his or her
work.

The application Flipd for Android and iOS also aims to solve the issue of distractions from devices. While
the app is in use, the user can set a timer that locks the user from using his or her phone completely for a
given duration of time [9]. Such a feature is comparable to the one I implemented. The lock on this app
depends on the amount of time set rather than the number of words typed, however. It is more effective to
have a lock based on a word limit because the user is then required to finish the actual number of words
needed, rather than be able to stall until the time limit is finished, as is the case with the timed lock. Flipd
also only locks the phone or device used, rather than a physical locker as well, so the distractions are only
limited from the single device. Similar to Procraster, the user does not do work inside the app, as it only
serves as a motivator for the user to complete his or her work, unlike the text editor in my app. Flipd has a
social network component that allows users to join communities and discuss their work with others, which
my app does not contain. By examining existing applications and methodologies for reducing
procrastination, my application aims to add to the study through the involvement of an external locker, a
feature not found in similar software.

7. Conclusion and Future Work

In this project, I attempted to help combat the problem of procrastination through an application. The
application forces the user to work by preventing him or her from leaving the application until a certain
number of words are typed. In addition, a separate physical locker controlled by the app will lock,
preventing the user from accessing additional devices. Overall, this approach minimizes distractions from
outside sources and prevents the user from putting off tasks. The application also allows the user to keep
track of his or her tasks using a task manager, allowing for organization of duties. Future works include
porting the application to additional platforms, such as desktop and iOS, as it is currently only found on
Android, and adding more features to the text editor, such as formatting text and changing fonts. It will be
possible to export completed work into different formats, including PDFs and text files, and share it via
messaging and email. More testing will be done on future versions of the application for comparisons with
existing similar software. A spell checker can be added to the text editor as well, so only valid words will
count towards the word limit. Presently, the physical locker must be configured by the user through a

159 Volume 14, Number 3, March 2019

command line prompt on a separate computer, making it tedious and difficult to connect properly. Thus, a
more user-friendly user interface for the physical locker will also be implemented, allowing users to
configure the locker more easily, and directions for setting it up will be included within the application.

References

[1] Tice, D., & Baumeister, R. (1997). Longitudinal study of procrastination, performance, stress, and health:
The costs and benefits of dawdling. SAGE Journal 8(6). Retrieved August 04, 2018, from
http://citeseerx .ist.psu.edu/viewdoc/download

[2] Solomon, L., & Rothblum, E. (1984). Academic procrastination: Frequency and cognitive-behavioral
correlates. Journal of Counseling Psychology, 31(4). Retrieved July 25, 2018, from
https://s3.amazonaws.com/
academia.edu.documents/33049484 /AcademicProcrastinationFrequency.pdf

] Android Developers. Android Studio. (2018). Retrieved from https://developer. android.com/studio/

1 Wharton, J., & Butter, K. (2013). Retrieved from http://jakewharton.github.io/ butterknife/

] Google. Firebase. (2018). Retrieved from https://firebase.google.com

] Joan2937. Pigpio. (2018). Retrieved from http://abyz.me.uk/rpi/pigpio/

] Hedin, B. (2012). Teaching procrastination - A way of helping students to improve their study habits.
Presented at the LTHs 7:e Pedagogiska Inspirationskonferens. Retrieved August 06, 2018, from
http://www.diva-portal.org/smash/get/diva

[8] Solbakken Procraster, S. (2015). Retrieved from http://procrasterapp.com

[9] Flipd Inc. Flipd. (2018). Retrieved from http://www.flipdapp.co

Felianne Teng was born in 2001 in Southern California. She is currently a 12th grade

student at Troy High School in Fullerton, California, USA. She worked as a research
assistant in the California State Polytechnic University, Pomona in the field of mobile
application development. Her research interests lie in the fields of software development
and machine learning.

Yu Sun was born in China in 1984. He received his Ph.D at the University of Alabama at
Birmingham in 2011, and is an assistant professor in the Department of Computer
Science at Cal Poly Pomona, USA. His research interests are in areas related to software
engineering, mobile computing, and cloud computing.

160 Volume 14, Number 3, March 2019

