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Abstract— This paper proposes a new approach to modelling
and controlling Internet end-to-end loss behaviours. Rather than
select the model structure from the loss observations as being
done previously, we construct a new loss model based on the TCP
congestion control mechanisms. Thus, the model can explicitly
reflect the correlation between end-to-end loss observations and
network flow level activities. Besides simulation, the model has
been tested in both wired and wireless Internet environments. The
result shows that, unless the losses due to the transmission errors
are excessive e.g. in some lossy wireless channels, the model can
correctly capture end-to-end loss behaviours not only in terms
of average rates but also in terms of loss patterns i.e. loss and
good runlengths. This implies a good connection between the
model structure and network flow level activities, which makes
the model attractive for assisting network traffic control.

Index Terms— Internet Loss Modelling, Network Traffic Con-
trol, Markov Model, Markov Decision Processes.

I. INTRODUCTION

Recently, Internet end-to-end traffic control has drawn con-

siderable attentions from the research community due to the

limitation of the TCP/IP best-effort mechanism in providing

Quality of Service (QoS) [4], [6]. In end-to-end traffic control,

end hosts rely on end-to-end packet delays and/or losses to

adjust traffic intensity. Therefore, understanding the dynamics

of loss and delay behaviours, especially at packet flow level,

is essential to the success of any end-to-end approach.

A good way to understand the dynamics of loss and delay

behaviours is to mathematically model them. As a result,

numerous studies have been carried out on Internet loss and

delay modelling, which approach the problem mainly from

the Markov modelling point of view due to the temporal

correlation between consecutive packets traversing the same

path [3], [5], [8], [9], [13], [15], [16], [17], [20], [21].

Although the previously mentioned models have success-

fully described the loss behaviours to some degree, it is

difficult to find a connection between the structures of those

models and the network states, which cause the losses. Mean-

while, most end-to-end traffic control mechanisms rely on ap-

propriate models to infer the network internal states from end-

to-end observations. Hence, the capability of the mentioned

loss models to assist end-to-end control is limited. In addition,

since the structure of many existing loss models is empirically

selected based on loss observations, different model structures
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are needed to reflect different network conditions leaving an

open question about robustness of those models.

Therefore, in this paper, we propose a new Markov-based

loss model to overcome the limitation of the previous models.

We construct the model based on the TCP congestion control

mechanisms. Thus, the model not only can describe end-to-

end loss behaviours but also link them to network flow level

activities. We extend the work presented in [2] by providing a

comprehensive verification of the proposed model using both

simulation with NS-2 [10] and Internet trace-based analysis. In

addition, we also discuss about the application of the proposed

model in assisting Internet end-to-end control.

To highlight the proposed approach, we underline that: (i) it

introduces a new Markov-based model of capture Internet end-

to-end loss behaviours; (ii) it provides a connection between

the model structure and the network internal states/activities,

which cause the losses; this connection is useful for assisting

traffic control; (iii) it verifies the model in both simulation

and over real heterogeneous networks. The obtained results

indicate that the proposed model correctly describes loss

behaviours of the Internet wired paths. It also works properly

on the wireless paths if the loss rate due to the poor wireless

channel quality is relatively low. However, the model fails

to reflect the loss behaviours of the wireless paths when the

losses resulted from the low channel quality are excessive.

The reason is the model structure is not designed to reflect

the transmission errors on the wireless channels.

The remaining of the paper is organized as follows. In

section II, related work is discussed in relation with the

proposed model. Section III introduces the new loss model

in details. Performance of the proposed model is verified in

section IV. The application of the proposed model in assisting

end-to-end traffic control is discussed in section V. Finally,

section VI provides concluding remarks.

II. RELATED WORK

Network loss behaviours are characterised by loss rates, loss

runlength and good runlength distributions. A loss runlength is

the number of packets consecutively lost. In contrast, a good

runlength, also known as inter-loss distance, is the number of

packets consecutively received. An accurate loss model must

be able to correctly reflect the loss behaviours in loss rates,

loss runlength and good runlength distributions. In addition,

if the model can connect the observed loss behaviours to

internal network states/activities, it will be more useful for

traffic engineering tasks e.g. network congestion control.
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Gilbert [5] was the first who used a 1st-order 2-state

Markov chain to model loss behaviours of a communication

channel. The 2-state structure of the Gilbert model reflects

the physically observed blocked and unblocked states of the

channel. Although this simple model works relatively well at

physical level, it fails to capture inter-loss behaviours at packet

level, where the losses can be bursty implying a high-order

correlation between them [9]. The failure of the Gilbert model

also indicates that at packet level, a communication channel

may have more than just blocked and unblocked states.

The work of Gilbert was followed by [21], [16], which tried

different approaches to better describe the loss behaviours.

Yajnik et al. [21] increased the complexity of the model by

extending its order to 2k, which allows the model to capture

the temporal correlation between consecutive losses. However,

an increase in the model complexity is not always followed

by an increase in the model accuracy. Unlike [21], Sanneck et

al. [16] dealt with the problem differently. Instead of using a

2k-order chain, they introduced a so-called extended Gilbert

model, which uses separate states to explicitly represent con-

secutive losses. As a result, the extended model can describe

bursty losses more appropriately. However, this approach is too

observation-oriented, which mainly aims at capturing but not

explaining the observations. Moreover, since only consecutive

losses are explicitly modelled, this model may not be able to

correctly capture inter-loss behaviours.

Subsequently, Salamatian and Vaton [15] followed by [8],

[13], [14], [17], [20] proposed the use of Hidden Markov

Models (HMMs) to capture loss behaviours of an Internet

path/channel. Compared to the previous models, the Hidden

Markov based models can describe the loss behaviours more

appropriately due to their double stochastic nature. Nonethe-

less, the structures of those HMMs were also chosen only to

fit the observations, which could prevent them from explaining

and subsequently avoiding the losses. In addition, the param-

eter estimation process of HMMs is usually computational

expensive, which makes them less attractive for many time-

sensitive traffic control tasks e.g. routing and scheduling.

A common approach of the previous work when selecting

the model structure is to be based on the observations. We,

on the other hands, construct the proposed model based on

the TCP congestion control mechanisms. From our obser-

vations, Internet end-to-end loss behaviours are considerably

influenced by the TCP congestion control process. Hence,

by constructing the model structure from the states of the

TCP congestion control mechanisms, we are able to establish

a connection between the model and the network internal

states. In addition, since the new model structure is observation

independent, the proposed model is potentially more robust.

III. PROPOSED LOSS MODEL

A. Model Construction

As TCP flows account for more than 75% of Internet

IP traffic [18], Internet flow level loss characteristics are

significantly influenced by the dynamics of TCP. Therefore,

we construct the model with three separate states 0,1,2 respec-

tively corresponding to congestion, slow start, and congestion

avoidance stage of the TCP congestion control mechanisms

[1]. Transition probabilities from one to another state reflect

the dynamics of a TCP flow. The Markovness unveils the

temporal correlation between the stages. A generic model

structure is presented in Fig. 1. For the reference purpose,

the connection between the model states and the stages of the

TCP congestion control mechanisms is depicted in Fig. 2.

Sta te 0 State 1

p10

p11

p21p02

State 2p00

p22

Fig. 1. Generic loss model structure for an end-to-end Internet path.
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Fig. 2. TCP congestion control in relation with the proposed model.

When a TCP connection is established or restarted, the

model is in State 1. No packet loss would occur at this stage

since slow start algorithm is applied to exponentially increase

the transmission rate to occupy the available bandwidth. After

the transmission rate reached the ssthreshold [1], congestion

avoidance algorithm is used to futher increase the transmission

rate. Here, a packet loss could happen with high probability as

the transmission rate keeps increasing slowly. In accordance,

the model should move from State 1 to State 2. However,

the transition from slow start stage to congestion avoidance

stage is not directly observable from the view point of end-

to-end loss behaviours. Consequently, the model would not

make any transition at this moment. Once a packet loss occurs

indicating the connection has reached congestion stage, the

model correspondingly moves from State 1 to State 0. Due to

fast retransmit and recovery mechanisms [1], which quickly

recover lost packets detected by a duplication of ACKs, the

connection does not make a full back off immediately. In

place of a full back-off, it tries comming back to congestion

avoidance stage by reducing the transmission rate normally by

a half of the current value for every lost segment [1]. As a

result, the connection may avoid suffering consecutive losses,

which would lead to a full back-off. The transmission rate is

then increased again by congestion avoidance mechanism. To
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reflect these dynamics, we have State 2 in the model structure.

Everytime a packet is received, the model moves from State

0 to State 2 and may move back to State 0 if a packet loss

occurs. The model keeps bouncing between State 0 and State 2

until a retransmit timeout causes the connection to fully back

off. In this case, the transmission rate is quickly decreased

towards the initial value and the model moves from State 2 to

State 1 accordingly. As the model never moves directly from

State 1 to State 2 as well as from State 0 to State 1, those

transition probabilities associated with that moves are equal to

0 and not shown in the model structure (see Fig. 1).

In order to reflect the correlation between stages of a TCP

connection, we use the model of 2nd-order since the 1st-order

model cannot appropriately describe the correlation. In a 1st-

order Markov model, the next state of the model depends only

on the current state. Meanwhile, the next stage of a TCP

connection sometimes depends on both the current and the

previous stage. For example, if the current stage of a TCP

connection is the congestion avoidance then its next stage also

depends on whether the previous stage of the connection was

the slow start or the congestion. The model of a higher order

is not required since the 2nd-order model can appropriately

capture the correlation between the stages.

B. Model Parameters

As the proposed model is 2nd-order Markov-based, it is

characterized by the initial state distribution matrix Π and the

2nd-order state transition matrix P.

Π is a [3x1] probability matrix,

Π = (π0 π1 π2)

in which πi = Pr(S0 = i) denotes the probability of being in

state i at time step 0.

P is a [3x9] probability matrix,

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2

00 p000 p002

01
02 p020 p022

10 p100 p102

11 p110 p111

12
20 p200 p202

21 p210 p211

22 p220 p221 p222

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

in which pxyz = Pr(St+1 = z|St = y, St−1 = x) denotes

the probability of being in state z at time step (t + 1) given

the model was in state y at time step t and state x at time

step (t − 1). Since not all state transitions are possible, those

probabilities associated with the invalid moves are equal 0.

To different degree the state transition probabilities reflect

the interaction between the TCP flow and background traffic,

which results in the observed loss behaviours. Consequently,

they could reveal some characteristics of the background traffic

such as burstiness and intensity. In order to better understand

each transition probability, we will study them with the model.

Initially, the model is in State 1 and will remain in this

state with probability p111. In practice, p111 is usually close

to 1.0 (> 0.98 as observed in our numerical study) indicating

a non-congested traffic condition. The model leaves State 1

for State 0 with probability p110 corresponding to a packet

loss. Once the model is in State 0, it will stay in this state

with probability p100 for the next step and p000 for futher

steps. These probabilities in combination with p200 indicate

the probability of consecutive packet losses, which reveals the

intensity and burstiness of background traffic.

If the model leaves State 0 for State 2, it will stay in this

state with probability p022 for the next step and p222 for further

steps. A high p022 (> 0.7) often indicates a congested traffic

condition. From State 2, the model may move to State 1 with

probability p221 corresponding to a back-off event or return

to State 0 with probability p220 if a packet loss occurs. The

value of p221 is protocol specific, which indicates how well

the protocol can resist against the losses. If the model moves

to State 1 corresponding with TCP slow start, it is likely that

the model will stay in this state for a long period. Hence, the

probability p211 is usually high (> 0.98). Indeed, not a single

probability alone is capable of providing a complete picture

of the traffic condition unless they are used in combination.

The average loss rate after sending n packets can be

calculated from state occupancy statistics [7] of the model.

If we define vij(n) to be a number of times state j is entered

through time n, given that the model started in state i at time

zero and xij(n) is the following step function:

xij(n) =

{
1 : if the model is in state j after n steps

0 : otherwise

If the model is in state i at time 0 then:

vij(n) =
n∑

k=0

xij(k)

Consequently, the expectation of vij(n) equals:

vij(n) =
n∑

k=0

xij(k) =
n∑

k=0

φij(k)

where:

φij(k) is a k-step transition probability from state i to state j.

Given that, the average loss rate of the model after sending n

packets is:

rloss(n) =
1

3

2∑
i=0

vi0(n)

n

If n is sufficiently large, rloss will converge to π0, which is

the steady state distribution probability of State 0.

Distributions of loss runlengths and good runlengths can

also be obtained from the model parameters. Let Ploss(k)
denotes the probability of observing k consecutive losses. If

L represents an event of a packet is lost and S represents an

event of a packet is successfully received, we have:

Ploss(k) = P (S L . . . LL︸ ︷︷ ︸
k

S)
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If k=1, since both State 1 and State 2 of the model indicate a

packet is successfully received, we have:

P
(k=1)
loss = P (101) + P (201) + P (102) + P (202)

= 0 + P (201) + 0 + P (202)

= P (2|01)P (01) + P (2|02)P (02)

= p102π01 + p202π02

If k=2,

P
(k=2)
loss = P (1001) + P (2001) + P (1002) + P (2002)

= 0 + P (2001)) + 0 + P (2002)

= P (2|001)P (001) + P (2|002)P (002)

= P (2|00)P (0|01)P (01) + P (2|00)P (0|02)P (02)

= (p100π01 + p200π02)p002

If k=3,

P
(k=3)
loss = P (10001) + P (20001) + P (10002) + P (20002)

= 0 + P (20001) + 0 + P (20002)

= P (2|0001)P (0001) + P (2|0002)P (0002)

= P (2|00)P (0|00)P (001) + P (2|00)P (0|00)P (002)

= (p100π01 + p200π02)p000p002

In general, for k > 3:

P
(k>3)
loss = (p100π01 + p200π02)p

k−2
000 p002

πij can be obtained by solving the equation π = πP ∗,

where P ∗ is the double-state transition probability matrix with

p∗vxyz ≡ P (vx|yz) = P (v|yz)P (x|yz) = pvyzpxyz .

Similarly, if we define:

Pgood(k) = P (LS . . . SS︸ ︷︷ ︸
k

L)

to be the probability of receiving k consecutive packets, so

this probability also can be obtained using a similar manner.

C. Model Parameters Estimation

We represent end-to-end loss events using L and S symbols

where S denotes a successfully received packet and L denotes

otherwise. The model state sequence can be obtained by map-

ping the loss events to the model states. State 0 corresponding

to a lost packet is easy to decide. However, State 1 and State

2 are more tricky as both correspond to successfully received

packets. Since transitions from State 1 to State 2 and vice

versa are not directly observable from the end-to-end point of

view, which success event belongs to which of these states has

to be decided empirically. The hint is the holding time of State

1 is usually longer compared to the holding time of State 2.

The model state sequence is obtained as follows:

All L symbols are mapped to State 0. All segments of

consecutive S symbols lengths of which are equal or less

than K and the first K symbols of the remaining are mapped

to State 2. All the rest S symbols are mapped to State 1.

K is an empirical constant, which indicates the resistance of

TCP against the consecutive losses. In practice, K is usually

Fig. 3. Example of conversion from loss series state sequence (K = 5)

less than or equal 5 for most TCP implementations. The state

mapping with k = 5 is illustrated in Fig. 3.

Having the state sequence, the initial state distribution

matrix Π can be subsequently estimated as follows:

πi =
Fi∑2
i=0 Fi

where:

Fi is a number of times the model is in state i (0 ≤ i ≤ 2).

Similarly, the state transition matrix P also can be obtained.

pxyz =
Txyz∑2

z=0 Txyz

where:

Txyz is a number of transitions from state x to state y and

from state x to state z (0 ≤ x, y, z ≤ 2).

We notice that, px01 and px12, (0 ≤ x ≤ 2), all equal 0 as

the model never moves directly from state 0 to state 1, and

from state 1 directly to state 2.

IV. MODEL VERIFICATION

A. Simulation

We created a simulation network using NS-2 [10] as pre-

sented in Fig. 4. Background traffic was generated using FTP,

CBR and exponentially ON/OFF cross traffic sources. The

number of cross traffic sources, their intensity, activation time

and connection pair are random parameters chosen from a

specific range to guarantee the dynamics of the network (see

TABLE I). Target flows are TCP (Reno) with 1500 bytes

packets traversing from node n0 to node n2 and from node

n1 to node n3 alongside with other flows. Link n5 to n6
implements RED queue. All other links use DropTail queue.

TABLE I

PARAMETERS OF BACKGROUND TRAFFIC SOURCES.

FTP CBR ON/OFF

Num of Source 1000 250 250

Activation Rand[0-1000] Rand[0-1000] Rand[0-1000]

Packet size 1024 bytes 512 bytes 128 bytes

Rate (Mbps) N/A Rand[0.1-1] Rand[0.1-1]

Send size (KB) Rand[500-10000] N/A N/A

Burst time N/A N/A 500ms

Idle time N/A N/A 500ms

Next, we varied the parameter range to create different loss

scenarios. For each scenario, the network was simulated for

500 seconds i.e. approximately 10000 packets per target flow.

The loss trace obtained from the target flows was used to

train the model. Afterwards, the network was simulated for

1000 seconds to verify the model. The following are results

of 3 simulation scenarios presented in the form of average loss

rate, initial state distribution matrix, state transition probability

matrix, loss runlength and good runlength distributions.
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Fig. 4. Simulation network.

1) Scenario 1: We simulated the network in a low intensity

cross traffic condition with the average loss rate of 0.45%.

In this condition, the target flow is relatively stationary. The

average loss rate obtained from the model is 0.42%, which

is accurate. The distributions of good runlengths and loss

runlengths of the model in comparision with those obtained

from the simulation is also match as presented in Fig. 5.

Π = ( 0.004289 0.985573 0.010138 )

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2

00 0.375000 0.625000
01
02 0.531915 0.468085
10 0.138889 0.861111
11 0.001426 0.998574
12
20 0.086207 0.913793
21 0 1
22 0.048485 0.224242 0.727273

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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sim
model

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

good runlength (#packets)

pr
ob

ab
ili

ty

Good runlength distribution (loss rate 0.45%)

sim
model

Fig. 5. Loss runlength and good runlength distributions.

2) Scenario 2: We increased the background traffic inten-

sity to medium level, which resulted in the average loss rate

of 2.40%. Consequently, we observed some burstiness in the

background traffic, which indicates the traffic is non-stationary.

The average loss rate calculated from the model is 2.38%. The

comparison in terms of good runlengths and loss runlengths

between the model and the simulation is illustrated in Fig. 6.

As illustrated, the model performs very well in this scenario

as the average loss rate, good runlength distribution and loss

runlength distribution obtained with the model are all match

with those obtained from the simulation.

Π = ( 0.023808 0.932443 0.043749 )

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2

00 0.421569 0.578431
01
02 0.353846 0.646154
10 0.379452 0.620548
11 0.006915 0.993085
12
20 0.360870 0.63913
21 0.047945 0.952055
22 0.071118 0.211901 0.716981

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Fig. 6. Loss runlength and good runlength distributions.

3) Scenario 3: We simulated the network in a high intensity

cross traffic condition with the average loss rate of 3.93%. We

observed a high level of burstiness in the background traffic.

The model average loss rate (4.06%), and the comparison

in terms of good runlength and loss runlength distributions

between the model and the simulation (Fig. 7) confirm a good

performance of the proposed model in the simulated scenarios.

Π = ( 0.040632 0.883056 0.076312 )

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2

00 0.456140 0.543860
01
02 0.266129 0.733871
10 0.455224 0.544776
11 0.013028 0.986972
12
20 0.552632 0.447368
21 0.007408 0.992592
22 0.074419 0.209302 0.716279

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Fig. 7. Loss runlength and good runlength distributions.

B. Trace-based Analysis

We verified the model using Internet traces extracted from

the Gigabit Ethernet connection entering UMASS [19]. We
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compared the model in terms of good runlength and loss

runlength distributions against two well-known loss models,

which are Gilbert model and 3-state HMM. The result pre-

sented in Fig. 8 shows that the model outperforms both

Gilbert model and HMM especially in terms of good runlength

distribution. As flows in the trace are TCP where the losses

are strongly correlated, the Gilbert model shows the poorest

performance in capturing good runlength behaviours compared

to HMM and the proposed model.
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Fig. 8. Loss runlength and good runlength distributions.

We also verified the proposed model using real Internet

traces obtained by means of an Active Measurement approach

with D-ITG (Distributed Internet Traffic Generator) [11] in

various heterogeneous network paths. In particular, we studied

the model performance in real Internet environment with

different network access technologies (Ethernet, IEEE 802.11,

ADSL), operating systems (Linux and Windows), end-users

devices (Workstation, Laptop, Palmtop), and packet sizes (64,

256, 512, 1024). Therefore, it allows us to assess the impact

of several network parameters on the model performance.

Due to space limitations we can not present here all the

results we obtained. Therefore, we present those related to

6 representative paths, data sets characteristics of which are

summarized in TABLE II. These data sets have been collected

using TCP, Linux operating system, and Laptop computers.

TABLE II

CHARACTERISTICS OF THE DATA SETS.

Name Sender/Rcv. Pkt size Loss rate

Eth2Adsl64 Ether/ADLS 64 4.67%

Eth2Adsl256 Ether/ADLS 256 3.13%

Eth2Adsl1024 Ether/ADLS 1024 39.3%

Eth2Wifi64 Ether/802.11b 64 0.41%

Eth2Wifi512 Ether/802.11b 512 0.72%

Eth2Wifi1024 Ether/802.11b 1024 16.9%

In order to evaluate the robustness of the model, the data sets

were chosen to exhibit significantly different loss behaviours

i.e. different loss rates, loss runlength and good runlength

distributions. Each data set was divided into 2 equal parts. The

first half was used to trained the model and the second half

is used to evaluate the model performance. For each scenario,

the evaluation results are presented in forms of average loss

rate, loss runlength and good runlength distribution. TABLE

III summarizes the result in terms of loss rates.

As presented, the loss rates predicted by the model are rea-

sonably accurate for Eth2Adsl traces. Since the losses on wired

paths e.g. Eth2Adsl are mainly due to network congestions, the

TABLE III

PREDICTED LOSS RATE.

Name Trace loss rate Predicted loss rate

Eth2Adsl64 4.67% 4.12%

Eth2Adsl256 3.13% 2.93%

Eth2Adsl1024 39.3% 39.7%

Eth2Wifi64 0.41% 0.40%

Eth2Wifi512 0.72% 0.55%

Eth2Wifi1024 16.9% 12.1%

model can appropriately describe them thanks to its structure,

which is constructed from TCP congestion control mechanism.

However, the model did not predict accurately the loss rates for

2 (Eth2Wifi512 and Eth2Wifi1024) of the 3 wireless paths. The

reason is that the losses on those wireless paths are due to both

network congestions and data transmission errors. When the

transmission errors rate is high, the model is no longer capable

of describing the loss behaviours since it is not designed to

model the combined losses. We can see that the loss rates

predicted by the model are lower than the actual loss rates.

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

loss runlength (#packets)

pr
ob

ab
ili

ty

Eth2Adsl64: loss runlength distribution

actual
model

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

good run length (# packets)

pr
ob

ab
ili

ty

 Eth2Adsl64: good runlength distribution

actual
model

Fig. 9. Eth2Adsl64: Loss runlength and good runlength distributions.
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Fig. 10. Eth2Adsl256: Loss runlength and good runlength distributions.
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Fig. 11. Eth2Adsl1024: Loss runlength and good runlength distributions.

Apart from loss rates, the model performance is assessed

based on ability to capture the loss patterns i.e. loss runlength

and good runlength distributions. In wired environments e.g.
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Ethernet and ADSL, the model performs well under differ-

ent loss scenarios. The loss runlength and good runlength

distributions of Eth2Adsl data sets in comparion with those

produced by the model are depicted in Figs.(9, 10, and 11). As

illustrated, the model appropriately captures the loss patterns

of those data sets. However, as mentioned above, the model did

not work properly for some wireless paths such as Eth2Wifi512

and Eth2Wifi1024. Figs.(13,14) subsequently depict the loss

runlength and good runlength distributions of Eth2Wifi512 and

Eth2Wifi1024 set in comparison with those of the model. For

Eth2Wifi64 set, the model works relatively well (see Fig. 12)

since the transmission losses are not significant.
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Fig. 12. Eth2Wifi64: Loss runlength and good runlength distributions.
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Fig. 13. Eth2Wifi512: Loss runlength and good runlength distributions.
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Fig. 14. Eth2Wifi1024: Loss runlength and good runlength distributions.

V. MODEL-BASED TRAFFIC CONTROL

Apart from the accuracy and robustness, an important ad-

vantage of the proposed loss model is the ability to link the

loss observations to the path congestion states, which cause

the losses. Thus, by observing end-to-end loss behaviours,

the congestion states of the path can be inferred using the

model. Once the congestion states are obtained, actions can be

taken to improve the path performance and reliability. To be

more specific, since each congestion state is associated with a

certain packet loss probability, by applying a data transmission

strategy with an adaptive transmission rate, one can obtain an

optimal rate/loss ratio. Furthermore, if multiple disjoint paths

are available, traffic can also be distributed among the paths

to achieve high transmission rates and low loss rates at the

same time. In this section, we show how the rate adaptive

problem with a single path and the traffic distribution problem

with multiple paths can be formulated using the proposed loss

model under the framework of Markov Decision Processes.

A Markov Decision Process (MDP) [12] is a controlled

Markov chain defined by a four-component tuple {S,A, T,R}
where S = {s} is the state space of the chain; A = {a} is a set

of actions, which can be taken by the decision maker in each

state to control the dynamics of the chain; T = T (s, a, s′)
is the state transition probability function, which yields a

probability the chain currently in state s will move to state s′ in

the next step as a result action a; R = R(s, a, s′) is the reward

function, which specifies the value given to the decision maker

if the chain moved from state s to state s′ by taking action

a. Solving a control problem under the framework of Markov

Decision Processes means to find a policy, which dictates the

action to take in each state to maximize the total (average)

rewards accumulated over a decision horizon.

In contexts of the rate adaptive problem, the decision maker

adjusts data transmission rates by deciding at decision epochs

whether packets must be transmitted or delayed depending on

the path congestion states. Subsequently, the four-component

tuple {S,A, P,R} of the problem is defined as follows:

• S = {0, 1, 2} is the state space of the model, which

reflects the path congestion states.

• A = {0, 1} is a set of 2 actions where 1 means to transmit

packets, and 0 means not to transmit.

• T = T (s, a, s′); a ∈ A; s, s′ ∈ S is the state transition

probability function, which yields the value of:

T (s, a, s′) =

⎧⎨
⎩

1.0 : if a = 0, s′ = s

0.0 : if a = 0, s′ �= s

pss′ : if a = 1

where pss′ is the probability the model currently in state

s will move to state s′ in the next step.

• R = R(s, a, s′) is the reward function, which should be

able to reflect the optimal rate/loss ratio objective. We

define R(s, a, s′) as follows:

R(s, a, s′) =

⎧⎨
⎩

+1.0 : if a = 1, s′ = 1, 2,∀s ∈ S

−3.0 : if a = 1, s′ = 0,∀s ∈ S

−1.0 : if a = 0,∀s, s′ ∈ S

In brief, a reward of +1.0 is given to the decision maker

if a packet is successfully transmitted (s′ = 1, 2). In

contrast, if the packet is lost (s′ = 0), a penalty of −3.0 is

given. The action of delaying a packet costs the decision

maker a value of −1.0. The reward and penalty values

can be adjusted depending on rate/loss requirements.

In a similar manner, the traffic distribution problem is

formulated as a MDP. The major difference between the

two formulations is the state and action space. In the traffic

distribution problem, several paths are available for data trans-

mission. Hence, the state space is the combinations of all path

states i.e. a combined state is the vector of all path states. At
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decision epochs, the decision maker selects a path to transmit

data among the available paths depending on the congestion

state of each path. Subsequently, the four-component tuple

{S,A, P,R} of the problem is defined as follows:

• S = {(s1, s2 . . . , sK), si = {0, 1, 2}} is the combined

state space, which has 3K states. K is the number of

transmission paths.

• A = {0, 1 . . .K} is a set of K +1 actions where 1 . . .K

means to transmit packets on the 1st . . .Kth path, and 0
means to delay packets transmission.

• T = T (s, a, s′); a ∈ A; s, s′ ∈ S is the state transition

probability function, which yields the value of:

T (s, a, s′) =

⎧⎨
⎩

1.0 : if a = 0, s′ = s

0.0 : if a = 0, s′ �= s

pss′ : if a = 1

where pss′ is the probability the combined chain currently

in state s will move to state s′ in the next step.

• R = R(s, a, s′) is the reward function, which should

be able to reflect the optimal rate/loss ratio objective. In

specific, a reward of +1.0 is given to the decision maker

if a packet is successfully transmitted. In contrast, if the

packet is lost, a penalty of −3.0 is given. The action of

delaying a packet costs the decision maker a penalty value

of −1.0. The reward and penalty values can be adjusted

depending on rate/loss requirements.

Having defined the four-component tuple, an optimal trans-

mission policy can be found using the standard MDP solving

tools such as dynamic programming and linear programming.

Due to space constrains, the implementation details, results

and discussions will be presented in another paper.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new Markov-based model

to capture Internet end-to-end loss behaviours. Unlike the

previous loss models, the proposed model is constructed based

on the TCP congestion control mechanisms. As a result, the

model can appropriately describe flow level loss behaviours

and at the same time connect them to network flow level

activities. Simulation and Internet trace-based analysis have

shown that the proposed model can correctly capture important

loss behaviours e.g. average loss rates, loss runlength and good

runlength distributions under heterogeneous network condi-

tions without explicitly modelling them. This fact indicates

that the model structure is accurate and it is appropriately

connected to flow level network activities. Since the model is

2nd-order, it partially explains why TCP traffic exhibit self-

similar properties, which are governed by long-tailed distribu-

tions. In future work, we will investigate the implementation

of the model in assisting application-level traffic control.
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