
Formal Verification and Visualization of Security
Policies

Luay A. Wahsheh1, Daniel Conte de Leon2, and Jim Alves-Foss1∗

1Center for Secure and Dependable Systems, University of Idaho,
P. O. Box 441008, Moscow, Idaho 83844-1008, USA

Email: {luay, jimaf}@uidaho.edu
2Division of Natural Sciences and Mathematics, Lewis-Clark State College,

500 8th Avenue, Lewiston, Idaho 83501-2691, USA
Email: dcontedeleon@acm.org

Abstract— Verified and validated security policies are
essential components of high assurance computer systems.
The design and implementation of security policies are
fundamental processes in the development, deployment, and
maintenance of such systems. In this paper, we introduce an
expert system that helps with the design and implementation
of security policies. We show how Prolog is used to
verify system correctness with respect to policies using a
theorem prover. Managing and visualizing information in
high assurance computer systems are challenging tasks.
To simplify these tasks, we show how a graph-based
visualization tool is used to validate policies and provide
system security managers with a process that enables policy
reviews and visualizes interactions between the system’s
entities. The tool provides not only a representation of
the formal model, but also its execution. The introduced
executable model is a formal specification and knowledge
representation method.

Index Terms— Logic, security policy, validation, verification,
visualization.

I. I NTRODUCTION

High assurance computer systems are those that
require convincing evidence that the system adequately
addresses critical properties such as security, safety, and
survivability [1]. They are used in environments where
failure can cause security, safety, or survivability failures.
Examples include avionics, weapons control, intelligence
gathering, and life-support systems. Before such systems
can be deployed, there must exist convincing evidence
that they support these critical properties.

Security in high assurance computer systems involves
protecting systems’ entities from unauthorized (malicious
or accidental) access to information. In this context, we
use the following terms:entity to refer to any source,
destination, or intermediary through which information
can flow (e.g., user, subject, object, file, and printer);
security enclave(coalition) to refer to a logical boundary
for a group of entities that have the same security level
(e.g., CS faculty, ER physicians, and C-130 pilots); and

∗Corresponding author.

messageto refer to any data that has been encoded for
transmission to or received from an entity (e.g., a method
invocation, a response to a request, a program, passing
a variable, and a network packet). The transmission
mechanism can utilize shared memory, zero-copy message
transport, kernel supported transport, TCP/IP, and so forth.

In this paper, we use the termpolicy to refer tosecurity
policy. In the computer security literature, policy has
been used in a variety of ways. Policies can be sets
of rules to manage resources (actions based on certain
events) or definite goals that help determine present
and future decisions. In high assurance secure computer
systems, compliance with security policies is mandatory.
Policies are different from guidelines, which are optional
and recommended actions. Since they are not consistent,
guidelines often violate systems’ security. We provided
a detailed discussion of the meaning of policy in high
assurance computer systems in our earlier work [2].
Broadly speaking, a security policy will address security
issues: CIA (Confidentiality, Integrity, and Availability).
Confidentialityis related to the disclosure of information,
integrity is related to the modification of information,
and availability is related to the denial of access to
information. The security policies discussed in this paper
are multi-level (e.g., based on security classification:
Top Secret, Secret, Confidential, and Unclassified) and
contain mandatory rules to guarantee that only authorized
message transmission between entities can occur by
imposing constraints on the actions (operations) of these
entities. However, our work is not limited to military
policies.

One fundamental key to successful implementation of
secure high assurance computer systems is the design and
implementation of these security policies. The policies
must specify the authorized transactions of the system
and actions for unauthorized transactions, all in a form
that is implementable. Implementing the enforcement of
a policy is difficult and becomes very challenging when
the system must enforce multiple policies.

Policy verification and validation are essential in the

22 JOURNAL OF COMPUTERS, VOL. 3, NO. 6, JUNE 2008

© 2008 ACADEMY PUBLISHER

life-cycle of high assurance computer systems because
they ensure that the software being developed functions
as required (i.e., complies with the policy). The terms
verification and validation describe two different concepts
that are often used interchangeably.Verification is the
process of evaluating a system to determine whether
the product of a given development phase satisfies the
conditions imposed at the start of that phase [3]; that
is, verification takes place at the end of each phase to
determine whether a phase has been correctly carried out.
Validation is the process of evaluating a system during
or at the end of the development process to determine
whether it satisfies specified requirements [3]; that is,
validation takes place just before the product is delivered
to the client to determine whether the product as a whole
satisfies its specifications.

Our research focuses on the Multiple Independent
Levels of Security (MILS) architecture, which is a
high assurance computer system design for security
and safety-critical multi-enclave systems. Although our
research is not limited to MILS, it works well
in this capacity. MILS is a joint research effort
between academia, industry, and government led by
the United States Air Force Research Laboratory with
stakeholder input from many participants, including the
Air Force, Army, Navy, National Security Agency,
Boeing, Lockheed Martin, and the University of Idaho [4],
[5], [6]. The MILS architecture is created to simplify the
process of the specification, design, and analysis of high
assurance computer systems [7]. This approach is based
on the concept of separation, as introduced by Rushby [8].

The concept of separation is used, for example, in
avionics systems and is a requirement of ARINC 653 [9]
(a standard for partitioning of computer resources)
compliant systems. Through separation, we can develop
a hierarchy of security services where each level uses
the security services of a lower level or peer entities
to provide a new security functionality that can be
used by higher levels. Effectively, the operating system
and middleware become partners with application level
entities to enforce application-specific security policies.
Limiting the scope and complexity of the security
mechanisms provides us with manageable, and more
importantly, evaluatable implementations. A MILS system
isolates processes into partitions that define a collection
of data objects, code, and system resources. Partitions are
defined by the kernel’s configuration and can be evaluated
separately. This divide-and-conquer approach reduces the
proof effort for secure systems.

In this paper, we introduce a model for multi-level
security policies and its corresponding Prolog-based
implementation. This implementation is an expert system
prototype that helps with the design and maintenance
of security policies. For the rest of the paper, we use
the term model to refer to this expert system prototype.
Understanding how the system’s entities interact is a
key issue in the design and implementation of security
policies. We use a graph-based tool that enables policy

Network

Processor 1 Processor 2 Processor 3

Enclave
1

Enclave
2

Enclave
3

Enclave
4

A

B

C

D E

F

G

H

I J

K L

Figure 1. User view structure.

reviews and visualizes interactions between the system’s
entities.

The remainder of this paper is organized as follows:
the Inter-Enclave Multi-Policy (IEMP) framework is
discussed in Section II. Verifying policies using Prolog is
introduced in Section III. Enabling policy reviews through
visualization is discussed in Section IV. Related research
is outlined in Section V. Finally, we conclude the paper
in Section VI.

II. I NTER-ENCLAVE MULTI -POLICY FRAMEWORK

We introduced the IEMP framework in our earlier
work [2]. In this paper, we introduce a formal verification
and validation of IEMP security policies. We implement
a Prolog-based model of IEMP and introduce not only
visual representations of IEMP policies, but also the
execution of the model. This section summarizes IEMP
and introduces additional illustrations that help providea
visual description of entities’ requests.

An enclave sets a logical boundary for a group of
entities that can communicate with one another according
to an individual security policy responsible for that
enclave. Each enclave has its own individual security
policy that controls communication between entities that
belong to the enclave. While an individual policy controls
message communication within its enclave, IEMP handles
message communication between two or more enclaves.
Enclaves can be arranged in a hierarchical structure and
may exist across multiple processors. Figs. 1 and 2 show
MILS enclaves distributed over separate processors in
user and system views, respectively.

Any interaction between MILS entities is modeled as
an entity e1 accessing another entitye2 through access
operationop (e.g.,read andwrite). P (e1, e2, op) denotes
the application of policyP to access(e1, e2, op), so
P (e1, e2, op) is of typegrant or reject.

EnclaveP is used to denote the domain belonging toP

which consists of all entities that are submitted toP . For
any access(e1, e2, op), a policyP will contain an access
rule if and only if e1, e2 ∈ EnclaveP . Se = {P |e ∈

JOURNAL OF COMPUTERS, VOL. 3, NO. 6, JUNE 2008 23

© 2008 ACADEMY PUBLISHER

Enclave1

A B C Enclave2 Enclave3

D E F

K L

G H I J Enclave4

Figure 2. System view structure.

Enclave
1

BA

Figure 3. An example of Class 1 access.

EnclaveP } denotes the set of security policies that have
entity e within their enclave and{Pi}i∈I denotes a set of
security policies.

In a multi-policy enclave system with a set of security
policies {Pi}i∈I and e1, e2 ∈

⋃
i∈I

EnclavePi
, any

access(e1, e2, op) belongs to one of the following three
disjoint classes:

• Class 1:|Se1
| = |Se2

| = 1 ∧ Se1
= Se2

Class 1 identifies the case in which interactions occur
when both entitye1 and entitye2 belong to exactly
one enclave (the same enclave). Fig. 3 shows an
example of Class 1 access.

• Class 2:|Se1
∩ Se2

| = 0
Class 2 identifies the case in which no security policy
exists that has both entitye1 and entity e2 in its
enclave. Two sub-classes exist:

a. |Se1
| = 1 ∧ |Se2

| = 1
Where each entity is a member of only one
enclave. Fig. 4 shows an example of Class 2.a
access.

b. ∃e ∈ {e1, e2} : |Se| > 1
Where at least one of the entities is a member of
more than one enclave. Fig. 5 shows an example
of Class 2.b access.

• Class 3:|Se1
∩ Se2

| ≥ 1 ∧ ∃e ∈ {e1, e2} : |Se| > 1
Class 3 identifies the case in which at least one policy
provides an access rule for both entities and at least
one of the involved entities is a member of more
than one enclave. Two sub-classes exist:

a. |Se1
∩ Se2

| = 1
Where an entity is a member of more than

B

Enclave
2

A

Enclave
1

Figure 4. An example of Class 2.a access.

A

Enclave
1

Enclave
2

B

Enclave
3

Enclave
4

Figure 5. An example of Class 2.b access.

one policy enclave. Fig. 6 shows an example
of Class 3.a access.

b. |Se1
∩ Se2

| > 1
Where more than one policy exist for both
entities that provide rules for the access. Fig. 7
shows an example of Class 3.b access.

III. F ORMAL VERIFICATION OF POLICIES

Prolog is a first-order predicate logic programming
language that uses Horn clauses to describe relationships
based on mathematical logic. A Prolog program consists
of clauses stating facts and rules. Facts and rules are
explicitly defined and implicit knowledge can be extracted
from Prolog’s knowledge base. Queries are used to check
whether relationships hold.

We use Prolog as a method to prove system correctness
with respect to policies using Prolog’s theorem prover
that is based on a special strategy for resolution called
SLD-resolution [10]. Unlike programs in many other
procedural programming languages, a Prolog program is
not a sequence of processing steps to be executed. A
Prolog program is a set of formulas (axioms) from which
other formulas expressing properties of this program may

Enclave
2

A

Enclave
1

B

Figure 6. An example of Class 3.a access.

24 JOURNAL OF COMPUTERS, VOL. 3, NO. 6, JUNE 2008

© 2008 ACADEMY PUBLISHER

A
Enclave

1
Enclave

2

B

Enclave
3

Figure 7. An example of Class 3.b access.

be deduced as theorems [11]. A theorem is proved using
a proof procedure that is a sequence ofrules of inference
producing new expressions from old ones; the inference
rules are repeatedly applied to a set of formulas and the
new expressions, until the desired theorem appears [12].
In Prolog, the theorem to be proved is the starting goal
(clause), while the inference rules and formulas are the
program itself.

Because of its simple declarative nature, Prolog is an
appropriate language for expressing and verifying security
policies. To determine all possible answers to a query,
Prolog supports backtracking. Backtracking is the process
of determining all facts or rules with which unification
(determining whether there is a substitution that makes
two atoms the same) can succeed. Many authors in
the literature indicated the use of Prolog as a policy
specification language, including Lin [13] who argued
that Prolog is a suitable language for specifying security
policies due to multiple features: it is based on a subset of
first-order logic with a solid mathematical foundation, it
is a productive modeling language supporting incremental
policy writing and refinement, it is able to reason from a
set of rules, and it supports meta-level reasoning which
makes policy conflict detection possible.

A. Implementation

Our model is menu-driven and test cases were run
against it to check not only the program’s correctness,
but also its robustness; we provided invalid input data to
determine whether the program was capable of dealing
with bad data (e.g., invalid data types of arguments).
We do not include the whole implementation model in
this paper, we discuss an excerpt from it: only facts
and rules (for Classes 1, 2, and 3) are discussed that
demonstrate a knowledge base scenario. The expressed
policy is based on the simple security property (no
read-up: an entity cannot read from another entity at a
higher security classification than itself) and star property
(no write-down: an entity cannot write to another entity
at a lower security classification than itself) as defined
by Bell-LaPadula [14]. As demonstrated in the model,
we use aclosedsecurity policy where only the allowed
operations are specified; only authorized entities are
allowed access. The operations to be denied are not
explicitly specified because Prolog’snegation-by-failure

mechanism will enforce a default denial on messages
other than those explicitly allowed by the knowledge base
and inference rules.

B. Facts

We present a scenario that consists of entities
that are users; however, in general, entities can be
files, printers, or any source or destination through
which information can flow. In the scenario, entities,
enclaves, roles, and allowed operations between
entities are defined as Prolog facts. The entity set
is EntityId EntityName = {(210,diala), (456,trudy),
(698,evey), (331,raneem), (704,trudy), (555,penny),
(369,dana), (491,diosa), (675,tina), (810,sam)}; the
enclave set is Enclave ={1, 2, 3, 4}; the role set is
Role = {Faculty, Staff, BS Student, MS Student, PhD
Student}; and the operation set is Operation ={Read,
Write}.

We define a security classification set
SecurityClassification = {1, 2, 3, 4}. We use the
following values for security: 1 to refer to a security
classification of Unclassified, 2 to refer to a security
classification of Confidential, 3 to refer to a security
classification of Secret, and 4 to refer to a security
classification of Top Secret. A higher number indicates
more authority.

We also define a priority set Priority ={1, 2, 3, 4}. A
priority (importance) is a factor in determining whether
an entity is given permission to access another entity
for Class 3 accesses. An entity is assigned a priority
number based on the highest security classification of the
enclaves that it belongs to. A higher number indicates
more authority.

Enclaves, roles, security classifications, and priority
values, which are defined as Prolog facts, are assigned
to entities. The format of the classification() predicate is:

classification(EntityId, EntityName, Enclave, Role,
SecurityClassification, Priority).

C. Rules

After Prolog facts have been defined, Prolog rules for
Classes 1, 2, and 3 are stated. We briefly discuss Class 1
rules and include excerpts from Classes 2 and 3 rules.

1) Class 1 Rules:Class 1 rules process read and
write operation requests for entities that are members of
the same enclave. We define an allow() predicate that
processes entity access operations. The format of the
allow() predicate is:

allow(EntityAId/EntityAName/EnclaveA/RoleA,
Operation,
EntityBId/EntityBName/EnclaveB/RoleB,
Response)

where Response is either to allow or deny entity access.
2) Classes 2 and 3 Rules:Class 2 identifies the case

in which no security policy exists that has both entity A
and entity B in its enclave, defined as follows:

%if entities belong to different enclaves,
%then set Class 2.a flag

JOURNAL OF COMPUTERS, VOL. 3, NO. 6, JUNE 2008 25

© 2008 ACADEMY PUBLISHER

not_equal(EncA,EncB) ->
flag(FlagClass2a),

%check entities A and B for Class 2.b
%access
class_2_b(IdA/EntA/EncA/RoleA,
IdB/EntB/EncB/RoleB,NAX,NBY),

%check whether entities A and B belong
%to more than one enclave
entity_belongs_more_than_one_enclave(
NAX,NBY,FlagClass2b),

%in Class 2.a and Class 2.b access,
%check if the flag of the ss-property
%or *-property has been set and check
%whether entity A has a higher priority
%than that of B’s
((FlagClass2a == 1) ->

((not_equal(
FlagPrintSSProperty,1);

not_equal(
FlagPrintStarProperty,1)

) ->
(higher_or_equal_priority(

PriorityA,PriorityB) ->
!

; flag(FlagClass2aNotAllowed)
)

; !
)

; ((FlagClass2b == 1) ->
((not_equal(

FlagPrintSSProperty,1);
not_equal(
FlagPrintStarProperty,1)

) ->
(higher_or_equal_priority(
PriorityA,PriorityB) ->
!

; flag(
FlagClass2bNotAllowed)

)
; !

)
; !
)

).

Class 3 identifies the case in which at least one policy
provides an access rule for both entity A and entity B
and at least one of the involved entities is a member of
more than one enclave. A built-in Prolog predicate called
findall() is used to find all solutions in a list (data type):
findall(S,C,L), where L is the list of all S that satisfy
condition C. Prolog generates solutions one by one by
using backtracking, but in order to collect all solutions in
a list, Prolog uses the built-in predicates: bagof(), setof(),
or findall().

We build a list of the current entities and check class
type (3.a or 3.b) as follows:

%get a list of the source and destination
%entities that belong to Class 3
findall(IdA/EntA/EncAXX/RoleAXX,
member(IdA/EntA/EncAXX/RoleAXX,
IdEntEncRolListClass3),_),

findall(IdB/EntB/EncBYY/RoleBYY,

member(IdB/EntB/EncBYY/RoleBYY,
IdEntEncRolListClass3),_),

%get a list of the source and destination
%enclaves from the Class 3 list
findall(EncAXX,

member(IdA/EntA/EncAXX/RoleA,
IdEntEncRolListClass3),
EntAClass3EnclaveListNew),

findall(EncBYY,
member(IdB/EntB/EncBYY/RoleB,
IdEntEncRolListClass3),
EntBClass3EnclaveListNew),

%get the intersection of the source and
%destination lists
intersection(

EntAClass3EnclaveListNew,
EntBClass3EnclaveListNew,
IntersectionList),

%check whether the access of the entities
%in the intersection list is Class 3.a or
%Class 3.b
class_3a_3b(IntersectionList,

FlagClass3a,FlagClass3b),

%in Class 3.a and Class 3.b access,
%check if the flag of the ss-property
%or *-property has been set and check
%whether entity A has a higher priority
%than that of B’s
((FlagClass3a == 1) ->

%class 3.a
((not_equal(

FlagPrintSSProperty,1);
not_equal(
FlagPrintStarProperty,1)

) ->
(higher_or_equal_priority(
PriorityA,PriorityB) ->
!

; flag(FlagClass3aNotAllowed)
)

; !
)

; ((FlagClass3b == 1) ->
%class 3.b
((not_equal(

FlagPrintSSProperty,1);
not_equal(

FlagPrintStarProperty,1)
) ->
(higher_or_equal_priority(

PriorityA,PriorityB) ->
!

; flag(
FlagClass3bNotAllowed)

)
; !

)
; !
)

).

We define a dominate() predicate that determines
whether entities dominate one another (based on the
simple security and star properties as defined by
Bell-LaPadula [14]). The format of the dominate()

26 JOURNAL OF COMPUTERS, VOL. 3, NO. 6, JUNE 2008

© 2008 ACADEMY PUBLISHER

predicate is:
dominate(EntityAId/EntityAName/EnclaveA/RoleA,

EntityBId/EntityBName/EnclaveB/RoleB).
The rule is defined as follows:

%check whether entities dominate one
%another based on their security
%classifications
dominate(IdAX/EntAX/EncAX/RoleAX,
IdBY/EntBY/EncBY/RoleBY):-
classification(IdAX,EntAX,EncAX,

RoleAX,CL1X,_),
classification(IdBY,EntBY,EncBY,

RoleBY,CL2Y,_),
(CL1X >= CL2Y).

IV. ENABLING POLICY REVIEWS THROUGH

V ISUALIZATION

SHriMP (Simple Hierarchical Multi-Perspective) is a
graph visualization tool that is designed to enable the
exploration of complex software programs and knowledge
bases [15]. In our model, we use the stand-alone
SHriMP which is a Java application that uses GXL
data format. GXL is an XML-based standard exchange
format for graph representation [16]. In order to present
information flow graphical representations of the system,
we developed a software interface that provides a
communication mechanism between our model and the
SHriMP tool. The interface maps Prolog’s facts and rules
into a standard graphical format that can be shared with
other visualization tools.

A. Benefits of Policy Visualization

Being able to explore and navigate hierarchical
representations of security policies provide significant
benefits. Visual representations enable system security
managers to perform policy reviews, such as
walkthroughs, that help uncover errors and deficiencies
during the policy development and maintenance
processes. Because it can display graph hierarchical
structures in Java (which is a common software, thus
providing flexibility and portability), SHriMP can
integrate GXL’s standard format with other tools in
different domains. Although in this paper we show visual
representations of a relatively small policy scenario,
SHriMP can scale to larger complex policy systems [17].
SHriMP provides different methods of visualization that
can produce different views of data that are hidden in
the model. Data can be filtered (modified) to customize
how information is presented.

B. Policy Visualization

We use directed graphs to visually present information
flow between entities. Nodes in a graph represent
entities and arcs (between the nodes) represent allowed
communication between entities. Since a group of entities
that are members of an enclave can communicate with
one another within that enclave without restrictions (as
discussed in Section II), we do not show any read and

write operations (arcs) in the graphs for Class 1 entity
access; arcs are shown only for entities that communicate
between different enclaves.

In order to display a message on the screen that
describes allowed communication between entities, we
hover the mouse pointer over a certain arc, and a message
indicating properties of the arc will be displayed; moving
the pointer away will cause the message to disappear.
For example, the message “dana369 faculty 4 —read—
> tina 675 ms stud2” indicates that Dana, identification
number of 369, role of faculty, and security classification
of 4 is allowed to read from Tina, identification number
of 675, role of MS student, and security classification of 2.

In order to provide views of the system’s entities and
characteristics of the policy model, we present some
graphical representations. The following figures show
policy visualization representations of the Prolog model.
The representations that we discuss in this paper are
subsets of what have been implemented; we show the
following allowed accesses: all read and write operations,
Class 2.a read operation, Class 2.b write operation,
Class 3.a read operation, and Class 3.b write operation.

Fig. 8 shows read visual representations for all the
system’s entities; the arrows indicate the direction of
one-way read operations. Fig. 9 shows write visual
representations for all the system’s entities; the arrows
indicate the direction of one-way write operations. In
both figures, the arrows, shown as bold lines, indicate
the direction of one-way read and write operations for a
specific entity (Dana, identification number of 369, role
of faculty, and security classification of 4).

Fig. 10 shows a read operation for Class 2.a access,
where Diala, identification number of 210, role of faculty,
and security classification of 4 is allowed to read from
Trudy, identification number of 704, role of staff, and
security classification of 2 (shown as a bold, solid, red
line).

Fig. 11 shows a write operation for Class 2.b access,
where Diosa, identification number of 491, role of staff,
and security classification of 1 is allowed to write to Dana,
identification number of 369, role of faculty, and security
classification of 3 (shown as a bold, dashed, blue line).

Fig. 12 shows a read operation for Class 3.a access,
where Diala, identification number of 210, role of faculty,
and security classification of 4 is allowed to read from
Dana, identification number of 369, role of faculty, and
security classification of 3 (shown as a bold, solid, red
line).

Fig. 13 shows a write operation for Class 3.b access,
where Sam, identification number of 810, role of BS
student, and security classification of 2 is allowed to write
to Dana, identification number of 369, role of faculty, and
security classification of 3 (shown as a bold, dashed, blue
line).

V. RELATED WORK

Significant related work regarding security policies
had been reported in the literature, including our earlier

JOURNAL OF COMPUTERS, VOL. 3, NO. 6, JUNE 2008 27

© 2008 ACADEMY PUBLISHER

Figure 8. Read operations.

Figure 9. Write operations.

work [2], [18], [19]. In this section, we focus on
related policy work regarding Prolog and visualization
techniques.

Although various languages had been proposed for
specifying policies for different purposes, a standard
language does not yet exist for the policy community
to use. Moffett and Sloman [20] provided an analysis
of policy hierarchies by specifying policy hierarchy
refinement relationships in Prolog. Lupu and Sloman [21]
applied Prolog to meta-policies to identify several types
of policy conflicts. DeTreville [22] presented Binder,
a logic-based security language that provides low-level
programming tools to implement security policies. Binder
adopted Prolog’s syntax and its programs can be
translated into Prolog.

A discussion of multiple visualization techniques can

be found in recent surveys [23], [24], [25]. One of the
first visualization environments that were used by system
developers was FIELD (Friendly Integrated Environment
for Learning and Development) that provided an
understanding of programs’ behavior [26]. SmartMap is a
security policy visualization tool that provides improved
security by allowing security managers to validate the
integrity of their security policy prior to deployment [27].
The GSEE (Generic Software Exploration Environment)
tool was applied to improve the understanding of different
software products [28].

VI. CONCLUSIONS

A fundamental issue in high assurance computer
systems is the protection of information against
unauthorized access. This paper introduces a Prolog-based

28 JOURNAL OF COMPUTERS, VOL. 3, NO. 6, JUNE 2008

© 2008 ACADEMY PUBLISHER

Figure 10. Class 2.a read operation.

Figure 11. Class 2.b write operation.

model and shows how Prolog is formally used to verify
the security policies of a multi-level secure high assurance
computer system. In order to reduce policy life-cycle
development time, we show how visual representations
of security policies are used to provide system security
managers with a tool that helps in the process of
development and maintenance of security policies.

The approach proposed in this paper is an important
step towards leveraging a set of methods and tools
that help with the design of security policies. Future
investigation is needed to better understand policy
systems’ behavior and further explore other benefits of
policy visualization, including measuring security metrics
(properties) and providing a tool for testing system
usability.

ACKNOWLEDGEMENTS

We wish to acknowledge the United States Air Force
Research Laboratory (AFRL) and Defense Advanced
Research Projects Agency (DARPA) for their support.
This material is based on research sponsored by AFRL
and DARPA under agreement number F30602-02-1-0178.
The U.S. Government is authorized to reproduce
and distribute reprints for governmental purposes
notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of AFRL, DARPA, or the
U.S. Government. We also wish to acknowledge the
anonymous reviewers and journal editors for reviewing
this paper.

JOURNAL OF COMPUTERS, VOL. 3, NO. 6, JUNE 2008 29

© 2008 ACADEMY PUBLISHER

Figure 12. Class 3.a read operation.

Figure 13. Class 3.b write operation.

REFERENCES

[1] C. Heitmeyer, “Managing complexity in software
development with formally based tools,”Electronic Notes
in Theoretical Computer Science, vol. 108, pp. 11–19,
December 2004.

[2] L. A. Wahsheh and J. Alves-Foss, “Specifying and
enforcing a multi-policy paradigm for high assurance
multi-enclave systems,”Journal of High Speed Networks,
vol. 15, no. 3, pp. 315–327, October 2006.

[3] IEEE Standards Board, “IEEE standard glossary of
software engineering terminology,” IEEE Standard
610.12-1990, September 1990.

[4] J. Alves-Foss, W. S. Harrison, P. Oman, and C. Taylor,
“The MILS architecture for high assurance embedded
systems,” International Journal of Embedded Systems,
vol. 2, no. 3/4, pp. 239–247, 2006.

[5] J. Alves-Foss, C. Taylor, and P. Oman, “A multi-layered
approach to security in high assurance systems,” in

Proceedings of the 37th Annual Hawaii International
Conference on System Sciences, January 2004.

[6] W. S. Harrison, N. Hanebutte, P. Oman, and J. Alves-Foss,
“The MILS architecture for a secure global information
grid,” Crosstalk: The Journal of Defense Software
Engineering, vol. 18, no. 10, pp. 20–24, October 2005.

[7] P. White, W. Vanfleet, and C. Dailey, “High assurance
architecture via separation kernel,” October 2000, draft.

[8] J. M. Rushby, “Design and verification of secure systems,”
in Proceedings of the 8th ACM Symposium on Operating
System Principles, December 1981, pp. 12–21.

[9] “Avionic application software standard interface (Draft 3 of
Supplement 1) (Specification ARINC 653),” 2003, ARINC
Standards.

[10] L. Sterling and E. Shapiro,The Art of Prolog: Advanced
Programming Techniques, 2nd ed. The MIT Press, 1994.

[11] J. Loeckx and K. Sieber,The Foundations of Program
Verification, 2nd ed. John Wiley & Sons and
B. G. Teubner, 1987.

30 JOURNAL OF COMPUTERS, VOL. 3, NO. 6, JUNE 2008

© 2008 ACADEMY PUBLISHER

[12] P. Civera, G. Masera, G. Piccinini, and M. Zamboni,
VLSI Prolog Processor, Design and Methodology: A
Case Study in High Level Language Processor Design.
North-Holland, 1994.

[13] A. Lin, “Integrating policy-driven role based access
control with the common data security architecture,”
Hewlett-Packard Laboratories, Tech. Rep. HPL-1999-59,
April 1999.

[14] D. E. Bell and L. J. LaPadula, “Secure computer
systems: Unified exposition and MULTICS interpretation,”
MITRE Corporation MTR-2997 Rev. 1, Tech. Rep.
ESD-TR-75-306, March 1976.

[15] CHISEL research group, “SHriMP,” Department
of Computer Science, University of Victoria.
Retrieved December 20, 2007, from
http://www.thechiselgroup.org/shrimp.

[16] A. Winter, B. Kullbach, and V. Riediger, “An overview
of the GXL graph exchange language,” inSoftware
Visualization, vol. 2269, 2002, pp. 324–336, Lecture
Notes in Computer Science (LNCS), S. Diehl (Ed.),
Springer-Verlag.

[17] C. Best, M.-A. Storey, and J. Michaud, “Designing a
component-based framework for visualization in software
engineering and knowledge engineering,” inProceedings
of the 14th International Conference on Software
Engineering and Knowledge Engineering, July 2002, pp.
323–326.

[18] L. A. Wahsheh and J. Alves-Foss, “Using policy
enforcement graphs in a separation-based high assurance
architecture,” inProceedings of the IEEE International
Conference on Information Reuse and Integration, August
2007, pp. 183–189.

[19] L. A. Wahsheh and J. Alves-Foss, “Policy-based security
for wireless components in high assurance computer
systems,”Journal of Computer Science, vol. 3, no. 9, pp.
726–735, 2007.

[20] J. D. Moffett and M. S. Sloman, “Policy hierarchies
for distributed systems management,”IEEE Journal on
Selected Areas in Communications, vol. 11, no. 9, pp.
1404–1414, December 1993.

[21] E. C. Lupu and M. Sloman, “Conflicts in policy-based
distributed systems management,”IEEE Transactions on
Software Engineering, vol. 25, no. 6, pp. 852–869,
November/December 1999.

[22] J. DeTreville, “Binder, a logic-based security language,”
in Proceedings of the IEEE Symposium on Security and
Privacy, May 2002, pp. 105–113.

[23] R. R. Kasemsri, “A survey, taxonomy, and analysis of
network security visualization techniques,” Master’s thesis,
Georgia State University, December 2005.

[24] S. Bassil and R. K. Keller, “Software visualization
tools: Survey and analysis,” inProceedings of the 9th
International Workshop on Program Comprehension, May
2001, pp. 7–17.

[25] R. Koschke, “Software visualization in software
maintenance, reverse engineering, and re-engineering: A
research survey,”Journal of Software Maintenance and
Evolution: Research and Practice, vol. 15, no. 2, pp.
87–109, March 2003.

[26] S. P. Reiss,FIELD: A Friendly Integrated Environment for
Learning and Development. Kluwer, 1994.

[27] C. Tobkin and D. Kligerman,Check Point NG/AI:
Next Generation with Application Intelligence Security
Administration. Syngress, 2004.

[28] J.-M. Favre, “GSEE : A generic software exploration
environment,” in Proceedings of the 9th International
Workshop on Program Comprehension, May 2001, pp.
233–244.

Luay A. Wahsheh is an assistant professor of computer
science who will be joining the University of Baltimore in
Baltimore, Maryland, USA in August 2008. His research
involves computer security, with an emphasis on the design and
implementation of security policies in high assurance computer
systems. He received a Ph.D. in computer science from the
University of Idaho in Moscow, Idaho, USA in 2008, a master’s
degree in computer science from Stephen F. Austin State
University in Nacogdoches, Texas, USA in 2000, a postgraduate
diploma in computer science from the University of Essex in
Colchester, United Kingdom in 1994, and a bachelor’s degree
in computer science from Mutah University in Karak, Jordan in
1992.

He worked in the Center for Secure and Dependable Systems
at the University of Idaho from September 2003 to May 2008.
Prior to joining the University of Idaho, he spent three years as
a lecturer in the Department of Computer Science at Stephen
F. Austin State University, where he taught classes in computer
science.

Dr. Wahsheh is a member of Upsilon Pi Epsilon computing
sciences honor society.

Daniel Conte de Leonis an assistant professor of computer
science in the Division of Natural Sciences and Mathematics
at Lewis-Clark State College in Lewiston, Idaho, USA. His
current research interests are in the creation of novel extended
programming and specification methods and languages for
the development of safe and secure high assurance and
critical computing systems. In addition, he is interested in
developing novel approaches for the efficient use, conversion,
and conservation of energy. He received Ph.D. and master’s
degrees in computer science from the University of Idaho in
Moscow, Idaho, USA in 2006 and 2002, respectively.

Prior to joining Lewis-Clark State College, he worked
at the Center for Secure and Dependable Systems at the
University of Idaho, where he designed a novel methodology
for the specification and visualization of safe and secure system
architectures.

Dr. Conte de Leon is a member of the ACM and the IEEE.

Jim Alves-Foss is a professor of computer science in the
Department of Computer Science at the University of Idaho in
Moscow, Idaho, USA. His main research interests are in the
design and analysis of secure distributed systems, with a focus
on formal methods and software engineering. He received Ph.D.
and master’s degrees in computer science from the University
of California – Davis in Davis, California, USA in 1991 and
1989, respectively, and a bachelor’s degree in mathematics,
computer science, and physics also from the University of
California – Davis in 1987.

He is the director of the Center for Secure and Dependable
Systems at the University of Idaho and has been a faculty
member in the Department of Computer Science since August
1991.

Dr. Alves-Foss is a senior member of the IEEE.

JOURNAL OF COMPUTERS, VOL. 3, NO. 6, JUNE 2008 31

© 2008 ACADEMY PUBLISHER

