
 
 

 

  

 
Abstract—This study presents a boundary-based corner 
detection method that achieves robust detection for digital 
objects containing wide angles and various curves using 
curvature.  The boundary of an object is first represented into 
curvature measured by K-cosine.  Then, by modifying the 
corner detection error, this study proposes a suitable K value 
and curvature threshold for robust corner detection.  
Furthermore, the proposed K-cosine corner detection (KCD) 
was verified with several commonly employed digital objects.  
The experimental results reveal that the proposed method is 
free from translation, rotation and scaling, and is superior to 
Tsai’s method [34] in computation speed in discriminating 
false targets.  A simple case study is shown finally to 
demonstrate the feasibility and applicability for practical use 
of KCD. 
 
Index Terms—K-cosine, corner detection, curvature, image 
processing 
 

I. INTRODUCTION  
Corner detection plays a critical role in image processing 

and pattern recognition in which many different approaches 
having been developed. These approaches can be broadly 
classified into two major categories: gray-level and 
boundary-based approaches. Gray-level approaches match 
corners using gray-level corner templates [17][14] or 
compute the gradient at edge points [28][25] while 
boundary-based approaches analyze the properties of 
boundary pixels to identify corners [12][34]. Representing 
boundaries using different descriptors and then searching 
for the corner features is common in boundary-based 
approaches. Various boundary descriptors, such as chain 
code, curvature, and Fourier Descriptor (FD), have been 
developed. The Freeman chain code is easy to use and can 
be treated as a polygonal approximation of a contour, 
although it is less efficient and accurate [6]. Fourier 
descriptors have been successfully applied to contour 
enhancement and object inspection, providing position, 
scale and orientation invariant properties by normalization 
[3][26]. However, they require heavy computation when 
calculating the complex equations of the forward and 
backward transformations. 

Curvature, defined as the change rate of the slope, has 
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been widely employed in different applications such as 
shape representation, feature extraction, corner detection 
and object recognition [3][4][9][15][17][21][32]. Different 
numeric curvature estimation approaches have been 
discussed.  Rosenfeld and Johnston initially defined 
curvature as a K-cosine function, where K denotes a region 
of support on the boundary [23]. Mokharian and 
Mackworth [19], Teh and Chin [31], and Sohn et al. [29] 
expressed curvature with a formula involving its first- and 
second-order directional derivatives. Liu and Srinath 
evaluated the curvature by convolving the edge direction 
function with the first derivative of a Gaussian function at 
each pixel [16]. Fairney et al. experimented with several 
different measures of digital curvature and found them to 
be unreliable in the presence of noise [5]. Tsai and Chen 
computed directly the curvature by measuring the first- and 
second-order derivatives of the continuous functions[33]. 
Tsai measured the curvature by using neural networks to 
identify the included angles at boundary points [32]. Later, 
Tsai et al. employed the eigenvalue of covariance matrices 
to measure the curvature and detect the sharp corners in a 
contour [34]. Arrebola et al. evaluated the curvature as the 
correlation factor coefficient of the forward and backward 
histograms in a K-vicinity of a given point [1]. For 
simplicity, this study adopts the K-cosine to measure the 
magnitude of curvature. 

Many algorithms have been developed to locate corners 
using the local curvature maximum [2][7][8][19]. 
Rattarangsi and Chin found corners by transforming the 
coded digital scale space map into an organized tree by 
calculating the maximum of absolute curvature [22]. Sohn 
et al. applied a constrained regularization method to derive 
an optimal smoothing factor for curvature estimation, 
which facilitates the corner detection [29]. Sohn et al. later 
developed the mean field annealing strategy, which uses 
simulated annealing to improve the approximation of the 
curvature estimation for corner detection [30]. Lee et al. 
developed a multi-scale corner detection algorithm using 
wavelet transform of contour orientation, utilizing both the 
local extrema and the modulus of transform results to 
identify corners and arcs [13]. Sheu and Hu developed a 
two-phase corner detection scheme [27]. The first phase 
specifies the points with significant curvature as candidate 
corners, and then the second phase verifies them using a 
self-adjusting convolution window. Inesta et al. employed 
curvature to identify dominant points for polygonal 
approximations of real imaged objects, and defined 
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K-curvature, K-angular bending and K-cosine [10]. 
Mokhtarian and Suomela  first extracted edges using a 
Canny edge detector, and then detected corners based on 
the maximum of absolute curvature in the curvature 
scale-space [20].  

However, determining a suitable K value is difficult in 
practice. A small K makes the curvature noisy owing to 
digitization, while a large value loses the relevant 
information of points within the K-pixel area. Moreover, 
determining the K value and the corresponding curvature 
threshold for detecting corners are critical, but they have 
not been discussed in literature. This study presents a 
boundary-based corner detection method using K-cosine, 
and proposes a suitable K and curvature threshold. This 
method also aims to attain robust corner detection for 
objects containing wide-angles and various curves. The 
remainder of this study is organized as follows.  Section 2 
describes the proposed K-cosine Corner Detection method. 
Section 3 presents the experiments. Application and 
conclusions are finally presented in Sections 4 and 5. 

II. K-COSINE CORNER DETECTION (KCD) 
Let a sequence of m digital points describe the boundary 

of an object, 
 

 S={ Pj =(xj ,yj )|j=1,2,3, …, m} ;                                   (1) 
 

where Pj+1 denotes a neighbor of Pj, and (xj, yj) represents 
the Cartesian coordinate of the boundary point Pj.  If S can 
be divided into n subsets, then it can also be described as  
 

Si={ (xij , yij) | j=1, 2, 3, …, m}, i= 1, 2, 3, ... n ;            (2) 
 

and  
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To represent the boundary S as a curvature, K-cosine is 
employed to measure the magnitude of curvature over a 
given region of support (K) in the boundary.  

A. Definitions of K-cosine Curvature and Corner 
Detection Error 

The K-cosine is defined as below. 
<Definition > K-cosine 

Given an object whose boundary is defined by S={ Pi | 
i=1, 2, 3, …, m}, the curvature (K-cosine) of each boundary 
point Pi is defined as 
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Fig 1. Curvature measurement with K-cosine 

In Eq. (4), ci(K) denotes the cosine of the angle between 
vectors 

va i(K) and b
v

i(K) for a given pixel Pi. K represents a 
region of support that is the number of pixels between the 
starting and ending points of a given boundary point. The 
K-cosine contains the curvature information such that −1< 
ci(K) < 1. When ci(K) =−1, θ = 180°, indicating that the 
corresponding point is on a flat segment. When ci(K) is 
close to 1, then the angle θ is approximately 0°, implying 
the corresponding point is on a sharp angle. Thus, when 
ci(K) is far from −1, then 

va i(K) and b
v

i(K) are in two 
different segments of which point Pi is a corner point.  

The chord property of a digital line stipulates that, “The 
line segment joining any two points of a digital straight line 
lies everywhere within a pixel distance,”[24]. According to 
this property, the corner (or joint) detection error [11] was 
defined as follows. 
<Definition > Corner Detection Error 

Given a corner with its angle θ, its corner detection 
error is defined as  

 

  ie =tan (
2
θ ).                                                            (5) 

 

 
Fig 2. Corner Detection Error 

 

As depicted in Fig. 2, ab  denotes the bisector of adc∠ , and 
ei denotes the distance that the boundary moves along ac  
until the distance of ab  equals one pixel length. Since ac  
denotes a line, any two points on this line should lie within 
a pixel difference such that ab  is defined as one pixel 
length, indicating that K depends on the corner error ei. 
However, this definition does not address digitization 
errors, and produces unreliable corner detection in practice. 

B. Properties of K  
K is the region of support which smoothes the curvature 

functions. According to the corner detection error, ei, the 
lower bound is derived as follows. 
<Property 1> Lower Bound (KL) of K 

    Given an object with included angles ∠ A1, ∠ A2, 

K=9 
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…, ∠ An , KL∈ N exists such that Ki ≥  KL , ∀  i = 1, 2,…, 
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  In Eq. (6), m denotes the number of points on the 
boundary; n is the number of corners in the object, and 
Int[*] denotes a function converting a real number to a 
natural number (N). This study suggests that the value of K 
must be greater than the corner detection error of the largest 
angle (Max{Ai}) to compensate for the digitization errors. 
That is, the lowest value of K should be the maximum of all 
corner detection errors. When Max{ei} is not an integer, it 
is rounded up to the closest integer according to Eq. (6b). 
Meanwhile, the maximum of K should be the shortest 
segment of the boundary. The upper bound of K can be 
derived as follows. 

<Property 2> Upper Bound (KU) of K  
Given an object with its boundary S, the upper bound of 

the K-cosine curvature is given by 
 

KU =  } )({
...,2,1 ini

SLengMin
=

                                               (7) 

 

In Eq. (7), the function Leng(Si) denotes the number of 
points in segment Si.  The domain of K is located in [0, 
Leng(Si)]. )}({

,..,3,2,1 ini
SLengMin

=
 denotes the boundary 

segment with the lowest number of boundary points, which 
is the upper bound of K. 

As mentioned previously, Eq. (5) does not address the 
effect of digitization errors, making the corner detection 
process unreliable. This effect is clearly demonstrated in 
Fig. 3. The distance ab  is over one pixel length when the 
corner point is missing because of digitization errors. 
Therefore, the corner detection error is modified by 
including a coefficient γ into the equation, and hence is 
derived below. 
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Fig 3. Modified Corner Detection Error 
 

In accordance with the modified corner detection error, 
em, a suitable K is proposed as follows. 

<Property 3> Kp  
Given an object with angles ∠ A1, ∠ A2, …, ∠ An, and 

θ =Max{A1, A2, A3, …, An}, a Kp∈[KL,, KU] exists such that  
 

Kp =   , 1)]
2

( tan Int[γ +
θ                                                 (9) 

 

where γ ∈  N. 
Accordingly, Kp is defined as the rounded-up value of em 

with various γ values. When the system has few digitization 
errors, γ is set to 1 (K = KL). Thus, a large γ provides reliable 
and consistent detection for wide-angle corners or corners 
with heavy digitization errors.  

C. Determination of Curvature Threshold 
The objective of the curvature threshold process is to 

extract the boundary points with K-cosine values larger 
than a pre-specified threshold, and then identify the corners 
as the points with the highest K-cosine curvature within the 
extracted areas. Figure 4 shows the boundary 
representation of a digital object in which four corner areas 
are detected because the curvatures of boundary points are 
above a threshold, T, as depicted in Fig. 4. Accordingly, 
using a lower threshold discards more boundary pixels, 
leading to the loss of critical information, while a higher 
threshold may not reliably detect corners.  

 

 
Fig 4. An example of the K- cosine threshold 

 

To retain as much information as possible, this study 
derives the curvature threshold T according to Kp with 
various γ values as 

 

T = cos [2 tan-1 (
γ

pK )] ,                                                (10) 

 

where Kp is given in Eq. (9).   
 

D. KCD Algorithm 
This study proposes the KCD alogrithm according to 

the properties described. The prior information in the 
algortihm is the number of corners, n, and widest angle θ 
in the digital image.  Users must identify the value of θ 
arbitrarily, or set it to an approximate large value.  The 

γ 
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proposed algorithm is designed recursively to ensure that 
the correct number of corners is discovered.  The 
algorithm is described below. 

 
Step 1. Input the number of corners, n, and the 

estimated widest angle θ, in the digital object. 
Step 2. Identify the boundary point Pi in the object. 
Step 3. Obtain KL and KU, and let the detected corner 

ndetect=0, γ=1, and K=KL. 
Step 4. Calculate the K-cosine using Eq. (4). 
Step 5. Determine the threshold T using Eq. (10). 
Step 6. Threshold the curvature as 

if ci(K) > T, ∀  i=1, 2, 3, …, n, 
then ndetect = ndetect +1. 

Step 7. Verify the number, ndetect, with n. 
if ndetect ≠ n and K <KU, 

then K = K+1 and go to step 4, 
else if ndetect ≠ n and K > KU, 

   then γ = γ +1, 
else go to Step 8. 

Step 8. Stop. 
 

 This algorithm first sets K as the lower bound and 
increases K by 1 within the range of upper and lower 
bounds (KL and KU ).  When K reaches the upper bound 
without detecting the correct number of corners, the 
algorithm restarts, incrementing γ by 1 and resetting K as 
the lower bound.  The proposed algorithm runs until it 
identifies the required number of corners.  Therefore, the 
proposed algorithm not only preserves the important 
information, but also reliably detects the corners. 
 

III. IMPLEMENTATION 

The proposed K-cosine corner detection (KCD) method 
was implemented in C++ using the Borland C++ Builder 
on a Personal Computer with a Pentium III-750 CPU.  
Experiments and applications were demonstrated as shown 
in the following sections.  

A. Experiment I – Verification 
The purpose of the first experiment was to explore the 

ability of KCD to detect wide-angle corners and the 
invariant properties of translation, rotation and scaling. 
This experiment used six triangular objects with the widest 
angles, θ, as 60°, 90°, 110°, 120°, 145° and 160°, 
respectively for verification. These objects were digitized 
in different orientations and positions using a frame grabber 
mounted with a CCD camera, and then segmented into 
binary images.  The corresponding curvature boundary 
representations and their thresholding processes are 
illustrated respectively in Fig. 5. Taking the widest angle 
145° as an example, Eq. (9) derives Kp = 6 , and the 
threshold T =-0.8491 when γ = 2.  The proposed KCD 
found the three corners reliably using the derived 
parameters K and T.  Figures 6 and 7 show the two real 
circular objects, which were digitized in 100%, 75% and 
50% scales at randomly selected positions. The 

experimental results indicate that the proposed method 
successfully detected seven corners of the circular-curve 
objects in the first set of images, and eight corners in the 
second set of images.  Additionally, two real circular 
objects were scanned with rotating 30° and 60° as shown in 
Figs. 8 and 9.   Their peaks shift without altering their 
shapes when the objects are rotated in the curvature 
boundary representation.  The proposed method also 
successfully detected the corners in spite of rotations.   

 

      

 
(a) Triangle with θ =145°                 (b) K=6, γ=2, and T= -0.8491 

Fig 5. KCD in triangular objects with different widest angles 

 

 

 

      
(a) Scale=100 %                           (b) K=3, γ=2, and T= -0.600 

Fig 6. KCD in circular objects (7 corners) with different scales 
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(a) Scale=100%      (b) K=3, T=-0.600, γ=2, and No. of pixel=914 

Fig 7. KCD in circular objects (8 corners) with different scales 

 

     

 
(a) Rotation with 30°                  (b)K=3, γ=2, and T= -0.600 

Fig 8. KCD in circular objects (7 corners) with different orientations 

 

      

 
(a) Rotation with 30°    (b) K=3, T =-0.600, γ=2, and No. of pixel=724 

Fig 9. KCD in circular objects (8 corners) with different orientations 

B. Experiment II — Benchmarks 
The proposed method was benchmarked using Tsai’s 

methods [34]. Tsai et al. utilized the eigenvalue of 
covariance matrices to estimate the curvature of a 
two-dimensional boundary point over a small support 
region [34]. The method measured curvature information 
by calculating the smaller eigenvalue, λs, of the covariance 
matrix of a given region of support and then identified 
corners by setting a self-determined threshold of the 
curvature information of boundary points at T−λs.  
However, users must obtain the workable values of s and 
T−λs empirically.  A leaf digitized with various scales was 
used for verification and comparison of efficiency. The 
corners of the leaf image, depicted in Fig. 10a, b, were both 
successfully identified by Tsai’s method and the proposed 
KCD, but KCD provides K’s and curvature thresholds as 
shown in Fig. 10c.  Considering computation speed, the 
complexity of Tsai’s method is O(N×s2), where N denotes 
the number of points on the boundary, and s denotes the 
number of points in the region of support, when calculating 
the covariance matrix and eigenvalues. When computing 
the K-cosine, the complexity of KCD is O(N×K), where K 
denotes the previously defined region of support.  Figure 11 
compares KCD and Tsai’s method in terms of computation 
speed given the same region of support and varying 
numbers of boundary points.  

 
 

                           
(a) Original image of a leaf        (b) Image after threshold 

 
(c) KCD with K=6, T=-0.600, γ=3 

Fig 10. KCD with a leaf image 
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Fig 11. Comparison of KCD and Tsai’s method in computation speed 
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IV. APPLICATIONS 

The proposed method has been practically implemented 
in C++ on the BCB 6.0 environment under the Windows 
XP platform. It was applied to the inspection of microdrills 
to identify the defects of flare, taper, gap, and overlap on 
the microdrill blades.  Owing to the microdrill size, 
alignment is difficult in practice.  Therefore, the microdrill 
is placed under a CCD camera and digitized without a 
fixture. The derived image was first thresholded to derive 
the blade of the microdrill, and then a boundary following 
process was applied to obtain the boundary of blades.  
Finally, the KCD method was used to separate the 
boundary into segments with K=5, =-0.800, and γ=2. In this 
case study, the proposed KCD method reliably detected the 
eight corners of microdrill blades, and detected the defects 
with pre-defined specifications. An original microdrill is 
showin in Fig. 12a. It was threshoded with a predetermined 
threshold and separated the blade and its background as 
shown in Fig. 12b and c.  

 

 
(a) Original microdrill image 

 
(b) Image after threshold  

 
(c) KCD with K=5, T=-0.800, γ=2 

Fig. 12. Application of KCD to microdrill inspection 
 
Moreover, the proposed KCD has been also for a gear 
inspection task, which was inspected manually by sampling 
in the production line. The proposed method was 
implemented to examine the 104 gear teeth automatically as 
shown in Figs. 13 a, b and c.  The proposed KCD used K=4, 

T=-0.4706, and γ=3 to identify each individual tooth of a 
gear, and subsequently inspection the required features of 
gears with specification. The proposed method successfully 
released the human inspector in tedious tasks, and 
increased the reliability of inspection. 
 

       
 (a) Original gear image  (b) Image after threshold 

 
   (c) KCD with K=4, T=-0.4706, γ=3 

Fig. 13. Inspection of Gear 

V. CONCLUSIONS 

This study presents a position, orientation and scale 
invariant boundary-based corner detection method. For 
effectiveness and simplicity, the boundary of an object is 
first represented with curvature, which is measured using 
K-cosine. Then, the corner detection error is modified by 
including an effective coefficient γ, and recommends the 
use of Kp and the curvature threshold (T) to detect corners 
reliably.   

Experiments were performed to demonstrate the 
effectiveness and efficiency of the proposed KCD method.  
KCD’s ability to detect wide-angle corner points was tested 
using a set of triangular objects. The experimental results 
show that the proposed method successfully identifies the 
corners. Next, the proposed method was verified with a set 
of circular-curved objects, used in [34] as benchmarks, for 
the effect of various positions, scales and orientations. The 
experimental results reveal that KCD reliably detected the 
desired corners under various positions, scales and 
orientations. Eventually, two practical case studies -- 
microdrill inspection and gear inspection are presented. 
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