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Abstract—In sensor networks, continuous query is 
commonly used for collecting periodical data from the 
objects under monitoring. This sort of queries needs to be 
carefully designed, in order to minimize the power 
consumption and maximize the lifetime of the sensor nodes. 
Data reduction techniques can be employed to decrease the 
size and frequency of data to be transferred in the network, 
and therefore save energy. This paper presents a novel 
method for optimizing sliding window based continuous 
queries. In particular, we deal with two categories of 
aggregation operations: stepwise aggregation (e.g. MAX, 
MIN, SUM, COUNT, AVERAGE, etc.) and direct 
aggregation (e.g. MEDIAN). Our approach is, by using 
packet merging or compression techniques, to reduce the 
data size to the best extent, so that the total performance is 
optimal. A QoS weight item is specified together with a 
query, in which the importance of the four factors, power, 
delay, accuracy and error rate can be expressed. Then an 
optimal query plan can be obtained by studying all the 
factors simultaneously, leading to the minimum cost. System 
models for energy and time consumptions of communication 
are created. Problem is formalized and algorithm is 
described in detail. Finally, experiments are conducted to 
validate the effectiveness of the proposed method. 
 
Index Terms—Sensor networks, Query processing, Data 
gathering, QoS, aggregation 
 

I. INTRODUCTION 
Sensor networks represent significant improvement 

over traditional sensors in many ways like large-scale, 
densely deployment, ad-hoc & self-organization, prone to 
failures, changing topology, and with limited in power, 
computational capacities. The concept of micro-sensing 
and wireless connection of sensor nodes promises many 
new application areas e.g. military, environment, health, 
home, to name a few [1, 2].  

Sensor nodes have very limited supply of energy, and 
should be available in function for extremely long time 
(e.g. a couple of years) without being re-charged. 
Therefore, energy conservation needs to be one key 
consideration in the design of the system and 
applications. Extensive research work has been devoted 
to address the problem of energy conservation. Examples 
include energy efficient MAC protocol [3], clustering [4], 
localization [5], routing [6], data management [7], as well 
as applications [8].  

At high level, a sensor network can be modelled by a 
database view. Continuous query is commonly used for 
collecting periodical data from the objects under 
monitoring. This query needs to be carefully designed, in 
order to minimize the power consumption and maximize 
the lifetime. Data reduction techniques like packet 
merging, data compression, and aggregation and fusion 
can be employed to decrease the size of data to be 
transferred in the network, and therefore save energy of 
sensor nodes. 

This paper presents a novel method for the 
optimization of continuous query, and in particular, for 
the last stage of query processing: query result collection. 
The key novelty of the method lies on the careful 
consideration of QoS issue along with data gathering. By 
taking advantage of the QoS constraints on power, delay, 
accuracy, and error rate specified with a query, the 
method can find the optimal combination of transmitting 
sensor data to sink. Our contributions can be summarized 
as follows. 

1) A query representation scheme is proposed, in 
which SQL based grammar is extended with sliding 
window, QoS constraint weight item, and sample clause. 

2) A WSN system model is created to model power 
consumption and time cost for both computation (data 
processing) and communication (data transmission). 

3) A novel method is proposed for the optimization of 
continuous query with stepwise aggregation (e.g. MAX, 
MIN, SUM, COUNT, AVERAGE, etc.). The method is 
described in detail including the determination of both 
sample rate and data integration. 

4) A method is presented for the optimization of 
continuous query with direct aggregation (e.g. 
MEDIAN). The similarity and variation of the previous 
method are discussed. 

The remainder of this paper is organized as follows. 
Section II introduces sensor database and query 
components. Section III briefly describes data reduction 
techniques. In Section IV, the system models for energy 
consumption and timing of communication are created. 
Section V and VI describes the proposed methods for 
queries with stepwise and direct aggregations 
respectively. Performance of the proposed method is 
evaluated in Section VII. Finally, Section VIII concludes 
the paper.  
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II. QUERY IN SENSOR NETWORKS 
This section presents a database view of sensor 

networks and proposes the components for query 
representation. 

A. Sensor database and query 

A sensor field is like a database with dynamic, 
distributed, and unreliable data across geographically 
dispersed nodes from the environment. These features 
render the database view [9-11] more challenging, 
particularly for applications with the low-latency, real-
time, and high-reliability requirements.  

Under a database view, a wireless sensor network is 
treated as a virtual relational table, with one column per 
attribute and one row per data entry. For example a 
virtual table may have the structure as follows. 

 
< location, time, temperature, light, humidity > 

 
Sensor network applications use queries to retrieve data 

from the networks. The result is a logical sub-table of the 
whole virtual table of the network, with each data entry 
an associated timestamp to denote the time of 
measurement. The real data table of a node is different 
from the one in the virtual table in the sense that there 
will be only one attribute there. Usually, one sensor 
network should allow multiple co-existing queries in 
execution simultaneously. Therefore, data should be 
attached with a query ID to distinguish the query results. 
An real data example in a sensor node is as follows. 

 
< query ID, node ID, time, temperature > 

 
Query processing is employed to retrieve sensor data 

from the network [12-14]. A general scenario of querying 
sensor network is, as shown in Figure 1, when user 
requires some information, he or she specifies queries 
through an interface at sink (also known as gateway, base 
station, etc.). Then, queries are parsed and query plans are 
made. After that, queries are injected into the network for 
dissemination. One query may eventually be distributed 
to only a small set of sensor nodes for processing. When 
sensor node has the sample data ready, results flow up out 
of the network to the sink. The data can then be stored for 
further analysis and/or visualized for end user. 

Obviously, there are a couple of features that are 

unique to query in sensor network comparing to normal 
database query. First, data in sensor network is not 
available when query is issued. Second, in sensor network 
query is often conducted over a stream of data varying in 
time, instead of static fixed-size data. Finally, data in 
sensor network is approximate instead of exact. New 
techniques are therefore needed in handling sensor 
network queries.  

B. Query components 

A query contains following elements: 
1) Data attributes that are required by the applications, 

corresponding to the columns of the virtual table.  
2) Operations on the collected data. Simple operations 

are those aggregation functions, including average, sum, 
max, min, and count. Complex operations can be defined 
as data fusion functions, and are mostly used for 
multimedia data. There can always be application-specific 
fusion functions defined. 

3) Sensor selection predicate, which specifies the 
Boolean condition of when a particular data entry of a 
sensor in the virtual table will be selected as one record in 
the query result table. It is a logical expression with 
relevant data attributes as the operands, and returns true 
or false.  

4) QoS constraints, which specify application’s QoS 
requirements on both the query execution and the resulted 
data. The constraints is utilized in the query plan and 
execution to compromise between quality and cost. 

5) Trade-off between the quality of the data (accuracy, 
delay) and power cost, which defines the importance of 
factors involved in making a query plan. Different factors 
are assigned different weights to denote the importance of 
the corresponding factors from the observer’s point of 
view. 

6) Temporal information, which specify the moment, 
interval, and times that data should be collected (i.e. 
sensor perform the measurement).  

SQL-based query language, which consists of a 
SELECT-FROM-WHERE clause, representation is 
commonly accepted, and so widely used in specifying 
queries for sensor networks as well. However, sensor 
network has its own characteristics, and therefore 
extensions must be made to the basic SQL query. Query 
representation for sensor networks is out of the scope of 
this paper. Below are two simple examples query in the 
form of extended SQL. 

 
// Example query 1 
SELECT WINMEDIAN ( S.temperature, 10 min, 2 

min) 
   AS  MEDIANTEMP 
FROM   sensors AS S 
WHERE  S.location = Area_C 
WHILE  delay < 10 min  

AND accuracy > 0.9  
AND error < 0.01 

WEIGHT  (power, time, accuracy, error)  
= (0.4, 0.1, 0.3, 0.2) 

Sink 

Figure 1: Query lifecycle in sensor network. 
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SAMPLE  
ON  Now + 5 min 
RATE min 100 
 

//Example query 2 
SELECT  WINCOUNT(*, 10 min, 2 min) 
FROM   sensors AS S 
WHERE  S.location = Area_C  

AND S.temperature > 4 C 
WHILE  delay < 10 min  

AND accuracy > 0.9  
AND error < 0.01 

WEIGHT  (power, time, accuracy, error)  
= (0.4, 0.1, 0.3, 0.2) 

SAMPLE  
ON  00:00:00 
RATE min 100 

 
These are two queries to be performed above streaming 

data by using a sliding window. In the first example, the 
query specifies that after 5 minutes from now, the sensors 
in Area_C should start to measure and report the median 
temperature of the past 10 minutes once per 2 minutes, 
until further command stop them, and the result median 
temperature should be reported within 10 minutes after 
the value is ready. Here, temperature is the interesting 
data attribute, sliding window median is the operation, 
location restriction serves as the sensor selection 
condition, delay in WHILE clause is as the QoS 
constraint, and the SAMPLE clause specifies the 
temporal information. In the second example, the query 
reports the number of times that the temperature is above 
4 C within recent 30 minutes once every 10 minutes. 

The WEIGHT clause gives the weights of the factors in 
the quality-cost trade-off, by which the query plan can be 
optimized. This is the key idea of this paper. In the two 
examples above, four factors are considered as the weight 
items, power consumption, report delay in time, and the 
accuracy and error rate of the result. The queries give the 
sample starting time by ON clause and a minimum 
sample interval by a RATE clause. The really interval for 
sampling should be decided by the tradeoff denoted as the 
WEIGHT clause. 

This paper concentrates on the optimization of 
periodical aggregation queries during the fourth stage of 
query execution: result collection (see Figure 1). In 

particular, we mainly consider the situation where there 
are both delay and accuracy constraints, a weight item, 
and aggregation operations of average and count to be 
performed over collected data in the query. These two 
sorts of queries are very popular in real world 
applications like environment monitoring and healthcare. 

III. DATA REDUCTION TECHNIQUES 
Data reduction is to decrease the size of data that is 

needed in the communication. The idea is 
straightforward: less amount of data consumes less 
amount of power in transmission. Various data reduction 
techniques exists in this context, including packet 
merging, packet compression, data aggregation, and data 
fusion. This paper studies the first two techniques: packet 
merging and packet compression. 

Packet merging is a simple data reduction technique, 
which combines multiple small packets into a big one, 
without considering the correlations between and the 
semantics within individual packets. In wireless 
communication, it is much expensive to send multiple 
smaller packets instead of one larger packet. One packet 
contains two parts, header and payload. Packet header is 
the packet overhead whose format is common for all the 
packet, which contains numbering, addressing and error 
checking information. The packet formats for sensor 
report streams in two representative applications provided 
by TinyOS, OscilloscopeRF and Surge, are shown in 
Figure 2 [15]. 

This commonly used packet structure forms the basis of 
packet merging – multiple packet can be combined so that 
only one packet header is presented with the rest the 
combination of the payloads of all the packets.  

Packet compression is to integrate one or multiple 
packets into a reduced packet, by employing suitable data 
compression algorithms. A number of compression 
algorithms have been studied for sensor networks. 
According to the experimental results in [16-18], for most 
compression algorithms, compressing data before 
transmission reduces total power consumed. However, in 
some cases applying data compression increases total 
power consumption. This is due to accessing memory 
during compression execution time. Accessing memory is 
expensive in terms of energy consumption. Therefore, the 
experimental result in [16] indicates that applying the data 
compression before transmitting data in wireless medium 

Figure 2. The packet formats in application OscilloscopeRF (above) and Surge (below). 
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is effective to reduce the amount of energy consumption. 
However, it is crucial to select a data compression 
algorithm, which requires less memory access during 
execution time. A Rate-Energy-Accuracy (R-E-A) 
tradeoff framework is proposed in [19] for selecting 
suitable compression algorithms. 

Data aggregation and data fusion are more complex 
techniques used for data reduction, and sometimes they 
are used interchangeably. Data aggregation is used in 
aggregate query to summarize a set of sensor into a single 
statistic, like MAX, MIN, AVERAGE, MEDIAN, 
COUNT, etc. Data fusion refers to more complex 
operations above a set of readings and are usually used in 
multimedia data processing. For example in surveillance 
application, we may need fusion operations for analyzing 
a sequence of video images. The complexity of data 
aggregation and fusion leads to higher cost in terms of 
both energy and time. 

This paper is targeting to queries that have 
average/count aggregation operations. Furthermore in 
case of periodical query over streaming data by sliding 
window, most information in packet header (e.g. node ID, 
query ID, addresses, etc.) is the same across all the 
reading, and therefore can be shared. Finally, it is 
reasonable to expect high spatial-temporal correlation 
between sample data collected in periodical query from 
single node, and therefore the data compression rate can 
be fairly high. Thus, we believe packet merging and 
compression techniques are suitable in this context. 

Data reduction ratio, ru can be defined as 

D’(u) = D(u) (1 – ru),           (1) 

where D(u) is the size of data before the data reduction, 
and D’(u) is the size after, D’(u) ≤ D(u). Obviously, a 
higher ru is expected. The real value of ru is mostly 
depending on the merging/compression algorithms 
utilized as well as the similarity/correlation between data 
samples. If a simple packet merging is performed, then ru 
will be relatively small. On the contrary, if some complex 
data compression algorithm is utilized, then a much better 
ru will be reached. 

IV. SYSTEM MODEL 
This section proposes the energy and time models for 

both communication and computation. A sensor network 
is modelled as a graph G = (V, E), where V denotes the 
node set and E the edge set representing the 
communication links between node-pairs. An edge e ∈ E 
is denoted by e = (u, v), where u is the start node and v is 
the end node.  

A query plan is executed with two components, 
computation and communication. Computation 
component concerns data sampling by sensors, as well as 
local and in-network data processing. Communication 
component allows a set of spatially distributed sensor 
nodes to send data to a central destination node. 
Therefore, the power consumption of the sensor network 
consists of two types of energy cost, data processing cost 
and data transmission cost.  

Energy cost resulted from data processing, EP(u) 
denotes energy consumption for the data processing at the 
node u. The processing includes all the data 
manipulations from single data processing (data sampling 
and signal processing, raw data filtering, 
compression/decompression) to multiple data processing 
(packet merge, data compression, and data fusion). Data 
processing results in one or a series of packets ready to be 
sent. Energy consumption for single data processing at a 
specific node u is fixed, and so can be represented by a 
constant ESDP(u). On the contrary, energy cost for 
multiple data processing depends on the amount of data to 
be processed as well as the algorithms utilized. First the 
unit processing cost on node u is defined as EPU(u). Then, 
the cost for processing the D(u) amount of data at node u 
is given by 

EP(u) = ESDP(u) + EPU(u) D(u).         (2) 

Here D(u) is usually a set of sample result data for one 
single or different queries.  

Similarly, we can define the time for data processing, 
TP(u) as 

TP(u) = TSDP(u) + TPU(u) D(u),           (3) 

where TSDP(u) is the time for single data processing at 
node u and TPU(u) is the unit processing time at this node.  

It is worthy noting that EPU and TPU are relevant to data 
reduction ratio ru, depending on the processing algorithm 
used. Basically, the higher the ru, the higher the EPU/TPU. 
For example if a simple packet merge is performed, then 
ru will be very small, and the corresponding EPU and TPU 
will be very low. On the contrary, if some complex data 
compression algorithm is utilized, then a much better ru 
will be reached with fairly high EPU and TPU. 

Transmission cost denotes the cost for transmitting 
D(u) amount of data (i.e. packet header plus payload) 
from node u to node v through link e = (u, v). The cost 
includes the energy consumption at both u and v. Unit 
cost of the link for transmitting data between two nodes 
can be abstracted as EU(e), and thus the transmission cost 
ET(e) is given by 

ET (e) = ETU(e) D(u),       (4) 

The unit transmission cost on each edge, ETU(e), can be 
instantiated using the first order radio model presented in 
[20]. According to this model, the transmission cost for 
sending one bit from one node to another that is d 
distance away is given by β dγ + ε  when d < rc, where rc 
is the maximal communication radius of a sensor, i.e. if 
and only if two sensor nodes are within rc, there exists a 
communication link between them or an edge in graph G; 
γ and β are tunable parameters based on the radio 
propagation, and ε denotes energy consumption per bit on 
the transmitter circuit and receiver circuit.  

Similarly, transmission time TT (e) is given by 

TT (e) = TTU(e) D(u),         (5) 

where TTU(e) is the unit transmission time, i.e. the 
reciprocal of bandwidth, whose value is depended on the 
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condition of the link. We note that all the cost and time 
parameters are all defined on link e, because different link 
has different conditions e.g. distances, congestion, and 
reliability.  

The model above can be easily extended to the 
transmission cost and time for a path, which are the ones 
utilized in this paper. The cost and time for D(u) from one 
node x to another node y through a multihop path x->y 
can be represented as  

 
E(D(x): x->y) = ∑

>∈ y x-e 
T eE )( + ∑

>∈ y x-u 
P uE )(       (6) 

T(D(x): x->y) = ∑
>∈ y x-e 

T eT )( + ∑
>∈ y x-u 

P uT )(        (7) 

V. QUERY WITH STEPWISE AGGREGATION 

A. Problem analysis 

We first study the problem of sliding window based 
continuous query on data stream with stepwise 
aggregation. The example query above is re-written 
below. 

 
//Example query 2 
SELECT  WINCOUNT(*, 10 min, 2 min) 
FROM   sensors AS S 
WHERE  S.location = Area_C  

AND S.temperature > 4 C 
WHILE  delay < 1 h  

AND accuracy > 0.9  
AND error < 0.01 

WEIGHT  (power, time, accuracy, error)  
= (0.4, 0.1, 0.3, 0.2) 

SAMPLE  
ON  00:00:00 
RATE min 100 
 

Stepwise aggregation includes for example MAX, 
MIN, SUM, COUNT, AVERAGE. The unique feature of 
this sort of aggregation is that, the aggregation result can 
be obtained gradually with partial data set. This means 
the aggregation can be performed with partial data, and 
does not have to wait for all the data available. Without 
loosing any generality, in this section, we will take 
COUNT aggregation as an example.  

To formalize the problem to be addressed, there are 
following assumptions. 

1) Sliding window: this is a sliding window based 
continuous query, with window size (length) of Tw (10 
min in the example) and sliding increment Ti (2 min in 
the example). 

2) Constraints: there is a delay constraint dMAX 
(maximum allowed delay, 1h in the example), an 
accuracy constraint 1-αMIN (minimum confidence interval, 
0.9 in the example), and an error constraint eMAX 
(maximum packet error rate, 0.01 in the example) 
specified in the queries. A minimum sample rate is also 
specified as rMIN.(in samples per hour, 100 in the 
example). 

3) Weight: there is a weight item presented in the query 
denoting the tradeoff between power consumption and 
QoS of result report, as (power, time, accuracy, error) = 
(Wp, Wt, Wa, We ).  

4) MPS: in this paper, we also assume that there exist a 
constraint on the Max Packet Size (MPS) of the whole 
sensor network. 

As shown in Figure 3, there are four steps of data 
processing at each single sensor node. First, a stream of 
readings are samples, next a count stream is generated 
according to the window size, then the node receives 
from other nodes their local results, and finally the node 
aggregates the results together and conduct data reduction 
by using techniques introduced in Section III.  

 

 
The criteria of choosing the best query plan lies on the 

satisfaction of query issuer to the best extent, by taking all 
the factors in the weight item (i.e. power, time delay, 
accuracy, and error probability) in to account. Moreover, 
there are two obvious constraints affecting the decision 
making. First, size of the integrated data packet should be 
less than MPS. Second, the delay constraint specified 
with the query should be obeyed.  

Therefore, the problem under study can be formalized 
as two questions: 

Question 1: how to find the best number of samples, ns 
in one window size (i.e. sample frequency, see step 1 in 
Figure 3), and  

Question 2: how to find the maximal number of sample 
data (can be 1), ni to be integrated (step 4 in Figure 3),  
so that trade-off denoted by the weight item leads to 
optimal result.  

B. Proposed algorithm 

The answer of Question 1 has nothing to do with data 
transmission, but only data processing. This means only 
power consumption and accuracy need to be considered, 
without taking delay and error rate into account. 
Therefore, following node cost function can be defined as 

C1(ns)= )n(A
WW

W
)n(E

WW
W

s
'
R

ap

a
s

'
P

ap

p ⋅
+

+⋅
+

    (8) 

where Wp and Wa are the weights assigned to factors 
power and accuracy respectively, and )n(E s

'
P and 

)n(A s
'
R are normalized energy consumption of data 

processing and accuracy reciprocal respectively. The cost 
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Figure 3. Data processing in a node. 
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function denotes the total energy and accuracy costs of 
one specific window size, the less the better. 
Normalization of power consumption and accuracy 
reciprocal needs more study. First, since power 
consumption results only from data processing, according 
to formula (2), the energy cost is given by 

EP(ns) = ns (ES + ECU DRU),        (9) 

where ES is sample energy, ECU is unit energy for Count 
operation, and DRU is the size of one reading data. To 
perform the formalization, we need to find out the 
maximum possible number of sample in the sliding 
window, ns-MAX. Obviously, we can simply assume that 
the maximum sample rate occurs in the case the node 
samples each time when the node wakes up. However in 
practice, the real maximum sample rate must be much 
lower than the case. This is because the lifetime goal of a 
sensor network is often explicitly defined. In [12] the 
maximum sample rate (in samples per hour) is estimated 
according to the remaining battery capacity of the node, 
the specified lifetime of the sensor network, and the 
energy to collect and transmit samples. Taking advantage 
of this estimation, the formalization of the energy cost is 
given by 

)n(E
)n(E)n(E

MAXsP

sP
s

'
P

−

= .       (10) 

The accuracy of the result is represented by the 
reciprocal of the length of the confidence interval, and 
thus is relies on the estimation method. The Boolean 
result of whether an attribution is larger than a threshold 
(S.temperature > 4 C in the example) is a random variable 
whose probability distribution is (0 – 1), i.e. P 
(ValueOfAttribute > Threshold) = p. Query is used to 
estimate this probability, p by p = Count / ns. As to (0 – 
1) distribution, its expectation is p and variance is p(1-p). 
According to Central Limit Theorem, when number of 

samples is big, the distribution of 
)p(pn
pnCount

s

s

−
−

1
 is 

approximately N (0, 1). Therefore, the accuracy of the 
estimation with ns samples is given by 

22 /

s
s z

n
)n(A

α⋅σ
= ,         (11) 

where σ is the variance and zα/2 is the α quantile of 
standard normal distribution. The minimum accuracy can 

be easily obtained by 
22 /

MINs
MINs

MIN
z

n
)n(A

α

−
− ⋅σ

= , where ns-

MIN is given by ns-MIN = rMIN Tw. 
The normalized accuracy reciprocal )n(A s

'
R  is given by 

)n(A
)n(A)n(A

s

MINs
s

'
R

−= .        (12) 

Note that even the variance is unknown, the 
normalization can still be performed.  

By using formula (10) and (12) to (8), we can obtain 
'
sn  = arg min ns (C1(ns)).       (13) 

Thus, the answer of Question 1 is given by 

ns = (ns-MIN < '
sn <ns-MAX, '

sn ,( '
sn >ns-MAX: ns-MAX, ns-MIN)). 

(14) 

The answer of Question 2 concerns both local data 
processing (step 2 to 4 in Figure 3) and data transmission. 
Suppose a data integration technique is to be utilized 
above a stream of results (local counts or counts received 
from other nodes), the algorithm focuses on finding the 
maximal number of samples, ni that optimizes trade-off 
items of the query. According to the MPS, delay, and 
error constraints, we have the following three arguments. 
For any selected node u, first,  

ni1(u)= arg maxni (D’(u) < MPS),          (15) 

where, according to formula (1), size of data after data 
reduction D’(u) = D(u) (1-ru) = (Header_Size + ni 
DCU)(1-ru), with DCU the size of one count result (most 
probably attached with a sequence number of time 
stamp). Second,  

ni2(u)= arg maxni (dW(u) < dMAX),     (16) 

where dW (u) = (ni – 1) Ti + T(D’(u): u->s) denotes the 
time of waiting and sending the integrated packet. Third, 

ni3(u)= arg maxni (ep(ni) < eMAX),        (17) 

where ep(ni) = 1 – (1 – eb(u))D’(u) is the packet error rate 
and eb is the bit error rate of the link from local node to its 
parent node. The eb is affected by both the data 
transmission rate and the signal power margin, and can be 
obtained from empirical estimation. 

Finally, a global cost function, C2 can be defined as  

C2(ni)= 

)n(e
W

W)n(d
W

W)n(E
W

W
i

'
p

edp

e
i

'
TP

edp

d
i

'
TP

edp

p ⋅+⋅+⋅
++

+
++

+
++

 

(18) 

where Wp+d+e= Wp+Wd+We, and E’, d’ and e’ are 
formalized energy consumption, time delay and packet 
error rate respectively. The cost function denotes the total 
costs of one specific query plan, the less the better. 
Normalization of power consumption, time delay and 
error rate can be performed as follows. 

∑
∀

+ >−+⋅
>−

=
u CUi

i
'

TP )su:)Size_HeaderD((En
)su:)u('D(E)n(E

 selected

, (19) 

MAX

CU
u

i
'

TP d

))su:)Size_HeaderD((Tdw(
)n(d

MAX >−+−
= ∀

+
 selected

 (20) 
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MAX

)u(D
b

u
i

'
p e

))u(e((
)n(e

'

MAX −−
= ∀

11
 related  .   (21) 

Note that here the energy consumption and time delay 
concerns both data processing (as depicted in Figure 3) 
and data transmission during the entire path from local 
node to sink (refer to formula (6) and (7)).  

After the definition of the cost function in formular (6), 
we have 

ni4 = arg minni C2(ni)               (22) 

And finally, the number of samples is given by 

ni = min (ni1, ni2, ni3, ni4)           (23) 

We then solve the two questions mentioned above, and 
thus have the key algorithm for the query optimization.  

VI. QUERY WITH DIRECT AGGREGATION 
Direct aggregation is different from stepwise 

aggregation in the sense that, direct aggregation cannot be 
performed until all the aggregation data is available. In 
other words, it cannot be executed above partial data. In 
this section, without loosing any generality, we simple 
take MEDIAN as an example. 

As to the case of query with direct aggregation, after 
the discussion in Section V, it will be easy to obtain. 
Basically, the same assumptions hold, and there are two 
similar questions to be solved. In this section, we focus 
mostly on the differences and the changes needed 
comparing to those in the previous section. Figure 4 
illustrated the basic idea and key processes of this sort of 
query. 

The most crucial difference the sliding window based 
continuous MEDIAN query (query example 1) with the 
one in Section V (COUNT query over stream data, query 
example 2) is that in query 2 COUNT is a monotonic and 
summary aggregate which means its value can only get 
larger as more values are aggregated, while on the other 
hand allows partial aggregation with other count values 
(as step 4 in Figure 3). Instead as for query 1, MEDIAN 
is an exemplary aggregate computing some property over 
the entire set of values, and therefore does not allow 
partial aggregation. In other words, the aggregation 
cannot be performed until all the concerned data is 

available. This means in query 1 there will be more data 
transmission.  

Figure 5 shows a simple example. The streams of data 
at node 1-4 should first be sent to node 5 (the common 
ancestor of all the concerned nodes except node 5 itself), 
and after that count a stream of median values to be sent 
to the sink. The relay node 4 will only forwards the 
readings from node 1 and 2, but cannot perform the 
MEDIAN aggregation operation with partial data of node 
1 and 2 and local ones. Note that data reduction 
techniques can be used in the transmission of both 
original readings from node 1-4 to 5, and final average 
results from node 5 to the sink.  

Obviously, the query is executed with two steps. First, all 
the readings are sent to a node who is the common 
ancestor of all the concerned nodes (node 5 in Figure 5) 
for MEDIAN aggregation. Next, a stream of median 
aggregation results is sent to the sink. In the second step, 
the problem is simple and the problem of data reduction 
(i.e. find out the best ni) can be directly solved with the 
method introduced in Section V, by simply assuming 
ns=1. Therefore without losing any generality, here we 
assume that the common ancestor node is exactly the sink 
node. 

As to query 2 in the previous section, the answers of 
the two questions (i.e. to find out ns and ni) are 
independent. While in query 1 the key is still to find the 
answers for the same questions, they are actually 
correlated due to the time reason and therefore should be 
jointly considered. Also, in answering Question 1, the 
main difference of query 1 with query 2 is that in query 2, 
we need to simply concentrate on one local node, to 
decide the window size for it which is actually common 
to all the rest concerned sensor nodes. Instead, in query 1 
we have to first find out the total population of samples 
for all the selected sensor nodes (hereafter suppose the 
number is m) according to the WHILE clause (S.location 
= Area_C as the condition in the example above), and 
after that uniformly assign to each node a number of 
samples for one window size.  

After the discussions above, a global cost function for 
query 1 can be defined as 
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Figure 5. An sensor network query example. 
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Figure 4. Data transmission and processing. 
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TABLE I 
PARAMETERS VALUES USED IN PERFORMANCE ANALYSIS. 

System parameters 
parameter value parameter value 
β 100 pJ/bit/m2 Es  10 nJ/bit 

γ 2 ru PM, 0.3, 0.8 

ε 90 nJ/bit Header Size 15 bytes 
d 10 m DRU  2 bytes 
EPU 20 nJ/bit MPS 2k bytes 
TPU 0 ns/bit noh 10 
ETU 100 nJ/bit ns-MAX. 1 / ms 
TTU 0.02 ms/bit   
Query parameters 
parameter value parameter value 
dMAX 1 h Tw 10 min 
1-αMIN 0.9 Ti 2 min 
eMAX 0.01 rMIN 100 
er 10 E-5   
(Wp, Wt, Wa, We ) w1: (0.7, 0.0, 0.1, 0.2)  

w2: (0.1, 0.0, 0.6, 0.3) 
 

All the formula (15) to (17) and (19) to (23) in previous 
section are applicable here for query 1, unless the Ti for 
getting dW  should now be replaced by sample interval 
Tw/ns. 

Another difference is, instead of (0, 1) distribution as in 
query 2, here for MEDIAN aggregation, the distribution 
of the concerned random variable is usually assumed as 
either normal distribution or uniform distribution. To 
normal distribution the derivation is the same as previous 
section (formula (11) and (12)). As to uniform 
distribution, by using the same approximating method of 
Central Limit Theorem, method in previous section is still 
applicable. 

VII. EXPERIMENTS 
In this section, we validate the effectiveness of the 

proposed algorithm. We assume that all the sensor nodes 
are homogeneous. Table 1 shows the parameters values 
used in the performance analysis. We assume an average 
TTU(e) is available and thus we can define a number of 
hops (noh) to represent the distance from the end node to 
sink (10 in this paper). We study three data reduction 
scenarios. The first one is based on packet merging (PM), 
in which the ru can be derived by 

ru = 
)DSph(n

DnSph
D

'D

RUi

RUi

+⋅
⋅+

−=− 11 .    (24) 

 
where Sph is header size (15 bytes in this paper). The 
second scenario is to employ packet compression (ru1) 
with ru = 0.3 (ru2), and for the third ru = 0.8 (ru3). We 
study the example query 2 with two weight item settings: 
(Wp, Wt, Wa, We) = (0.6, 0.1, 0.1, 0.2) and (0.1, 0.1, 0.5, 
0.3). The target sensor network is simplified so that there 
is only one selected node which is of 10 hops to sink. 

Two experiments are designed to valid the methods for 
answering Questing 1 and 2 respectively. Figure 6 shows 
the result of experiment 1. The figure clearly 
demonstrates the effect of the weight item. In case of w1, 
power consumption is deemed more important than 
accuracy (0.7 vs. 0.1), therefore a relatively small ns 
(204) is obtained than the case of w2 (ns=2455) in which 
accuracy is emphasized more than energy (0.6 vs. 0.1).  

Figure 7 – 11 illustrate the results of experiment 2, in 
which the number of data integration ni is being found. In 
Figure 7, ni1 in formula (15) is found via data size. 
Obviously, ru and MPS play key roles for this 
calculation. In Figure 8, ni2 in formula (16) is found via 
waiting time. In our setting the maximum delay allowed 
is large, and so the time for data processing and 
transmission is tiny. The resulted number thus is 
depended mostly on sliding increment vs. delay. This is 
why the three scenarios of ru1-3 all return the same 
result. Figure 9 depicts the result of finding ni3 via packet 
error rate. Again D’(u) is the key factor influencing the 
results. 

 
 

 
 

Figure 6. Finding sample rate ns. 
 
 
 

 
 

Figure 7. Finding integration number ni1 via data size.. 
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Figure 8. Finding integration number ni2 via waiting time. 
 

 
 

Figure 10. Finding number ni4 via cost function for w1 case. 
 
 

Figure 10 and 11 are more interesting, illustrating the 
trade-offs between error rate and power consumption. 
The effect of time delay is neglected because the setting is 
large (1 hour) and therefore the item in the weight is set 
to 0 for both w1 and w2. When n is small, the cost is 
relatively high. Then cost decreases with increasing n. 
This is the benefit gaining from energy saving due to data 
reduction. From some point of n, the cost starts to 
increase again. This is because the increase in packet size 
leads to the increase of packet error rate. This effect is 
much clearer in case of w2, if comparing the two figures. 
This is due to the fact that w2 considers error rate more 
than power consumption. Finally, it is easy to understand 
that large ru always performs better.  

VIII. CONCLUSIONS 
A novel method is proposed to optimize the execution 

of periodical queries with COUNT and AVERAGE 
aggregations, by jointly considering four QoS factors 
including energy consumption, time delay, result 
accuracy and packet error rate. Algorithm is described in 
detail. Experiments are conducted to validate the method.  

 
 

Figure 9. Finding integration number ni3 via packet error rate. 
 

 Figure 11. Finding number ni4 via cost function for w2 case. 
 
 

Results show that the proposed method can achieve the 
goal of query optimization. Future work includes to study 
the effectiveness of adaptive sampling rate, smart 
sampling (not with fixed interval), and sample dropping 
schemes. 
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