
QoS Aware Query Processing Algorithm for
Wireless Sensor Networks

Jun-Zhao Sun
Academy of Finland

Department of Electrical and Information Engineering, University of Oulu
Email: junzhao.sun@ee.oulu.fi

Abstract—In sensor networks, continuous query is
commonly used for collecting periodical data from the
objects under monitoring. This sort of queries needs to be
carefully designed, in order to minimize the power
consumption and maximize the lifetime of the sensor nodes.
Data reduction techniques can be employed to decrease the
size and frequency of data to be transferred in the network,
and therefore save energy. This paper presents a novel
method for optimizing sliding window based continuous
queries. In particular, we deal with two categories of
aggregation operations: stepwise aggregation (e.g. MAX,
MIN, SUM, COUNT, AVERAGE, etc.) and direct
aggregation (e.g. MEDIAN). Our approach is, by using
packet merging or compression techniques, to reduce the
data size to the best extent, so that the total performance is
optimal. A QoS weight item is specified together with a
query, in which the importance of the four factors, power,
delay, accuracy and error rate can be expressed. Then an
optimal query plan can be obtained by studying all the
factors simultaneously, leading to the minimum cost. System
models for energy and time consumptions of communication
are created. Problem is formalized and algorithm is
described in detail. Finally, experiments are conducted to
validate the effectiveness of the proposed method.

Index Terms—Sensor networks, Query processing, Data
gathering, QoS, aggregation

I. INTRODUCTION
Sensor networks represent significant improvement

over traditional sensors in many ways like large-scale,
densely deployment, ad-hoc & self-organization, prone to
failures, changing topology, and with limited in power,
computational capacities. The concept of micro-sensing
and wireless connection of sensor nodes promises many
new application areas e.g. military, environment, health,
home, to name a few [1, 2].

Sensor nodes have very limited supply of energy, and
should be available in function for extremely long time
(e.g. a couple of years) without being re-charged.
Therefore, energy conservation needs to be one key
consideration in the design of the system and
applications. Extensive research work has been devoted
to address the problem of energy conservation. Examples
include energy efficient MAC protocol [3], clustering [4],
localization [5], routing [6], data management [7], as well
as applications [8].

At high level, a sensor network can be modelled by a
database view. Continuous query is commonly used for
collecting periodical data from the objects under
monitoring. This query needs to be carefully designed, in
order to minimize the power consumption and maximize
the lifetime. Data reduction techniques like packet
merging, data compression, and aggregation and fusion
can be employed to decrease the size of data to be
transferred in the network, and therefore save energy of
sensor nodes.

This paper presents a novel method for the
optimization of continuous query, and in particular, for
the last stage of query processing: query result collection.
The key novelty of the method lies on the careful
consideration of QoS issue along with data gathering. By
taking advantage of the QoS constraints on power, delay,
accuracy, and error rate specified with a query, the
method can find the optimal combination of transmitting
sensor data to sink. Our contributions can be summarized
as follows.

1) A query representation scheme is proposed, in
which SQL based grammar is extended with sliding
window, QoS constraint weight item, and sample clause.

2) A WSN system model is created to model power
consumption and time cost for both computation (data
processing) and communication (data transmission).

3) A novel method is proposed for the optimization of
continuous query with stepwise aggregation (e.g. MAX,
MIN, SUM, COUNT, AVERAGE, etc.). The method is
described in detail including the determination of both
sample rate and data integration.

4) A method is presented for the optimization of
continuous query with direct aggregation (e.g.
MEDIAN). The similarity and variation of the previous
method are discussed.

The remainder of this paper is organized as follows.
Section II introduces sensor database and query
components. Section III briefly describes data reduction
techniques. In Section IV, the system models for energy
consumption and timing of communication are created.
Section V and VI describes the proposed methods for
queries with stepwise and direct aggregations
respectively. Performance of the proposed method is
evaluated in Section VII. Finally, Section VIII concludes
the paper.

32 JOURNAL OF COMPUTERS, VOL. 3, NO. 11, NOVEMBER 2008

© 2008 ACADEMY PUBLISHER

II. QUERY IN SENSOR NETWORKS
This section presents a database view of sensor

networks and proposes the components for query
representation.

A. Sensor database and query

A sensor field is like a database with dynamic,
distributed, and unreliable data across geographically
dispersed nodes from the environment. These features
render the database view [9-11] more challenging,
particularly for applications with the low-latency, real-
time, and high-reliability requirements.

Under a database view, a wireless sensor network is
treated as a virtual relational table, with one column per
attribute and one row per data entry. For example a
virtual table may have the structure as follows.

< location, time, temperature, light, humidity >

Sensor network applications use queries to retrieve data

from the networks. The result is a logical sub-table of the
whole virtual table of the network, with each data entry
an associated timestamp to denote the time of
measurement. The real data table of a node is different
from the one in the virtual table in the sense that there
will be only one attribute there. Usually, one sensor
network should allow multiple co-existing queries in
execution simultaneously. Therefore, data should be
attached with a query ID to distinguish the query results.
An real data example in a sensor node is as follows.

< query ID, node ID, time, temperature >

Query processing is employed to retrieve sensor data

from the network [12-14]. A general scenario of querying
sensor network is, as shown in Figure 1, when user
requires some information, he or she specifies queries
through an interface at sink (also known as gateway, base
station, etc.). Then, queries are parsed and query plans are
made. After that, queries are injected into the network for
dissemination. One query may eventually be distributed
to only a small set of sensor nodes for processing. When
sensor node has the sample data ready, results flow up out
of the network to the sink. The data can then be stored for
further analysis and/or visualized for end user.

Obviously, there are a couple of features that are

unique to query in sensor network comparing to normal
database query. First, data in sensor network is not
available when query is issued. Second, in sensor network
query is often conducted over a stream of data varying in
time, instead of static fixed-size data. Finally, data in
sensor network is approximate instead of exact. New
techniques are therefore needed in handling sensor
network queries.

B. Query components

A query contains following elements:
1) Data attributes that are required by the applications,

corresponding to the columns of the virtual table.
2) Operations on the collected data. Simple operations

are those aggregation functions, including average, sum,
max, min, and count. Complex operations can be defined
as data fusion functions, and are mostly used for
multimedia data. There can always be application-specific
fusion functions defined.

3) Sensor selection predicate, which specifies the
Boolean condition of when a particular data entry of a
sensor in the virtual table will be selected as one record in
the query result table. It is a logical expression with
relevant data attributes as the operands, and returns true
or false.

4) QoS constraints, which specify application’s QoS
requirements on both the query execution and the resulted
data. The constraints is utilized in the query plan and
execution to compromise between quality and cost.

5) Trade-off between the quality of the data (accuracy,
delay) and power cost, which defines the importance of
factors involved in making a query plan. Different factors
are assigned different weights to denote the importance of
the corresponding factors from the observer’s point of
view.

6) Temporal information, which specify the moment,
interval, and times that data should be collected (i.e.
sensor perform the measurement).

SQL-based query language, which consists of a
SELECT-FROM-WHERE clause, representation is
commonly accepted, and so widely used in specifying
queries for sensor networks as well. However, sensor
network has its own characteristics, and therefore
extensions must be made to the basic SQL query. Query
representation for sensor networks is out of the scope of
this paper. Below are two simple examples query in the
form of extended SQL.

// Example query 1
SELECT WINMEDIAN (S.temperature, 10 min, 2

min)
 AS MEDIANTEMP
FROM sensors AS S
WHERE S.location = Area_C
WHILE delay < 10 min

AND accuracy > 0.9
AND error < 0.01

WEIGHT (power, time, accuracy, error)
= (0.4, 0.1, 0.3, 0.2)

Sink

Figure 1: Query lifecycle in sensor network.

JOURNAL OF COMPUTERS, VOL. 3, NO. 11, NOVEMBER 2008 33

© 2008 ACADEMY PUBLISHER

SAMPLE
ON Now + 5 min
RATE min 100

//Example query 2
SELECT WINCOUNT(*, 10 min, 2 min)
FROM sensors AS S
WHERE S.location = Area_C

AND S.temperature > 4 C
WHILE delay < 10 min

AND accuracy > 0.9
AND error < 0.01

WEIGHT (power, time, accuracy, error)
= (0.4, 0.1, 0.3, 0.2)

SAMPLE
ON 00:00:00
RATE min 100

These are two queries to be performed above streaming

data by using a sliding window. In the first example, the
query specifies that after 5 minutes from now, the sensors
in Area_C should start to measure and report the median
temperature of the past 10 minutes once per 2 minutes,
until further command stop them, and the result median
temperature should be reported within 10 minutes after
the value is ready. Here, temperature is the interesting
data attribute, sliding window median is the operation,
location restriction serves as the sensor selection
condition, delay in WHILE clause is as the QoS
constraint, and the SAMPLE clause specifies the
temporal information. In the second example, the query
reports the number of times that the temperature is above
4 C within recent 30 minutes once every 10 minutes.

The WEIGHT clause gives the weights of the factors in
the quality-cost trade-off, by which the query plan can be
optimized. This is the key idea of this paper. In the two
examples above, four factors are considered as the weight
items, power consumption, report delay in time, and the
accuracy and error rate of the result. The queries give the
sample starting time by ON clause and a minimum
sample interval by a RATE clause. The really interval for
sampling should be decided by the tradeoff denoted as the
WEIGHT clause.

This paper concentrates on the optimization of
periodical aggregation queries during the fourth stage of
query execution: result collection (see Figure 1). In

particular, we mainly consider the situation where there
are both delay and accuracy constraints, a weight item,
and aggregation operations of average and count to be
performed over collected data in the query. These two
sorts of queries are very popular in real world
applications like environment monitoring and healthcare.

III. DATA REDUCTION TECHNIQUES
Data reduction is to decrease the size of data that is

needed in the communication. The idea is
straightforward: less amount of data consumes less
amount of power in transmission. Various data reduction
techniques exists in this context, including packet
merging, packet compression, data aggregation, and data
fusion. This paper studies the first two techniques: packet
merging and packet compression.

Packet merging is a simple data reduction technique,
which combines multiple small packets into a big one,
without considering the correlations between and the
semantics within individual packets. In wireless
communication, it is much expensive to send multiple
smaller packets instead of one larger packet. One packet
contains two parts, header and payload. Packet header is
the packet overhead whose format is common for all the
packet, which contains numbering, addressing and error
checking information. The packet formats for sensor
report streams in two representative applications provided
by TinyOS, OscilloscopeRF and Surge, are shown in
Figure 2 [15].

This commonly used packet structure forms the basis of
packet merging – multiple packet can be combined so that
only one packet header is presented with the rest the
combination of the payloads of all the packets.

Packet compression is to integrate one or multiple
packets into a reduced packet, by employing suitable data
compression algorithms. A number of compression
algorithms have been studied for sensor networks.
According to the experimental results in [16-18], for most
compression algorithms, compressing data before
transmission reduces total power consumed. However, in
some cases applying data compression increases total
power consumption. This is due to accessing memory
during compression execution time. Accessing memory is
expensive in terms of energy consumption. Therefore, the
experimental result in [16] indicates that applying the data
compression before transmitting data in wireless medium

Figure 2. The packet formats in application OscilloscopeRF (above) and Surge (below).

34 JOURNAL OF COMPUTERS, VOL. 3, NO. 11, NOVEMBER 2008

© 2008 ACADEMY PUBLISHER

is effective to reduce the amount of energy consumption.
However, it is crucial to select a data compression
algorithm, which requires less memory access during
execution time. A Rate-Energy-Accuracy (R-E-A)
tradeoff framework is proposed in [19] for selecting
suitable compression algorithms.

Data aggregation and data fusion are more complex
techniques used for data reduction, and sometimes they
are used interchangeably. Data aggregation is used in
aggregate query to summarize a set of sensor into a single
statistic, like MAX, MIN, AVERAGE, MEDIAN,
COUNT, etc. Data fusion refers to more complex
operations above a set of readings and are usually used in
multimedia data processing. For example in surveillance
application, we may need fusion operations for analyzing
a sequence of video images. The complexity of data
aggregation and fusion leads to higher cost in terms of
both energy and time.

This paper is targeting to queries that have
average/count aggregation operations. Furthermore in
case of periodical query over streaming data by sliding
window, most information in packet header (e.g. node ID,
query ID, addresses, etc.) is the same across all the
reading, and therefore can be shared. Finally, it is
reasonable to expect high spatial-temporal correlation
between sample data collected in periodical query from
single node, and therefore the data compression rate can
be fairly high. Thus, we believe packet merging and
compression techniques are suitable in this context.

Data reduction ratio, ru can be defined as

D’(u) = D(u) (1 – ru), (1)

where D(u) is the size of data before the data reduction,
and D’(u) is the size after, D’(u) ≤ D(u). Obviously, a
higher ru is expected. The real value of ru is mostly
depending on the merging/compression algorithms
utilized as well as the similarity/correlation between data
samples. If a simple packet merging is performed, then ru
will be relatively small. On the contrary, if some complex
data compression algorithm is utilized, then a much better
ru will be reached.

IV. SYSTEM MODEL
This section proposes the energy and time models for

both communication and computation. A sensor network
is modelled as a graph G = (V, E), where V denotes the
node set and E the edge set representing the
communication links between node-pairs. An edge e ∈ E
is denoted by e = (u, v), where u is the start node and v is
the end node.

A query plan is executed with two components,
computation and communication. Computation
component concerns data sampling by sensors, as well as
local and in-network data processing. Communication
component allows a set of spatially distributed sensor
nodes to send data to a central destination node.
Therefore, the power consumption of the sensor network
consists of two types of energy cost, data processing cost
and data transmission cost.

Energy cost resulted from data processing, EP(u)
denotes energy consumption for the data processing at the
node u. The processing includes all the data
manipulations from single data processing (data sampling
and signal processing, raw data filtering,
compression/decompression) to multiple data processing
(packet merge, data compression, and data fusion). Data
processing results in one or a series of packets ready to be
sent. Energy consumption for single data processing at a
specific node u is fixed, and so can be represented by a
constant ESDP(u). On the contrary, energy cost for
multiple data processing depends on the amount of data to
be processed as well as the algorithms utilized. First the
unit processing cost on node u is defined as EPU(u). Then,
the cost for processing the D(u) amount of data at node u
is given by

EP(u) = ESDP(u) + EPU(u) D(u). (2)

Here D(u) is usually a set of sample result data for one
single or different queries.

Similarly, we can define the time for data processing,
TP(u) as

TP(u) = TSDP(u) + TPU(u) D(u), (3)

where TSDP(u) is the time for single data processing at
node u and TPU(u) is the unit processing time at this node.

It is worthy noting that EPU and TPU are relevant to data
reduction ratio ru, depending on the processing algorithm
used. Basically, the higher the ru, the higher the EPU/TPU.
For example if a simple packet merge is performed, then
ru will be very small, and the corresponding EPU and TPU
will be very low. On the contrary, if some complex data
compression algorithm is utilized, then a much better ru
will be reached with fairly high EPU and TPU.

Transmission cost denotes the cost for transmitting
D(u) amount of data (i.e. packet header plus payload)
from node u to node v through link e = (u, v). The cost
includes the energy consumption at both u and v. Unit
cost of the link for transmitting data between two nodes
can be abstracted as EU(e), and thus the transmission cost
ET(e) is given by

ET (e) = ETU(e) D(u), (4)

The unit transmission cost on each edge, ETU(e), can be
instantiated using the first order radio model presented in
[20]. According to this model, the transmission cost for
sending one bit from one node to another that is d
distance away is given by β dγ + ε when d < rc, where rc
is the maximal communication radius of a sensor, i.e. if
and only if two sensor nodes are within rc, there exists a
communication link between them or an edge in graph G;
γ and β are tunable parameters based on the radio
propagation, and ε denotes energy consumption per bit on
the transmitter circuit and receiver circuit.

Similarly, transmission time TT (e) is given by

TT (e) = TTU(e) D(u), (5)

where TTU(e) is the unit transmission time, i.e. the
reciprocal of bandwidth, whose value is depended on the

JOURNAL OF COMPUTERS, VOL. 3, NO. 11, NOVEMBER 2008 35

© 2008 ACADEMY PUBLISHER

condition of the link. We note that all the cost and time
parameters are all defined on link e, because different link
has different conditions e.g. distances, congestion, and
reliability.

The model above can be easily extended to the
transmission cost and time for a path, which are the ones
utilized in this paper. The cost and time for D(u) from one
node x to another node y through a multihop path x->y
can be represented as

E(D(x): x->y) = ∑

>∈ y x-e
T eE)(+ ∑

>∈ y x-u
P uE)((6)

T(D(x): x->y) = ∑
>∈ y x-e

T eT)(+ ∑
>∈ y x-u

P uT)((7)

V. QUERY WITH STEPWISE AGGREGATION

A. Problem analysis

We first study the problem of sliding window based
continuous query on data stream with stepwise
aggregation. The example query above is re-written
below.

//Example query 2
SELECT WINCOUNT(*, 10 min, 2 min)
FROM sensors AS S
WHERE S.location = Area_C

AND S.temperature > 4 C
WHILE delay < 1 h

AND accuracy > 0.9
AND error < 0.01

WEIGHT (power, time, accuracy, error)
= (0.4, 0.1, 0.3, 0.2)

SAMPLE
ON 00:00:00
RATE min 100

Stepwise aggregation includes for example MAX,
MIN, SUM, COUNT, AVERAGE. The unique feature of
this sort of aggregation is that, the aggregation result can
be obtained gradually with partial data set. This means
the aggregation can be performed with partial data, and
does not have to wait for all the data available. Without
loosing any generality, in this section, we will take
COUNT aggregation as an example.

To formalize the problem to be addressed, there are
following assumptions.

1) Sliding window: this is a sliding window based
continuous query, with window size (length) of Tw (10
min in the example) and sliding increment Ti (2 min in
the example).

2) Constraints: there is a delay constraint dMAX
(maximum allowed delay, 1h in the example), an
accuracy constraint 1-αMIN (minimum confidence interval,
0.9 in the example), and an error constraint eMAX
(maximum packet error rate, 0.01 in the example)
specified in the queries. A minimum sample rate is also
specified as rMIN.(in samples per hour, 100 in the
example).

3) Weight: there is a weight item presented in the query
denoting the tradeoff between power consumption and
QoS of result report, as (power, time, accuracy, error) =
(Wp, Wt, Wa, We).

4) MPS: in this paper, we also assume that there exist a
constraint on the Max Packet Size (MPS) of the whole
sensor network.

As shown in Figure 3, there are four steps of data
processing at each single sensor node. First, a stream of
readings are samples, next a count stream is generated
according to the window size, then the node receives
from other nodes their local results, and finally the node
aggregates the results together and conduct data reduction
by using techniques introduced in Section III.

The criteria of choosing the best query plan lies on the

satisfaction of query issuer to the best extent, by taking all
the factors in the weight item (i.e. power, time delay,
accuracy, and error probability) in to account. Moreover,
there are two obvious constraints affecting the decision
making. First, size of the integrated data packet should be
less than MPS. Second, the delay constraint specified
with the query should be obeyed.

Therefore, the problem under study can be formalized
as two questions:

Question 1: how to find the best number of samples, ns
in one window size (i.e. sample frequency, see step 1 in
Figure 3), and

Question 2: how to find the maximal number of sample
data (can be 1), ni to be integrated (step 4 in Figure 3),
so that trade-off denoted by the weight item leads to
optimal result.

B. Proposed algorithm

The answer of Question 1 has nothing to do with data
transmission, but only data processing. This means only
power consumption and accuracy need to be considered,
without taking delay and error rate into account.
Therefore, following node cost function can be defined as

C1(ns)=)n(A
WW

W
)n(E

WW
W

s
'
R

ap

a
s

'
P

ap

p ⋅
+

+⋅
+

 (8)

where Wp and Wa are the weights assigned to factors
power and accuracy respectively, and)n(E s

'
P and

)n(A s
'
R are normalized energy consumption of data

processing and accuracy reciprocal respectively. The cost

5 3 -1 0 3 6 5 5 2 0 3 7 4 6 3 2 5 7 2 0

3 3 3 2 3

time

5 7 Header 4 5

1.Readings

4. Aggregation &
Reduction

2. Counts

Figure 3. Data processing in a node.

2 4 Header 1 3 3. Received from
other nodes

36 JOURNAL OF COMPUTERS, VOL. 3, NO. 11, NOVEMBER 2008

© 2008 ACADEMY PUBLISHER

function denotes the total energy and accuracy costs of
one specific window size, the less the better.
Normalization of power consumption and accuracy
reciprocal needs more study. First, since power
consumption results only from data processing, according
to formula (2), the energy cost is given by

EP(ns) = ns (ES + ECU DRU), (9)

where ES is sample energy, ECU is unit energy for Count
operation, and DRU is the size of one reading data. To
perform the formalization, we need to find out the
maximum possible number of sample in the sliding
window, ns-MAX. Obviously, we can simply assume that
the maximum sample rate occurs in the case the node
samples each time when the node wakes up. However in
practice, the real maximum sample rate must be much
lower than the case. This is because the lifetime goal of a
sensor network is often explicitly defined. In [12] the
maximum sample rate (in samples per hour) is estimated
according to the remaining battery capacity of the node,
the specified lifetime of the sensor network, and the
energy to collect and transmit samples. Taking advantage
of this estimation, the formalization of the energy cost is
given by

)n(E
)n(E)n(E

MAXsP

sP
s

'
P

−

= . (10)

The accuracy of the result is represented by the
reciprocal of the length of the confidence interval, and
thus is relies on the estimation method. The Boolean
result of whether an attribution is larger than a threshold
(S.temperature > 4 C in the example) is a random variable
whose probability distribution is (0 – 1), i.e. P
(ValueOfAttribute > Threshold) = p. Query is used to
estimate this probability, p by p = Count / ns. As to (0 –
1) distribution, its expectation is p and variance is p(1-p).
According to Central Limit Theorem, when number of

samples is big, the distribution of
)p(pn
pnCount

s

s

−
−

1
 is

approximately N (0, 1). Therefore, the accuracy of the
estimation with ns samples is given by

22 /

s
s z

n
)n(A

α⋅σ
= , (11)

where σ is the variance and zα/2 is the α quantile of
standard normal distribution. The minimum accuracy can

be easily obtained by
22 /

MINs
MINs

MIN
z

n
)n(A

α

−
− ⋅σ

= , where ns-

MIN is given by ns-MIN = rMIN Tw.
The normalized accuracy reciprocal)n(A s

'
R is given by

)n(A
)n(A)n(A

s

MINs
s

'
R

−= . (12)

Note that even the variance is unknown, the
normalization can still be performed.

By using formula (10) and (12) to (8), we can obtain
'
sn = arg min ns (C1(ns)). (13)

Thus, the answer of Question 1 is given by

ns = (ns-MIN < '
sn <ns-MAX, '

sn ,('
sn >ns-MAX: ns-MAX, ns-MIN)).

(14)

The answer of Question 2 concerns both local data
processing (step 2 to 4 in Figure 3) and data transmission.
Suppose a data integration technique is to be utilized
above a stream of results (local counts or counts received
from other nodes), the algorithm focuses on finding the
maximal number of samples, ni that optimizes trade-off
items of the query. According to the MPS, delay, and
error constraints, we have the following three arguments.
For any selected node u, first,

ni1(u)= arg maxni (D’(u) < MPS), (15)

where, according to formula (1), size of data after data
reduction D’(u) = D(u) (1-ru) = (Header_Size + ni
DCU)(1-ru), with DCU the size of one count result (most
probably attached with a sequence number of time
stamp). Second,

ni2(u)= arg maxni (dW(u) < dMAX), (16)

where dW (u) = (ni – 1) Ti + T(D’(u): u->s) denotes the
time of waiting and sending the integrated packet. Third,

ni3(u)= arg maxni (ep(ni) < eMAX), (17)

where ep(ni) = 1 – (1 – eb(u))D’(u) is the packet error rate
and eb is the bit error rate of the link from local node to its
parent node. The eb is affected by both the data
transmission rate and the signal power margin, and can be
obtained from empirical estimation.

Finally, a global cost function, C2 can be defined as

C2(ni)=

)n(e
W

W)n(d
W

W)n(E
W

W
i

'
p

edp

e
i

'
TP

edp

d
i

'
TP

edp

p ⋅+⋅+⋅
++

+
++

+
++

(18)

where Wp+d+e= Wp+Wd+We, and E’, d’ and e’ are
formalized energy consumption, time delay and packet
error rate respectively. The cost function denotes the total
costs of one specific query plan, the less the better.
Normalization of power consumption, time delay and
error rate can be performed as follows.

∑
∀

+ >−+⋅
>−

=
u CUi

i
'

TP)su:)Size_HeaderD((En
)su:)u('D(E)n(E

 selected

, (19)

MAX

CU
u

i
'

TP d

))su:)Size_HeaderD((Tdw(
)n(d

MAX >−+−
= ∀

+
 selected

 (20)

JOURNAL OF COMPUTERS, VOL. 3, NO. 11, NOVEMBER 2008 37

© 2008 ACADEMY PUBLISHER

MAX

)u(D
b

u
i

'
p e

))u(e((
)n(e

'

MAX −−
= ∀

11
 related . (21)

Note that here the energy consumption and time delay
concerns both data processing (as depicted in Figure 3)
and data transmission during the entire path from local
node to sink (refer to formula (6) and (7)).

After the definition of the cost function in formular (6),
we have

ni4 = arg minni C2(ni) (22)

And finally, the number of samples is given by

ni = min (ni1, ni2, ni3, ni4) (23)

We then solve the two questions mentioned above, and
thus have the key algorithm for the query optimization.

VI. QUERY WITH DIRECT AGGREGATION
Direct aggregation is different from stepwise

aggregation in the sense that, direct aggregation cannot be
performed until all the aggregation data is available. In
other words, it cannot be executed above partial data. In
this section, without loosing any generality, we simple
take MEDIAN as an example.

As to the case of query with direct aggregation, after
the discussion in Section V, it will be easy to obtain.
Basically, the same assumptions hold, and there are two
similar questions to be solved. In this section, we focus
mostly on the differences and the changes needed
comparing to those in the previous section. Figure 4
illustrated the basic idea and key processes of this sort of
query.

The most crucial difference the sliding window based
continuous MEDIAN query (query example 1) with the
one in Section V (COUNT query over stream data, query
example 2) is that in query 2 COUNT is a monotonic and
summary aggregate which means its value can only get
larger as more values are aggregated, while on the other
hand allows partial aggregation with other count values
(as step 4 in Figure 3). Instead as for query 1, MEDIAN
is an exemplary aggregate computing some property over
the entire set of values, and therefore does not allow
partial aggregation. In other words, the aggregation
cannot be performed until all the concerned data is

available. This means in query 1 there will be more data
transmission.

Figure 5 shows a simple example. The streams of data
at node 1-4 should first be sent to node 5 (the common
ancestor of all the concerned nodes except node 5 itself),
and after that count a stream of median values to be sent
to the sink. The relay node 4 will only forwards the
readings from node 1 and 2, but cannot perform the
MEDIAN aggregation operation with partial data of node
1 and 2 and local ones. Note that data reduction
techniques can be used in the transmission of both
original readings from node 1-4 to 5, and final average
results from node 5 to the sink.

Obviously, the query is executed with two steps. First, all
the readings are sent to a node who is the common
ancestor of all the concerned nodes (node 5 in Figure 5)
for MEDIAN aggregation. Next, a stream of median
aggregation results is sent to the sink. In the second step,
the problem is simple and the problem of data reduction
(i.e. find out the best ni) can be directly solved with the
method introduced in Section V, by simply assuming
ns=1. Therefore without losing any generality, here we
assume that the common ancestor node is exactly the sink
node.

As to query 2 in the previous section, the answers of
the two questions (i.e. to find out ns and ni) are
independent. While in query 1 the key is still to find the
answers for the same questions, they are actually
correlated due to the time reason and therefore should be
jointly considered. Also, in answering Question 1, the
main difference of query 1 with query 2 is that in query 2,
we need to simply concentrate on one local node, to
decide the window size for it which is actually common
to all the rest concerned sensor nodes. Instead, in query 1
we have to first find out the total population of samples
for all the selected sensor nodes (hereafter suppose the
number is m) according to the WHILE clause (S.location
= Area_C as the condition in the example above), and
after that uniformly assign to each node a number of
samples for one window size.

After the discussions above, a global cost function for
query 1 can be defined as

)n,n(dW)n(EW)n,n(C is

'
TPdi

'
TPpis ++ +=

)n(eW)n(AW i
'
pes

'
Ra ++ (18’)

1 2

3
4

5

sink

Figure 5. An sensor network query example.

5 3 2 4 3 2 4 2 4 5 3 5 4 6 3 3 4 2 4 4

3 3 4 4

time

3 3 Header 4 4

1.Readings

4. Reduction

3. Median

Figure 4. Data transmission and processing.

2. Transmission

4 2 0 1 3 6 2 1 2 4 6 2 6 6 2 7 2 3 4 3

5 3 -1 0 2 4 3 3 0 0 3 7 4 3 3 2 5 7 2 0

3 2 4 5 5 4 5 5 5 3 7 3 5 4 6 2 5 7 2 5

38 JOURNAL OF COMPUTERS, VOL. 3, NO. 11, NOVEMBER 2008

© 2008 ACADEMY PUBLISHER

TABLE I
PARAMETERS VALUES USED IN PERFORMANCE ANALYSIS.

System parameters
parameter value parameter value
β 100 pJ/bit/m2 Es 10 nJ/bit

γ 2 ru PM, 0.3, 0.8

ε 90 nJ/bit Header Size 15 bytes
d 10 m DRU 2 bytes
EPU 20 nJ/bit MPS 2k bytes
TPU 0 ns/bit noh 10
ETU 100 nJ/bit ns-MAX. 1 / ms
TTU 0.02 ms/bit
Query parameters
parameter value parameter value
dMAX 1 h Tw 10 min
1-αMIN 0.9 Ti 2 min
eMAX 0.01 rMIN 100
er 10 E-5
(Wp, Wt, Wa, We) w1: (0.7, 0.0, 0.1, 0.2)

w2: (0.1, 0.0, 0.6, 0.3)

All the formula (15) to (17) and (19) to (23) in previous
section are applicable here for query 1, unless the Ti for
getting dW should now be replaced by sample interval
Tw/ns.

Another difference is, instead of (0, 1) distribution as in
query 2, here for MEDIAN aggregation, the distribution
of the concerned random variable is usually assumed as
either normal distribution or uniform distribution. To
normal distribution the derivation is the same as previous
section (formula (11) and (12)). As to uniform
distribution, by using the same approximating method of
Central Limit Theorem, method in previous section is still
applicable.

VII. EXPERIMENTS
In this section, we validate the effectiveness of the

proposed algorithm. We assume that all the sensor nodes
are homogeneous. Table 1 shows the parameters values
used in the performance analysis. We assume an average
TTU(e) is available and thus we can define a number of
hops (noh) to represent the distance from the end node to
sink (10 in this paper). We study three data reduction
scenarios. The first one is based on packet merging (PM),
in which the ru can be derived by

ru =
)DSph(n

DnSph
D

'D

RUi

RUi

+⋅
⋅+

−=− 11 . (24)

where Sph is header size (15 bytes in this paper). The
second scenario is to employ packet compression (ru1)
with ru = 0.3 (ru2), and for the third ru = 0.8 (ru3). We
study the example query 2 with two weight item settings:
(Wp, Wt, Wa, We) = (0.6, 0.1, 0.1, 0.2) and (0.1, 0.1, 0.5,
0.3). The target sensor network is simplified so that there
is only one selected node which is of 10 hops to sink.

Two experiments are designed to valid the methods for
answering Questing 1 and 2 respectively. Figure 6 shows
the result of experiment 1. The figure clearly
demonstrates the effect of the weight item. In case of w1,
power consumption is deemed more important than
accuracy (0.7 vs. 0.1), therefore a relatively small ns
(204) is obtained than the case of w2 (ns=2455) in which
accuracy is emphasized more than energy (0.6 vs. 0.1).

Figure 7 – 11 illustrate the results of experiment 2, in
which the number of data integration ni is being found. In
Figure 7, ni1 in formula (15) is found via data size.
Obviously, ru and MPS play key roles for this
calculation. In Figure 8, ni2 in formula (16) is found via
waiting time. In our setting the maximum delay allowed
is large, and so the time for data processing and
transmission is tiny. The resulted number thus is
depended mostly on sliding increment vs. delay. This is
why the three scenarios of ru1-3 all return the same
result. Figure 9 depicts the result of finding ni3 via packet
error rate. Again D’(u) is the key factor influencing the
results.

Figure 6. Finding sample rate ns.

Figure 7. Finding integration number ni1 via data size..

JOURNAL OF COMPUTERS, VOL. 3, NO. 11, NOVEMBER 2008 39

© 2008 ACADEMY PUBLISHER

Figure 8. Finding integration number ni2 via waiting time.

Figure 10. Finding number ni4 via cost function for w1 case.

Figure 10 and 11 are more interesting, illustrating the
trade-offs between error rate and power consumption.
The effect of time delay is neglected because the setting is
large (1 hour) and therefore the item in the weight is set
to 0 for both w1 and w2. When n is small, the cost is
relatively high. Then cost decreases with increasing n.
This is the benefit gaining from energy saving due to data
reduction. From some point of n, the cost starts to
increase again. This is because the increase in packet size
leads to the increase of packet error rate. This effect is
much clearer in case of w2, if comparing the two figures.
This is due to the fact that w2 considers error rate more
than power consumption. Finally, it is easy to understand
that large ru always performs better.

VIII. CONCLUSIONS
A novel method is proposed to optimize the execution

of periodical queries with COUNT and AVERAGE
aggregations, by jointly considering four QoS factors
including energy consumption, time delay, result
accuracy and packet error rate. Algorithm is described in
detail. Experiments are conducted to validate the method.

Figure 9. Finding integration number ni3 via packet error rate.

 Figure 11. Finding number ni4 via cost function for w2 case.

Results show that the proposed method can achieve the
goal of query optimization. Future work includes to study
the effectiveness of adaptive sampling rate, smart
sampling (not with fixed interval), and sample dropping
schemes.

ACKNOWLEDGMENT

Financial support by Academy of Finland (Project No.:
209570) is gratefully acknowledged.

REFERENCES

[1] Johannes Gehrke and Ling Liu, “Sensor-network
applications,” IEEE Internet Computing, vol. 10, no. 2,
2006, pp. 16-17.

[2] H. Gharavi and S.P. Kumar, “Special Issue on Sensor
Networks and Applications,” Proceedings of the IEEE,
vol. 91, no. 8, Aug. 2003.

[3] Matthew J. Miller and Nitin H. Vaidya, “A MAC Protocol
to Reduce Sensor Network Energy Consumption Using a
Wakeup Radio,” IEEE Transaction on Mobile Computing,
Vol. 4, No. 3, 228-242, May/June 2005.

[4] Y. Fukushima, H. Harai, S. Arakawa, and M. Murata,
“Distributed clustering method for large-scaled

40 JOURNAL OF COMPUTERS, VOL. 3, NO. 11, NOVEMBER 2008

© 2008 ACADEMY PUBLISHER

wavelength routed networks,” Proc. Workshop on High
Performance Switching and Routing, 416-420, May 2005.

[5] Lingxuan Hu and David Evans, “Localization for Mobile
Sensor Networks,” Proc. Tenth Annual International
Conference on Mobile Computing and Networking
(MobiCom 2004). Philadelphia, 45-57, Sept.-Oct. 2004.

[6] J.N. Al-Karaki and A.E. Kamal, “Routing techniques in
wireless sensor networks: a survey,” IEEE Wireless
Communications, vol. 11, no. 6, 6-28, Dec. 2004.

[7] Alan Demers, Johannes Gehrke, Raimohan Rajaraman,
Niki Trigoni, and Yong Yao. Energy-Efficient Data
Management for Sensor Networks: A Work-In-Progress
Report. 2nd IEEE Upstate New York Workshop on Sensor
Networks. Syracuse, NY, October 2003.

[8] Yi Zou and Krishnendu Chakrabarty, “Energy-Aware
Target Localization in Wireless Sensor Networks,” Proc.
1st IEEE International Conference on Pervasive
Computing and Communications (PerCom’03), 60-67,
Dallas-Fort Worth, Texas, USA, Mar. 2003.

[9] Ramesh Govindan, Joseph M. Hellerstein, Wei Hong,
Samuel Madden, Michael Franklin, and Scott Shenker,
“The sensor network as a database,” USC Technical
Report No. 02-771, September 2002.

[10] Philippe Bonnet, J. E. Gehrke, and Praveen Seshadri.
Towards Sensor Database Systems. In Proceedings of the
Second International Conference on Mobile Data
Management. Hong Kong, January 2001.

[11] Samuel R. Madden, Michael J. Franklin, Joseph M.
Hellerstein, and Wei Hong, “TinyDB: An Acquisitional
Query Processing System for Sensor Networks,” ACM
Transactions on Database Systems, vol.30, no.1, 122-173,
Mar. 2005.

[12] S. Madden, M. J. Franklin, J. M. Hellerstien, and W.
Hong, “The design of an acquisitional query processor for
sensor networks,” in Proceedings ACM SIGMOD, pp.
491-502, June 2003, San Diego, CA, USA.

[13] J. Gehrke and S. Madden, “Query processing in sensor
networks,” IEEE Pervasive Computing, vol. 3, no. 11, pp.
46-55, 2004.

[14] Y. Yao and J. Gehrke, “Query processing for sensor
networks,”, In Proceedings of the First Biennial
Conference on Innovative Data Systems Research (CIDR
2003), Asilomar, California, January 2003.

[15] Hailing Ju and Li Cui, “EasiPC: A Packet Compression
Mechanism for Embedded WSN,” Proceedings of the 11th
IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA’05),
394-399, 2005.

[16] Naoto Kimura and Shahram Latifi, “A survey on data
compression in wireless sensor networks,” Proceedings of
the International Conference on Information Technology:
Coding and Computing (ITCC’05), vol.2, 8-13, 2005.

[17] Kenneth Barr and Krste Asanovic, “Energy aware lossless
data compression,” The First International Conference on
Mobile Systems, Applications, and Services (MobiSys’03),
231-244, San Francisco, CA, May 2003.

[18] Rong Xu, Zhiyuan Li, Cheng Wang, and Peifeng Ni,
“Impact of data compression on energy consumption of
wireless-networked handheld devices,” Proc. 23rn
International Conference on Distributed Computing
Systems (ICDCS’03), 302-311, May 2003.

[19] Mo Chen and Mark L. Fowler, “Data compression trade-
offs in sensor networks,” Mathematics of Data/Image
Coding, Compression, and Encryption VII, with
Applications. Edited by Schmalz, Mark S. Proceedings of
the SPIE, Volume 5561, pp. 96-107, Oct. 2004.

[20] W.R. Heinzelman, A. Chandrakasan, and H. Blakrishnan,
„Energy-Efficient Communication Protocol for Wireless
Microsensor Networks,“ Proc. 33rd Ann. Hawaii Int’l
Conf. System Sciences, jan. 2000.

JOURNAL OF COMPUTERS, VOL. 3, NO. 11, NOVEMBER 2008 41

© 2008 ACADEMY PUBLISHER

