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Abstract—The Internet is considered a complex network for 

its size, interconnectivity and rules that govern are dynamic, 

because of constantly evolve. For this reason the search of 

distributed resources shared by users and online 

communities is a complex task that needs efficient search 

method. The goal of this work is to improve the 

performance of distributed search of information, through 

analysis of the topological features. In this paper we 

described a statistical methodology to select a set of 

topologic metrics that allow to locally distinguish the type of 

complex network. In this way we use the metrics to guide 

the search towards nodes with better connectivity.  In 

addition we present an algorithm for distributed search of 

information, enriched with the selected topological metric. 

The results show that including the topological metric in the 

Neighboring-Ant Search algorithm improves its 

performance 50% in terms of the number of hops needed to 

locate a set of resources. The methodology described 

provides a better understanding of why the features were 

selected and aids to explain how this metric impacts in the 

search process.  

Index Terms— Internet, search process, query routing, 

random walk, ant colony system, scale free, topology, 

experiment designs, statistical analysis, metrics 

I. INTRODUCTION

Complex systems can be modeled by means of 

complex networks, because of have a non-trivial 

topological structure. These features have motivated the 

study of topological features of real-world networks such 

as the Internet. Knowledge on such features can be used 

to optimize the performance of processes carried out on 

the Internet, for example: the search of distributed 

resources, traffic management, and design of routing 

queries [1], among others. The main goal is to help the 

users to find the information that they request with a 

reasonable processing time and with a higher quality of 

the information obtained [2]. 

Over the past years, new communication models have 

emerged in the Internet that manage information in a 

distributed manner and offer significant advantages over 

centralized information management systems. These 

systems are known as peer to peer networks (P2P). In a 

P2P network, a set of nodes form connections to offer 

their resources to the other nodes within the network. The 

P2P systems, together with the underlying 

communication network (typically the Internet), form a 

complex system that requires autonomous operation 

through mechanisms of intelligent search [1]. 

Until now, a great number of topologic metrics have 

been developed to characterize the complex networks, but 

the majority of these metrics are global. This implicates a 

great computational effort (processing time and memory). 

For this reason, it is necessary to identify a topological 

metric that locally allows to obtain information about the 

type of network. In this way the distributed search 

process would take advantage of the  topology. This point 

requires sufficient empirical evidence that supports the 

use of a topological metric to locally identify the type of 

network. This raises important questions: what 

topological metric to select in order to locally identify the 

types of complex networks? Does the topologic metric 

allow to improve the performance of the distributed 

search process? If so, how much the performance of the 

distributed search process is improved? Why the 

topological metric can identify the type of network? 

In this paper, a methodology based in statistical 

analysis is described. The goal of this methodology is to 

identify, by the means of an experimental design and a 

series of statistical tests, a set of topologic metrics that 

allow to locally recognize the type of a complex network. 

This minimum set is used to analyze the performance of a 

distributed search algorithm for textual information, 
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enriched with a topological metric to characterize local 

topology. The study of such distributed algorithms is 

important as the quality of the retrieved information as 

well as the time necessary for its retrieval are key factors 

in the performance of a P2P system. 

II. THEORIC FRAME

A.  Peer-to-Peer Networks Modeled as Complex 
Networks 

A system is a set of interrelated components that seeks 

a common goal. Any system that can be understood as a 

set of components whose connections follow a certain 

rule can be modeled as a network: each component is 

represented by a node of the network  and all existing 

interactions are captured by the connections of the 

network [3]. 

Complex systems are those systems that have  a very 

large number of components and the connections among 

the components may evolve over time and the roles of the 

components may vary. In many studies, complex systems 

are modeled as networks, giving rise to the concept of 

complex networks [3]. 

A P2P network is a distributed system where all the 

nodes are equal in terms of functionality and tasks 

performed in the P2P system [4]. The objective of a P2P 

network is to share resources such as information 

(documents, music, videos), hardware resources 

(computational capacity, memory), or peripheral devices 

(printers, cameras).  

Such structure formed by pairs of connected nodes 

can be modeled as the edges of a dynamic network, 

where edges and nodes may appear and disappear at any 

time. Hence the structure of a P2P network can be 

modeled as a complex network [1, 5]. One of the main 

motivations for modeling systems as complex networks is 

the flexibility and generality of the abstract representation 

that allows handling properties such as dynamic topology 

in a natural way [6]. 

B.  Information Search 

The problem of locating textual information in a P2P 

network over the Internet is known as semantic query 

routing (SQR), where the goal is to determine the shortest 

paths from a node that issues a query to those nodes that 

can appropriately respond to the query (by providing the 

requested information) [1]. The query traverses the 

network moving from the initiating node to a neighboring 

node and then to a neighbor of a neighbor and so forth 

until locating the requested resource (or giving up in its 

absence).  

The challenge lies in the design of algorithms to 

traverse the Internet in search of resources – modeled as a 

complex network – in an intelligent and autonomous 

manner. In order to reach this goal, the algorithms 

proposed for this problem include the selection of the 

next node to visit, using information of near-by nodes of 

the current node, that is, information on the local 

topology of the current node. 

C. Random Walk 

The random-walk (RW) search algorithm is a blind 

search technique where the nodes of the network possess 

no information on the location or contents of the 

requested resource unless the resource resides in the node 

itself [8]. Let G be a graph that models the network and v

a vertex in G. A T-hop random walk from v in G is a 

sequence of dependent random variables X0 ,..., XT

defined as follows: X0 = v with probability 1 and for each 

i = 1,... T, the value for Xi is selected uniformly at random 

among the vertices 1( )iX , that is, among the 

neighbors of the vertice of the preceding step. Simply 

put, a random walk begins at a certain vertex and on each 

step, moves to a neighbor of the current vertex, until it 

arrives to a vertex that meets to goal.  In our network, that 

would be a vertex that represents a node that contains the 

requested resource [7]. 

D. Neighboring-Ant Search 

In the area of classification, feature selection has great 

benefits such as improving the performance of 

classification procedures and constructing simple and 

comprehensible classification models. These are achieved 

eliminating irrelevant and redundant features that may 

introduce noise that could affect the efficiency of the 

procedure. The goal of feature selection is to choose a 

minimum subset of features that can discriminate 

efficiently among different classes. This minimum subset 

is known as the optimal subset [24]. The majority of the 

feature selection methods involve the search in the 

feature space to predict the best class and the evaluation 

of the features to measure the fitness of a subset [25]. 

E. Experimental Design 

Understanding a particular system or process 

demands observation, modeling, and experimentation. 

The experimentation aims to generalize away from 

context specific measurements and to build insight into 

fundamental structures and properties of a system. In this 

way the experimentation provides knowledge of the 

domain of interest [11, 12, 13].  

Learning involves the encapsulation of knowledge, 

checking that the knowledge is correct, and evolving that 

knowledge over time. The experimental paradigm is used 

in many fields, including physics, medicine, and 

manufacturing. Like other sciences, many disciplines 

within computer science likewise require an empirical 

paradigm [11, 14]. Since the experimental subject and the 

research questions are somewhat unusual compared to 
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Figure 1. Three possible cases of relevancy feature. 

other problem domains, much more work is needed to 

identify the statistical and data analysis tools most 

appropriate to these types of problems [12, 13, 14]. 

F. Degree Disperion Coefficient 

The DDC measures the differences between the 

degree of a vertex and the degrees of its neighbors. A 

node i is said to be a neighbor of a node j if they are 

connected in the network. The degree ki of a node i is the 

number of neighbors it has. The DDC of node i is defined 

in equation (1), (i) is the degree variation among i and 

its neighbors and µ(i) is their average degree [26]. 
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III. RELATED WORKS

Existing methods for classifying real-world networks 

using topological features [9, 10, 15] do not provide a 

detailed statistical analysis to determine if all of the 

features used are necessary or optimal to efficiently 

discriminate among types of networks. Costa et. al. [6] 

used statistical techniques to identify the type of a 

network with unknown nature. The results show that the 

type of network assigned to the networks, varies 

according to the topological features selected, and that 

excessive number of features can compromise the quality 

of the classification.  

In the above mentioned methods the topological 

features used are global: computing each feature requires 

processing the entire network. This involves a great 

computational effort with respect of both time and 

memory.  

One of the problems of interest is the semantic query 

routing on the Internet. The most relevant works in this 

area address this problem using ant-colony algorithms [1, 

22, 23]. The principal difference of the present work with 

existing methods is the incorporation of a strategy that 

takes advantage of the environment where the search 

takes place, in terms of a local structural metric is. The 

structural metric was selected through a statistical 

methodology described in Section 3.  

IV. STATISTICAL METHODOLOGY

The main goal of the statistical methodology proposed 

is to identify which topological features are relevant and 

non-redundant. Let us first define relevancy feature. Let 

us suppose there are k different populations of networks, 

from which topological features are extracted. Three 

possible cases can be identified, c.f Figure 1:  

Strong Relevance: the differences among the k

types of networks are sufficient to be able to 

classify a new network based on the features 

measured and the populations do not overlap. 

Weak Relevance: the differences among the k

types are strong but insufficient to perfectly 

classify a new network due to population 

overlap. 

Irrelevancy: the differences among the k types 

of networks are insufficient for classification. 
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Figure 2. Steps of feature selection 

The statistical methodology proposed to select 

relevant and non-redundant features has four basic steps; 

c.f.  Figure 2: 

1. Identify relevant and irrelevant features: This 

step consist in determining which features differ 

significantly according to the type of network, 

regardless of the number of nodes in the 

network. The features with different means are 

considered as relevant features whereas the 

features with equal means are irrelevant. The 

experimental design used to discriminate 

between relevant and irrelevant features is 

described by Cruz et al. [16] and Turrubiates et 

al. [17] 

2. Identify features with strong relevance and 

weak relevance: In this step the relevant 

features are analyzed by means of a multiple 

comparison method to determine which of them 

are strong relevant features and which are weak 

relevant features. 

3. Redundancy elimination: The goal in this step 

is to eliminate the weak relevant features 

correlated with the strong relevant features in 

such a way that the set of selected features 

contain the majority of the strong features and 

some of the weak features. 

4. Identify the minimal set: Combinations of  

selected features are made and a discriminant 

analysis is carried out to determine the 

combination with the lowest number of features 

that produces the best performance in the 

discriminant analysis. This combination is called 

the minimal set.

V. EXPERIMENTS

A.  Statistical Methodology 

The topological features analyzed were: average 

degree Avg, standard deviation of the degree Std,

clustering coefficient CG, global efficiency Eglob, local 

efficiency Eloc, shortest path length L, diameter D and the 

degree dispersion coefficient DDC. A detailed 

description of these features could be found in Costa et. 

al. [6]. The methodology considers that the features could 

be affected by the type of network and the number of 

nodes; we generated three kinds of complex networks 

with different sizes [18].  

B.  Distributed Resource Search 

We generated complex networks with the scale-free 

network method of Barabási et al. [20], where nodes are 

added one at a time with a fixed number of connections 

each. The newly-arriving node chooses preferentially at 

random among the existing nodes to which to connect, 

giving preference to high-degree nodes. The resulting 

network has a small number of highly connected nodes 

while the majority of the nodes have degree close to 

average degree. The network size was set to 1,024 nodes. 

The studied algorithms were the proposed 

Neighboring-Ant Search (NAS) and the random-walk 

(RW) algorithm that serves as a base case for 

comparison. We experimented on two versions of both 

algorithms: with and without the DDC. Only one ant was 

used per query and the time-to-live of the ants was set to 

25 hops. The number of results (hits) needed to satisfy 

the query was set to five.  

The time steps of the experiments were of 100 ms and 

the simulations were ran for 10,000 steps. During each 

time step, each node has a probability of 0.1 to launch a 

query. The “topics” of the resources were modeled as 

integer values from zero to 1,024, generated using the 

uniform-distribution generator of Repast [21]. Each node 

was assigned ten resources with possibly repeated topics. 

The queries were generated to search a topic uniformly at 

random from 0 to 1,024. The experiments were carried 

out on a workstation with an Intel Xeon a 3GHz 

processor with 4GB of RAM. 

C.  Random Walk 

Optionally, one can include the DDC function into the 

random-walk algorithm. A simple modification to include 

structural preferentiality is to choose uniformly at random 

two neighbors, calculate their DDC values, and move on 

to the neighbor with higher DDC. 
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a) Main effects of the type of networks and number of nodes 
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Figure 3. Factor effects for the DDC (G) feature.

D.  Neighboring-Ant Search 

The NAS algorithm has two objectives: directing the 

queries towards the nodes that have good connectivity 

using the DDC while minimizing the number of hops 

needed to respond to queries. This latter objective is 

achieved by a function called importance of hops that is 

the inverse of the sum of all connections traversed during 

the search. The number of hops is the lifetime of the ant 

represented by TTL and the maximum value is set at 25 

hops. A pseudo-code for the algorithm is given in Table 1 

[19].  

VI. RESULTS

In Table 2, the statistical tests used in each step of the 

methodology are described together with the obtained 

results, c.f  [16, 18]. 

The subset obtained in the steps that correspond with 

the search in the feature space is formed by the standard 

deviation of the degree (k), local efficiency Eloc, shortest 

path length L, and the degree dispersion coefficient DDC.

The evaluation of this subset identified the DDC as the 

feature that by its own has a best performance in the 

discriminant analysis. 

 The DDC was selected (c.f  Figure. 3) as the relevant 

and not redundant feature that can discriminate efficiently 

among the three types of complex networks. The analysis 

of the topological features selected shows that the type of 

network has a greater effect on the results than the 

number of nodes in the network. This is important in 

locally identifying the type of a network; this feature 

captures sufficient information about the types of 

networks [18]. 

After having selected the DDC as the relevant and not 

redundant feature, was included into the two search 

algorithms, obtaining the following results. In Figure 

4(a), it can be seen that in scale-free networks, the 

TABLE I. NAS ALGORITHM PSEUDO-CODE

01  for each query 

02   repeat while the forward ant is active 

03   if Hits < maxResults and TTL > 0        // Phase 1 

04    if the neighbor from edge sk  has results  

05     append sk  to Pathk

06     TTLk = TTLk -1 

07     globalUpdate  // backward ant 

08    else                                         // Phase 2 

09     sk = apply the transition rule 

10     if path does not exist or node was visited, 

11      remove the last node from Pathk

12     else, 

13      append sk to Pathk

14      TTLk = TTLk -1 

15      localUpdate 

16     endif 

17   endif  

18  else 

19    Kill the forward ant 

20  endif 

21 endif 

TABLE II.  
STATISTICAL TOOLS USED IN THE PROPOSED METHODOLOGY

Step Statistical test Results 

Identify 

relevant and 

irrelevant 

features 

Experimental 

Design: Two factor 

mixed factorial 

Statistical Test: 

MANOVA, 

Residuals Analysis, 

Interaction Plots. 

 Relevant features: 

Std, DDC(G), L(G), 

D(G), Eloc, Eglob 

 Irrelevant features: 

Avg, CG(G)

Identify 

features with 

strong 

relevance and 

weak 

relevance 

Multiple comparison 

using the Tukey test 

Strong relevant 

features: Std,, 

DDC(G), L(G), D(G)

Weak relevant 

features: Eloc, Eglob 

Redundancy 

elimination 
Correlation Analysis 

 Not redundant 

features: Std,, 

DDC(G), L(G), Eloc

 Redundant features: 

D(G), Eglob 

Identify the 

minimal set 

Discriminant 

Analysis 

Minimal set: 

DDC(G).
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number of hops used by the RW algorithm is very close 

to the TTL of 25 hops, with or without the DDC.  For the 

NAS algorithm without DDC, approximately 19 hops are 

needed. Incorporating DDC into NAS reduces the 

number of hops even further down to 10. 

Figure 4(b) shows the average hit-count. On scale-

free topologies, the RW algorithm obtains 2 – 2.5 results 

per query without using the DDC, and with DDC, the 

number of hits rises to 2.5 – 3. In the same networks, the 

NAS algorithm obtains 3 – 3.5 hits per query without the 

DCC, and 4 – 4.5 hits when DCC is used. 

These observations confirm the intuition that the DDC 

in the presence of a scale-free distribution allow a 

significant improvement to the search performance, 

which also implies that the NAS algorithm outperforms 

in such topologies the existing methods that do not 

incorporate local structural information. 

VII. CONCLUSIONS AND FUTURE WORK

In this work a statistical methodology was defined 

and developed to identify the minimal set of topological 

features that allows to discriminate among three different 

types of complex networks. The use of this methodology 

allows us to justify why the features were selected and 

provide information of the influence of the type of 

network and the number of nodes in the prediction power 

of the selected features.  

The result of applying the methodology to a set of 

eight topological functions resulted on minimal set 

containing the DDC metric [18]. Subsequently, this 

metric was used in semantic query routing algorithms. 

We observe that upon including DDC in the algorithm 

NAS, the hop count decreases by 50% and the hit count is 

improved by 15%. The random-walk algorithm used as a 

comparison gains no advantage of DDC in terms of the 

hop count, and a benefits very little in terms of hit count 

(3% improvement). 

As future work, we plan to study more profoundly the 

impact of the metrics employed in the learning curve of 

ant-colony algorithms as well as the effect on the 

performance measures of hop and hit counts. We also 

contemplate using more than one ant per query to 

parallelize the algorithm in hopes of improved 

performance. 
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