
Real-Time Monitoring of Hurricane Winds using
Wireless and Sensor Technology

Carlos E. Otero
Florida Institute of Technology/Electrical and Computer Engineering, Melbourne, FL, USA

Email: cotero@fit.edu

Antonio Velazquez, Ivica Kostanic, Chelakara Subramanian, Jean-Paul Pinelli and Larry Buist
Florida Institute of Technology, Melbourne, FL, USA

Email: {avelazqu, kostanic, subraman, pinelli, lbuist }@fit.edu

Abstract— This paper presents a distributed software
system for a wireless sensor network application that
remotely monitors the effects of hurricane winds on man-
made structures. The software system is divided into three
independent segments that are distributed across the
Internet to provide real-time collection and transmission of
data between wireless remote sensor units and a centralized
server. The software system uses a custom-designed
communications architecture that is built upon existing
wireless networking standards (IEEE 802.11 and HSPA)
and that benefit from capabilities of Microsoft .NET
development framework. By segmenting the software and
separating application-specific code from the
communications architecture, the software can be reused
and applied towards a wide variety of wireless sensor
networks operating in harsh environments. The system is
currently under test and will be deployed for the 2009
hurricane season.

Index Terms— Wireless sensor networks, hurricane
monitoring, architecture, structure health monitoring

I. INTRODUCTION
1Hurricanes have historically posed serious threats to

man made structures. In 1992, hurricane Andrew
destroyed approximately 25,524 homes and damaged
another 101,241, combining for estimated damages of
$25 billion [1]. In the 2005 hurricane season alone,
hurricanes Dennis, Katrina, Rita, and Wilma caused
extensive roof damages along their path and combined
for a whopping 32.83 billion dollars in damages [2] [3]
[4]. These large financial figures point to an inadequacy
of the existing building codes and accentuate the need for
improving these codes to avoid future disasters. As
suggested in [5], the implementation of affordable
solutions that mitigates potential damage requires an
accurate characterization of the wind forces causing the
destruction, and development of appropriate theoretical
models that relate the storm forces and capacity of man
made structures to resist them. Therefore, it is necessary
to develop systems capable of measuring real-time wind

Manuscript received June 25, 2008; revised November
19, 2008; Accepted January 17, 2008.

pressures and wind speeds as they batter the structures
under study. Furthermore, these systems must be
autonomous and capable of operating remotely while
reporting data to a central location, away from the
hurricane, where data can be analyzed safely.

This paper describes a distributed software system
designed to remotely monitor hurricane winds using
wireless sensor technology. Specifically, it serves as
blueprint to give direction to researchers on the design
and implementation of similar software systems that
require remote collection of wireless sensor data in harsh
environments. The system is a second generation design
based on the work reported in [6] [7] and is made of
custom designed wireless sensor nodes mounted on
residential houses that continuously record hurricane
wind data. The software system coordinates data
collection and transmits to a remote server, where reports
are generated and made available through a convenient
web interface.

The remainder of the paper is organized as follow.
Section II provides an overview of the system for
hurricane characterization. Section III describes the
software requirements. Section IV describes the software
and provides design and architecture details employed in
both the real-time and application software. Specifically,
it provides the design diagrams (e.g., state diagram,
sequence diagram, etc.) created to develop the software
system. Section V provides performance analysis for the
software system. Section VI and VII describe the
benefits obtained by the design employed by the software
system and identify several avenues for future research to
extend the efficiency and usefulness of the software
system. Finally, Section VIII summarizes the paper and
provides concluding remarks.

II. SYSTEM DESCRIPTION

A diagram of the hurricane characterization system [5]
is presented in Figure 1. As seen, the system consists of
remote sensor units installed on the structure under study
and communicating with an associated base unit. The
base unit communicates with the field laptop, which
connects individual house installations to a central server.

JOURNAL OF COMPUTERS, VOL. 4, NO. 12, DECEMBER 2009 1275

© 2009 ACADEMY PUBLISHER
doi:10.4304/jcp.4.12.1275-1285

Figure 1 – System Description

Finally, client computers access the central server using
the Internet to view the parameters associated with wind
characterization.
The house installation may be linked to the server in two
ways. The first one is using IEEE 802.11 (WiFi)
connection. If the monitored house is equipped with the
wireless Internet, the laptop connected to the base station
utilizes the wireless Internet connection as a link to the
central server. Alternatively, for house installations
where there is no availability of 802.11 networks, the
connection is provided through a cellular data network
using an UMTS/HSPA/HSUPA card [8]. This card
provides theoretical uplink (i.e. from base unit towards
server) data throughput of 5.76 Mbps. However, in
practical scenarios, the achievable throughput is limited
by coverage, signal quality and the overall data traffic
demand placed on the cellular network in the deployment
area. In most cases, a throughput of several hundred
Kbps to 1.5 Mbps is easily achieved. Two wireless
networks provide redundant connections. By default, the
sensor network is connected using the 802.11 interface.
However, in the case of power outage on the house or in
the case when the 802.11 connection is not available,
HSUPA provides a seamless alternative to the 802.11
connection.

III. SYSTEM REQUIREMENTS

The system requirements for the hurricane
characterization system consists of both functional and
performance requirements. Functional requirements
dictate the basic capabilities that the system must provide,
while performance requirements dictate the efficiency
level (e.g., response times, throughput) at which the
system must operate to provide the required capabilities.

A. Functional Requirements

Given the application settings, the system needs to
satisfy the following functional requirements:

• Support of up to 30 sensor units per house
installation

• Support for multiple house installations operating
simultaneously

• Capability of extended deployments (more than 96
hours) in a harsh environment of hurricane storms

• Collection of measurements required for
characterization of hurricane winds including
wind pressure, wind speed, wind direction and
temperature

• Report system’s health status including remote
unit signal reception quality (RSSI) and battery
charge

• Reliable local storage of measured data
• Reliable transfer of data to a central server in near

real-time
• Near real-time data processing and presentation of

measured data
• Near real-time control of deployed sensors

B. Performance Requirements

The main performance requirements imposed on the
system ensure acceptable levels of the system’s collection
sampling rate and transmission efficiency. The system
shall provide the following:

• Sampling rate of at least 10 samples/sec for
pressure measurements

• Transmissions rate of at least 5MB of collected
data to the remote site every 5-minute interval

IV. SOFTWARE DESCRIPTION

The software system is composed of three segments,
namely: Collection Segment, Data Processing Segment,
and Client Segment [9]. The Collection Segment is
composed of the software that operates on the remote

1276 JOURNAL OF COMPUTERS, VOL. 4, NO. 12, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

laptop, base unit, and remote sensor units. Upon starting
the collection laptop and base unit, the data collection
software recognizes all deployed sensors and establishes
the internet connection to the central server. As the data
is collected, it is compressed and forwarded to the Data
Processing Segment. The software at the Data Processing
Segment is designed to decompress, process, and analyze
measured data. Upon analysis, it creates HTML files (for
presentation purposes) containing the data and provides
them to the Client Segment. Therefore, when operators
are interested in obtaining near real-time status from a
house, they simply log on to the remote server from any
client computer via a web browser. Once logged on, the
remote server on the Data Processing Segment will
provide its status data every 5 minutes to the Client
Segment. Alternatively, advanced users can also log into
the remote laptop directly to modify the settings
associated with the collection process.

A. Collection Segment

The collection segment is subdivided into two
computer software configuration items, namely: Remote
and Base Unit, and Field Laptop. The remote sensor
units are mounted on the structure under study and are
tasked with monitoring hurricane winds. The base unit
resides near the perimeter of the house in a secured
storage box together with the remote laptop. Together,
the base unit and remote laptop manage data collection
and transmission to the Data Processing Segment.

1) Remote and Base Unit
The remote sensor units contain custom hardware

hosted by a protective metal casing, as seen in Figure 2.
The protective casing is designed carefully so that the
electronics are shielded from the elements [5].

Figure 2 – Remote Sensor Unit

The hardware hosts real-time embedded software
designed as a state machine to properly execute built-in
tests, data collection, and transmission. When power is
applied to the remote sensor units, the embedded software
transitions to the Initialization State, where hardware and
software tests are performed to ensure proper operation of
the remote sensor unit. Once initialization tests are
complete, the remote sensor unit software waits for
direction from the base unit to report test results. The
base unit manages network data transmissions using a
scheduling algorithm that assigns internal transmission
slots to remote sensor units. The scheduling algorithm
uses these time slots to request data from the specific
sensor unit associated with the active time slot. When the

base unit requests data, the remote sensor unit software
transitions to the Reporting State, where it transmits data
wirelessly to the base unit using a half-duplex
communication link. Upon successful data transmission,
the remote sensor unit software transitions to the
Operational State, where data collection using the
onboard sensors begins. Data collection continues until
commanded by the base unit to enter the Reporting State,
where another transmission cycle occurs. This process is
continuous and implemented in all remote sensor units.
Figure 3 shows the state diagram for the remote sensor
units.

Figure 3 – Remote Sensor Unit State Diagram

2) Field Laptop
The field laptop hosts the hardware and software that

manages the wireless sensor network. The minimum
hardware requirements for the laptop are: (1) mass data
storage, (2) serial (i.e., DB-9) transmission port, (3) PS/2
port, (4) 802.11 wireless card, and (5) HSPA cellular
network card. The minimum software requirements for
the field laptop are: (1) Windows XP, (2) Microsoft .NET
Framework 2.0, (3) Custom Data Collection Software,
and (4) Custom Networking Software [7].

a) Data Collection Software
The Data Collection Software orchestrates data

collection by interfacing to the base unit using a standard
DB-9 serial port and a PS/2 port (for the power supply).
Once the sensor network is operational, the Data
Collection Software receives wind characterization data
from the base unit and deposits it in an outgoing directory
monitored by the Custom Networking Software.
Typically five minutes of data collection is deposited as a
single measured data file. This process is illustrated in
Figure 4.

Figure 4 – Data Collection Software & Networking Software Interface

JOURNAL OF COMPUTERS, VOL. 4, NO. 12, DECEMBER 2009 1277

© 2009 ACADEMY PUBLISHER

As seen, the files created in the mass storage become a
critical section where both the Data Collection Software
and Networking Software must share. Therefore, the
software is configured to allow only one process to
acquire the data file at any given time.

The files created by the Data Collection Software
require specific information to allow the Data Processing
Segment to identify status and data collected by specific
remote sensor units. Therefore, a specific protocol is
devised to allow compatibility between the collection
segment and the data processing segment. Figure 5
displays the data file format, as specified by the protocol.

Figure 5 – File Data Format

As seen, the file data contains the following ASCII
fields: time stamp, sensor id, type of signal, pivot sample,
and differential digital unit samples, all separated by the
space character. The Time Stamp field is a coded value
that represents the collection time with resolution of a
centesimal of a second with respect to midnight (0:00
hrs). For example, a collection time of 21:25:14:46 (i.e.,
9:25 p.m. with 14 seconds and 46/100 centesimal of a
second) is coded as follow:

Passing midnight twice causes the time stamp to wrap
around and start over from 0:00 hrs, however since the
file name contains the creation date, this is not an issue.
The Type of Signal field contains information about the
specific status reported by the remote sensor units. The
following measurements are performed:

• P = Pressure
• S = Wind speed
• T = Temperature
• R = RSSI (Signal quality)
• B = Battery charge
• D = Wind direction

The Sensor ID Number field provides identification for
every remote sensor unit. The actual system contains 30
remote sensor units, each assigned an Id from 1 to 30.
Finally, the Pivot Sample field and Differential Digital
Unit Sample fields contain the actual sampling of the
signal (i.e., Pressure, Temperature, RSSI, Wind
Direction, Wind Speed, or Battery) in coded format. The
Pivot Signal field corresponds to the real value of the
signal, which usually results in a relatively large number.
The Differential Digital Unit Sample fields contain step-
incremental of the signal with respect to the Pivot Signal
field value. Once the data is received at the data
processing segment, it is decoded and translated into

proper units, such as millibars, miles per hour, degrees,
etc.

The Data Collection Software is developed using the
Visual Basic .NET language, which is natively supported
by MS Windows operating system. Figure 6 presents the
Graphical User Interface (GUI) of the Data Collection
Software.

Figure 6 - Data Collection Software GUI

b) Collection Networking Software
The Networking Software is a separate software

module that provides the necessary communications
infrastructure between remote sensor units and the Data
Processing Segment. The architecture, which is
described extensively in [9], has been extended to include
the Global Messaging layer. An overview of the
extended networking software’s architecture for the
hurricane monitoring system is presented in Figure 7.

Figure 7 – Networking Software Architecture

The User Layer is responsible for all aspects of the
visualization of the data in the system. This layer is
necessary to separate the processing and communication
of the system from the visuals. The manager layer is
where all logic and processing are orchestrated. The
main functions managed at this layer are compression,
events, and file system common tasks. The manager
layer delegates all visualization aspects to the user layer
through the observer design pattern [10], and also
delegates all details of communication to the
communication layer. The communications layer is
responsible for handling the details of the FTP
communication protocol for successful data transmission.
Finally, the Global Layer provides a central repository for
functionality common to all layers. Mainly, this layer
contains Messaging objects that are passed between
layers and serve as the main interface of communication.
New messages can be added to provide new tasks that
can be passed to any software object residing at any layer
of the system.

1278 JOURNAL OF COMPUTERS, VOL. 4, NO. 12, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

Upon startup, the networking software reads the
windows registry to determine the path where newly
collected sensor data is stored. Once the path is
identified, the File System Manager uses the Microsoft’s
.NET FileSystemWatcher object to monitor the path. As
wind characterization data from the sensor nodes are
collected by the Data Collection Software and placed in
the outgoing directory, the File System Manger creates a
compressed copy using the Compression Manager. Once
compressed, the Networking Software uses the FTP
Client, at the communication layer, to transfer the file
using FTP. The FTP client component uses the
Microsoft’s .NET FtpWebRequest object, which resides
in the System.Net namespace, to provide capabilities to
easily implement reliable FTP clients without the effort
required in traditional languages such as C/C++. By
leveraging on the .NET framework, implementing
features such as file system monitoring, compression, and
FTP communication are trivial.

Using the layered design approach [11], new
capabilities can be incorporated to the system without
affecting any other part of the software, simply by adding
new objects at specific layers. Each layer serves as
compartment for related software objects, therefore
minimizing the dependency between unrelated software
objects. Also, by relying on a common messaging
interface, software objects whether currently existing or
newly added, are always independent from all other
objects and from other layers in the software architecture.
Figure 9 displays a sequence diagram for the Networking
Software operations discussed above.

B. Data Processing Segment

The data processing segment contains one Client
Server Communication Interface (CSCI), namely:
Remote Server. The Remote Server consists of a
Personal Computer (PC) executing customized software.
The minimum hardware requirements of the server are:
(1) mass data storage capabilities and (2) Ethernet
network card. The minimum software requirements are:
(1) Windows XP, (2) Microsoft .NET Framework 2.0, (3)
Custom Server Software, (4) Microsoft’s Internet
Information Server (IIS), and (5) FTP Server.

1) Remote Server Configuration
The Remote Server requires custom

configuration in order to operate properly. First, the
Remote Server requires a public static IP address to allow
communication between the collection and client
segments. Once communication is established, the FTP
server requires multiple different FTP directories where
data from the different house locations are stored. FTP
clients accounts are created each containing a home
directory, username, and password. Each field laptop is
configured with specific FTP account, therefore by using
unique accounts, the data are sent to the right location
(i.e. home directory) in the Remote Server.

2) Remote Server Software
The Custom Server software is a GUI-less windows

service that executes in the background from the moment
the computer is powered on. Its design reuses the design
layers from the Networking Software with small software
changes. Specifically, the Custom Server Software
design reuses the File System Manager, Compression
Manager, Event Manager, and all objects residing in the
Global Layer. These objects revert the operations applied
to the sensor data at the collection segment before
transmission.

 The server software is configured in the windows
registry to monitor mass storage locations for new files.
Upon startup, the server software reads the windows
registry to determine the file system paths to monitor.
Each file system path stores sensor data from individual
houses. Therefore, data collected from one house is not
combined with data from other houses. This process is
for a case of four houses is illustrated in Figure 8.

Figure 8 – Server Side Process

Once data are transmitted, the server software
decompresses it using the Compression Manager, and
creates HTML files using the Web User Interface object
that resides in the User Layer. Once in HTML format,
client computers can view the data from any location
using the Internet Browser. The details of this process
are captured in the server software sequence diagram as
seen in Figure 9.

Figure 9 – Server Software Sequence Diagram

JOURNAL OF COMPUTERS, VOL. 4, NO. 12, DECEMBER 2009 1279

© 2009 ACADEMY PUBLISHER

C. Client Segment

The client segment is composed of computers
connected to the Internet. The main requirements for
computers in the client segment are Internet connection
and Internet Browser (e.g., Explorer, Firefox, etc.). The
client segment software is composed of HTML files that
are dynamically created and delivered to the client
segment upon requests using the HTTP protocol. The
HTML files are configured to initiate an internal timer of
5 minutes. When the timer expires, the browser initiates
an HTTP request to the Remote Server (in the Data
Collection Segment), which provides an HTTP response
containing the latest sensor data collected.

V. PERFORMANCE ANALYSIS

Performance analysis is important to accurately
evaluate the efficiency of the system. The main metrics
associated with the software system are: sampling rate
and network transmission rate. The following sections
provide analysis for both metrics.

A) Sampling Rate

Sampling rate is the average number of samples per
second collected by each remote sensor unit. Due to
limited throughput on the Sensor-Base interface, the
sampling rate varies according to the number of remote
sensor units installed on the residential structure. A
simplified timing diagram outlining the operation of the
system is presented in Figure 10. For the sake of
simplicity, the diagram shows only two remote units.
Extension to the case of more units is straightforward. As
seen, there are four variables that describe the data
collection process. They are defined as follows:

• TCYC : the time that elapses between two
consecutive calls to the same remote unit

• TRB : the time required for data transfer from
remote unit to base unit

• TBC : the time required for data transfer from base
unit to data collection software

• NR : the number of active remote sensor units.

Figure 10 – Simplified Timing Diagram of the System

Initial sampling rate for the software system was
computed in [5] using the metrics above, however
through the application of optimization techniques in the

real time embedded software, the sampling rate
calculation formulas are modified as follow:

() RBCRBCYC NTTT += (1)

OHRRTRP
S

air

S
RB TTT

N

R

N
T +++= 2

4

8
 (2)

P
S

serial

S
BC T

N

R

N
T

4
8

+= (3)

()OHRRTRRP
air

S TTNT
R

T ++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= 2

32
 (4)

S
S T

R
1

= (5)

where NS is the number of samples read on a remote
sensor unit; TP is the time required to ensure data
transmission; TRTR is the time required for the transceiver
to stabilize after switching from receive and transmit
modes; Rair is the transmission rate on the air interface (in
kbps), and TOHR is the overhead time experienced due to
communication delays on remote sensor units caused by
bad reception quality (RSSI), low battery charge, or other
defects in the remote sensor units. The TOHR variable has
been approximated for the current system configuration
and categorized in Table I.

TABLE I. VALUES (IN MSEC) AND CATEGORIES FOR TOHR

Given the current system parameters of TP= 1 msec, TRTR

= 3 msec, Rair = 45 Kbps, one can easily compute the
approximate relationship (Rs) between the number of
remote sensor units and achievable sampling rate at each
level of TOHR (i.e., Excellent = 0, Very Good = 5, Good
= 10, Regular = 15, and Bad = 20 msec.). Results are
shown in Figure 11.

1280 JOURNAL OF COMPUTERS, VOL. 4, NO. 12, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

Figure 11 – Sampling Rate versus Number of Remote Sensor Units

Figure 11 shows both the expected theoretical values
and the experimental values for Rs at different levels of
TOHR. It can be seen that the system’s measured sampling
rate closely matches the expected theoretical sampling
rate at all levels of TOHR. Based on Figure 11, Table II
provides estimates of achievable sampling rates for
system deployment having different number of remote
sensor units.

TABLE II. ACHIEVABLE SAMPLING RATE FOR VARIOUS SYSTEM
CONFIGURATIONS

B) Networking Software Efficiency

Most of the communications efficiency achieved by
the networking software is attributed to compression
provided by the Microsoft’s .NET framework. The
compression component resides in the System.
IO.Compression namespace and allows programmatic
compression and decompression using the GZIP format,
which uses a broadly accepted algorithm. The built-in
.NET compression tools are convenient and easy to use;
however, experimental results showed that other formats,
such as the .zip format, provide better compression as the
size of the data increases [9]. Also, it was noticed that
the time for compression is longer for the .NET
compression tools. Figure 12 displays the results of
compressing several ASCII files using both the .NET
compression and the .zip format:

Figure 12 – Comparison between .NET built-in compression and
standalone ZIP

It can be seen that the compression algorithms have
relatively similar efficiency when the original data are
less than 10 MB. After 10 MB the increased compression
efficiency of the .zip format is evident. However, since
the software system is designed to normally transfer 5
MB of data every 5 minutes, it does not experience much
of the .NET compression inefficiency. After compression
using .NET, 5 MB of data are compressed to
approximately 94 KB, which is easily handled by either
one of two wireless networks. Even with the known
drawbacks, compression with .NET shows great
advantages and significant gains in bandwidth usage, as
seen in Figure 13. Figure 13 shows the theoretical
characterization of transmission time using the
networking software at several supported data size.

Figure 13 – Transmit Time versus Data Size (in sec)

Both communications links used by the networking
software (i.e., WLAN and Wireless Cellular Network)
provide theoretical bandwidth above 500 Kbps.
However, when using cellular data networks, throughput
could be limited by coverage, signal quality, and overall
data traffic demand placed on the cellular network in the
deployment area. Assuming that degradation lowers the
data rate to 500 Kbps, the networking software can still
transfer up to 80 MB of data in less than 25 seconds,
which is way below the 5 minutes transmission cycle.

JOURNAL OF COMPUTERS, VOL. 4, NO. 12, DECEMBER 2009 1281

© 2009 ACADEMY PUBLISHER

Using the theoretical transmission calculation from
Figure 13, table III shows the resulting transmission time
(in seconds) for various data sizes using the networking
software.

TABLE III. THEORETICAL TRANSMISSION TIMES (IN SEC)

Since the typical operation consists of 5 MB data file
transmission, the expected transmission time from the
Data Collection Segment to Data Processing Segment is
(1.50 + .75 + .25 + .15) /4 = .7 sec. Preliminary tests
have resulted in comparable numbers between theoretical
and experimental.

VI. BENEFITS OF SOFTWARE SYSTEM

There are many benefits of using the described
software system. First, by separating application specific
software from the communication framework, the
software can easily be ported to a wide variety of sensor
network applications with little effort. Second, by
leveraging on Microsoft’s .NET framework, the software
system employs a relative small amount of code to add
capabilities that would have made the software more
complex and error prone if done with an older language
such as C or C++. By embedding well known object
oriented design patterns into the architecture, the software
has a high level of modularity, which results in reusable
and easily maintainable code as proven by the reuse in
both collection and data processing segments. Also,
addition of new capabilities to the system such as new
user interfaces, new processing tasks, or new
communication protocols is trivial. Another notable
benefit is the use of a convenient web interface for status.
This means that information is available anywhere,
anytime. Finally, the use of both wireless LAN and
cellular networks provide robustness in harsh
environments. Power outages will not be an issue as long
as the field laptop operates on battery power and the
cellular network is available.

VII. CURRENT AND FUTURE WORK

The system was recently tested at the University of
Florida using their Hurricane Simulator on a mock up
house-roof. A total of 15 pressure sensors and the Young
anemometer were deployed. The schematics of the sensor
locations and a picture of the deployment are presented in
Figure 14. The software system was used for the
collection and on-line system performance monitoring.
The pressure and wind speed data from selected sensors
are shown in Figures 15 and 16. The effective sampling
rate of each channel was 30 samples/s. Sensor number 16
was mounted inside an enclosure to measure the
reference pressure.

Figure 14 - University of Florida (Gainesville) deployment

1282 JOURNAL OF COMPUTERS, VOL. 4, NO. 12, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

Figure15 - Time trace of pressure variation during wind gust

Figure 16 - Time trace of 3-sec average wind gust.

Although the software system described in this paper
performs adequately for the task at hand, there are several
avenues for its improvement. Some of the possible
improvement directions are listed as follows.

A) Encryption

Security issues in network communications can be the
most important requirement for some remote wireless
sensor network applications. For this reason, the
software architectural framework must include
cryptographic support to fit the needs of these
applications. Cryptography may be one of the most

challenging tasks for software developers, since it
requires knowledge of advanced encryption algorithms.
Native to the .NET framework is the System.Security.
Cryptography namespace which includes tools to
facilitate the process of providing security to software
applications via encryption. Future versions of the
architecture presented in this paper could benefit from a
Crypto Manager object that resides in the Manager Layer
and handles all aspects of encryption and decryption
when communicating across remote sties.

JOURNAL OF COMPUTERS, VOL. 4, NO. 12, DECEMBER 2009 1283

© 2009 ACADEMY PUBLISHER

B) Connection Management

The current implementation requires configuration of
the field laptop to Wireless LAN or cellular network.
Switching between communication links requires
physical presence at the site. Current efforts are under
way to investigate ways in which the communication link
can be switched automatically via software in case one of
the links fails.

C) Field Laptop Remote Desktop Management

Current efforts are underway to add remote desktop
capabilities to the field laptop. Open source software
solutions have been tested and initial results allowed
complete control of the field laptop from the Remote
Server through both wireless LAN and cellular network.
Further investigation is required to identify security
considerations to safely add this feature to the system.

VIII. CONCLUSION

We have presented a distributed software system used
in a real sensor network to collect, transmit, and present
hurricane wind data in real time. The main goal is to
safely collect wind data as it interacts with residential
structures to determine possible effects caused by this
interaction. The results of this study may serve as an
influential factor in the way engineers design residential
structures to minimize loss due to hurricanes. The
complete system is currently under test and will be ready
for deployment for the 2009 hurricane season.

ACKNOWLEDGMENT

This material is based upon work supported by the
National Science Foundation under Grant No. 0625124.
This support is gratefully acknowledged. Any opinions,
findings, and conclusions or recommendations expressed
in this material are those of the authors and do not
necessarily reflect the views of the National Science
Foundation.

The authors are also thankful to the University of
Florida’s Civil Engineering Department for providing
their hurricane simulator test facilities

REFERENCES

[1] Rappaport, Ed.,
http://www.nhc.noaa.gov/1992andrew.html,
Preliminary Report. National Hurricane Center.
Retrieved on 2008-04-10.

[2] Beven, Jack. http://www.nhc.noaa.gov/pdf/TCR-
AL042005_Dennis.pdf, Retrieved on 2008-04-10.

[3] Knabb, Richard D., Brown, Daniel P., Rhome, Jamie
R., http://www.nhc.noaa.gov/pdf/TCR-
AL182005_Rita.pdf, NHC Rita Report (English).
Retrieved on 6 June, 2008.

[4] Pasch, Richard J., Blake, Eric S., Cobb, Hugh D.,
Roberts, David P.,
http://www.nhc.noaa.gov/pdf/TCR-
AL252005_Wilma.pdf Retrieved on 6 June, 2008.

[5] Kostanic, I., Subramanian, C.S., Pinelli, J.-P., Buist,
L., Velazquez, A., and Wittfeldt, A., “Monitoring of

Hurricane Wind Pressures and Wind Speeds on a
Residential Home Roof with Wireless
Instrumentation,” in proceedings of Structural
Engineering Congress, Vancouver, Canada, April 24-
26, 2008.

[6] Pinelli, J-P., Subramanian, C.S., Lapilli, C., and
Buist, L., “Application of a Wireless Pressure
Sensing System to Coastal Wind Monitoring,” Wind
and Structures, An International Journal, Vol. 8, No.
3, 2005, pp 179-196.

[7] Subramanian, C.S., Pinelli, J.-P., C. Lapilli, and
Buist, L., “A Wireless Multi-Point Pressure Sensing
System: Design and Operation,” IEEE Sensors
Journal, Vol.5, No.5, October 2005, pp 1068-1074.

[8] Holma, H., Toskala, A., HSDPA/HSUPA for UMTS,
John Wiley and Sons, LTD., 2006.

[9] Otero, C. E., Kostanic, I., Subramanian, C., Pinelli, J.
P., Velazquez, A., “A Distributed Framework for
Remote Monitoring of Hurricane Wind Pressures and
Wind Speeds using Wireless Sensor Networks”,
Proceedings of 2008 International Conference on
Wireless Networks, 2008.

[10] Gamma, E., Helm, R., Johnson, R. and Vlissides,
J.M., “Design Patterns: Elements of Reusable
Object-Oriented Software”, Addison-Wesley
Professional Computing Series, 1994.

[11] Buschmann, F., Meunier, R., Rohnert, H., and
Sommerlad, P., “Pattern-Oriented Software
Architecture Volume 1: A System of Patterns”,
Wiley, 1st edition, 1996.

[12] Akyildiz, I.F., Su, W., Sankarasubramaniam, Y.,
Cayirci, E., “Wireless sensor networks: a survey”,
Computer Networks 38 (4) (2002) 393–422.

[13] Durst, C.S., “Wind Speeds over short periods of
time”, Meteor. Mag., 89, 181-187, 1960

[14] Marshall, R.D. and W.R. Krayer, “Gust Factors
applied to hurricane winds”, Bull. Amer. Meteor.
Soc.,73, 613-617, 1992

[15] L. Kristensen and P. Kirkegaard. ‘Digitization noise
in power spectral analysis’. J. Atmos.Oceanic
Technol., 4:228–335, 1987.

[16] J. O. Smith and P. Gosset: “A Flexible Sampling-
Rate Conversion Method” ICASSP-84, Volume II,
pp. 19.4.1- 19.4.2. New York, IEEE Press M. Young,
The Technical Writers Handbook. Mill Valley, CA:
University Science, 1989.

[17] T.A Ramstad “Digital Methods for Conversion
between Arbitrary Sampling Frequencies”. IEEE
Transactions on Acoustics, Speech, and Signal
Processing, Vol. ASSP-32, No. 3, June 1984.

Dr. Carlos E. Otero was born in 1977
in Bayamon, Puerto Rico. He received a
B.S. in computer science, M.S. in
software engineering, M.S. in systems
engineering, and Ph.D. in computer
engineering from Florida Institute of

1284 JOURNAL OF COMPUTERS, VOL. 4, NO. 12, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

Technology, in Melbourne, FL. His primary research
interests include various topics in simulation,
performance analysis, and optimization of wireless ad
hoc & sensor networks.

He has over 10 years of industry experience in
satellite communications systems, command & control
systems, wireless security systems, and unmanned aerial
vehicle systems. He currently works at Northrop
Grumman Corporation.

Dr. Ivica Kostanic was born in 1968
in Belgrade, Yugoslavia. He
obtained BSEE, MSEE and PhD from
Belgrade University, Florida Institute
of Technology and University of
Central Florida respectively. His
principal research interests include

various topics in radio communication, cellular systems
and wireless sensor networks.

Currently, he is faculty member in Electrical and
Computer Engineering of Florida Institute of Technology
where he teaches courses related wireless
communication, personal communication and microwave
circuit design. He is the technical director of Wireless
Center of Excellence (WiCE) which is a group at Florida
Tech dedicated to promoting research in wireless
communication and computing technologies.

Dr. Kostanic is a member of IEEE Communication
Society.

Dr. Chelakara S. Subramanian
was born in Mumbai (formerly
Bombay), India on December 24,
1950. His academics qualifications
are Ph.D. mechanical
engineering,1982, University of

Newcastle, Australia. M.E. aeronautical engineering,
1975, Indian Institute of Science, Bangalore. B.E.
mechanical engineering, 1973, BMS College of
Engineering, Bangalore University .

Currently he is a Professor and Program Chair in the
Department of Mechanical and Aerospace Engineering at
Florida Institute of Technology (FIT), FL, His previous
appointments include Sabbatical Visiting Faculty (2002-
2003) at Air Force Institute of Technology and Turbine
Testing Division, Propulsion Directorate, Wright-
Patterson Air Force Base, OH; Program Chair of
Aerospace Engineering (1996 - 1999) at Florida Institute
of Technology (FIT), FL; ASEE Summer Visiting
Faculty Fellow (June - Aug 1996, and 1999)
Aerodynamic Measurement Competency and ICASE
Summer Visiting Faculty Fellow (June - Aug 1992) at the
Flow Physics Branch of NASA Langley Research Center,
VA; Adjunct Professor (1988- 1991) in the Department
of Mechanical Engineering, Naval Postgraduate School,
Monterey, CA; Research Engineer (1986- 88) at British
Maritime Technology, Newcastle, UK, and Research
Associate (1982- 1986) at Imperial College of Science

and Technology, London UK.
Professor Subramanian’s current research activities

are in advanced fluid dynamics instrumentation, wind
engineering, and complex turbulent flows. He is an
associate fellow of AIAA, fellow of Society of Engineers,
UK, senior member of ASME, licensed Professional
Engineer in UK and a member of International Society of
Professional Engineers in France. He has authored over
90 technical publications in international journals, books
and proceedings and, has a US patent to his credit.

Dr. Jean-Paul Pinelli received a B.S.
in civil engineering from the University
of Buenos Aires, Argentina, and M.S.
and Ph.D. in civil / structural
engineering from Georgia Institute of
Technology, Atlanta, GA. His main
research interests are in wind
engineering, risk modeling, and

hurricane damage mitigation. He is currently a Professor
of civil engineering at Florida Tech, Melbourne, FL.

Dr. Pinelli is a member of the American Association
for Wind Engineering, the American Society of Civil
Engineers, and the American Society of Engineering
Education among others.

Larry Buist was born in 1942 in Grand
Rapids, Michigan. He has over 20
years of experience in the electronics
industry and holds a patent in the video
game industry. He currently works at
Florida Institute of Technology in the

design and construction of electronic and electro-
mechanicals circuits on a variety of research projects.

JOURNAL OF COMPUTERS, VOL. 4, NO. 12, DECEMBER 2009 1285

© 2009 ACADEMY PUBLISHER

