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Abstract— This paper presents a distributed software 
system for a wireless sensor network application that 
remotely monitors the effects of hurricane winds on man-
made structures.  The software system is divided into three 
independent segments that are distributed across the 
Internet to provide real-time collection and transmission of 
data between wireless remote sensor units and a centralized 
server.  The software system uses a custom-designed 
communications architecture that is built upon existing 
wireless networking standards (IEEE 802.11 and HSPA) 
and that benefit from capabilities of Microsoft .NET 
development framework.  By segmenting the software and 
separating application-specific code from the 
communications architecture, the software can be reused 
and applied towards a wide variety of wireless sensor 
networks operating in harsh environments.  The system is 
currently under test and will be deployed for the 2009 
hurricane season.   

Index Terms— Wireless sensor networks, hurricane 
monitoring,   architecture, structure health monitoring 

I. INTRODUCTION
1Hurricanes have historically posed serious threats to 

man made structures.  In 1992, hurricane Andrew 
destroyed approximately 25,524 homes and damaged 
another 101,241, combining for estimated damages of 
$25 billion [1].  In the 2005 hurricane season alone, 
hurricanes Dennis, Katrina, Rita, and Wilma caused 
extensive roof damages along their path  and combined 
for a whopping 32.83 billion dollars in damages [2] [3] 
[4].  These large financial figures point to an inadequacy 
of the existing building codes and accentuate the need for 
improving these codes to avoid future disasters.  As 
suggested in [5], the implementation of affordable 
solutions that mitigates potential damage requires an 
accurate characterization of the wind forces causing the 
destruction, and development of appropriate theoretical 
models that relate the storm forces and capacity of man 
made structures to resist them.  Therefore, it is necessary 
to develop systems capable of measuring real-time wind 
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pressures and wind speeds as they batter the structures 
under study.  Furthermore, these systems must be 
autonomous and capable of operating remotely while 
reporting data to a central location, away from the 
hurricane, where data can be analyzed safely.  

This paper describes a distributed software system 
designed to remotely monitor hurricane winds using 
wireless sensor technology.  Specifically, it serves as 
blueprint to give direction to researchers on the design 
and implementation of similar software systems that 
require remote collection of wireless sensor data in harsh 
environments.  The system is a second generation design 
based on the work reported in [6] [7] and is made of 
custom designed wireless sensor nodes mounted on 
residential houses that continuously record hurricane 
wind data.  The software system coordinates data 
collection and transmits to a remote server, where reports 
are generated and made available through a convenient 
web interface.   

The remainder of the paper is organized as follow.  
Section II provides an overview of the system for 
hurricane characterization. Section III describes the 
software requirements.  Section IV describes the software 
and provides design and architecture details employed in 
both the real-time and application software.  Specifically, 
it provides the design diagrams (e.g., state diagram, 
sequence diagram, etc.) created to develop the software 
system.  Section V provides performance analysis for the 
software system.  Section VI and VII describe the 
benefits obtained by the design employed by the software 
system and identify several avenues for future research to 
extend the efficiency and usefulness of the software 
system.  Finally, Section VIII summarizes the paper and 
provides concluding remarks. 

II. SYSTEM DESCRIPTION

A diagram of the hurricane characterization system [5] 
is presented in Figure 1.  As seen, the system consists of 
remote sensor units installed on the structure under study 
and communicating with an associated base unit. The 
base unit communicates with the field laptop, which 
connects individual house installations to a central server.   
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Figure 1 – System Description 

Finally, client computers access the central server using 
the Internet to view the parameters associated with wind 
characterization. 
The house installation may be linked to the server in two 
ways.  The first one is using IEEE 802.11 (WiFi) 
connection.  If the monitored house is equipped with the 
wireless Internet, the laptop connected to the base station 
utilizes the wireless Internet connection as a link to the 
central server.  Alternatively, for house installations 
where there is no availability of 802.11 networks, the 
connection is provided through a cellular data network 
using an UMTS/HSPA/HSUPA card [8].  This card 
provides theoretical uplink (i.e. from base unit towards 
server) data throughput of 5.76 Mbps.  However, in 
practical scenarios, the achievable throughput is limited 
by coverage, signal quality and the overall data traffic 
demand placed on the cellular network in the deployment 
area.  In most cases, a throughput of several hundred 
Kbps to 1.5 Mbps is easily achieved.  Two wireless 
networks provide redundant connections.  By default, the 
sensor network is connected using the 802.11 interface.  
However, in the case of power outage on the house or in 
the case when the 802.11 connection is not available, 
HSUPA provides a seamless alternative to the 802.11 
connection.   

III. SYSTEM REQUIREMENTS

The system requirements for the hurricane 
characterization system consists of both functional and 
performance requirements. Functional requirements 
dictate the basic capabilities that the system must provide, 
while performance requirements dictate the efficiency 
level (e.g., response times, throughput) at which the 
system must operate to provide the required capabilities.   

A. Functional Requirements 

Given the application settings, the system needs to 
satisfy the following functional requirements: 

• Support of up to 30 sensor units per house 
installation 

• Support for multiple house installations operating 
simultaneously 

• Capability of extended deployments (more than 96 
hours) in a harsh environment of hurricane storms 

• Collection of measurements required for 
characterization of hurricane winds including  
wind pressure, wind speed, wind direction and 
temperature 

• Report system’s health status including remote 
unit signal reception quality (RSSI) and battery 
charge 

• Reliable local storage of measured data 
• Reliable transfer of data to a central server in near 

real-time 
• Near real-time data processing and presentation of 

measured data 
• Near real-time control of deployed sensors 

B. Performance Requirements 

The main performance requirements imposed on the 
system ensure acceptable levels of the system’s collection 
sampling rate and transmission efficiency.  The system 
shall provide the following:  

• Sampling rate of at least 10 samples/sec for 
pressure measurements 

• Transmissions rate of at least 5MB of collected 
data to the remote site every 5-minute interval 

IV. SOFTWARE DESCRIPTION

The software system is composed of three segments, 
namely: Collection Segment, Data Processing Segment, 
and Client Segment [9].  The Collection Segment is 
composed of the software that operates on the remote 
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laptop, base unit, and remote sensor units. Upon starting 
the collection laptop and base unit, the data collection 
software recognizes all deployed sensors and establishes 
the internet connection to the central server.  As the data 
is collected, it is compressed and forwarded to the Data 
Processing Segment. The software at the Data Processing 
Segment is designed to decompress, process, and analyze 
measured data.  Upon analysis, it creates HTML files (for 
presentation purposes) containing the data and provides 
them to the Client Segment.  Therefore, when operators 
are interested in obtaining near real-time status from a 
house, they simply log on to the remote server from any 
client computer via a web browser.  Once logged on, the 
remote server on the Data Processing Segment will 
provide its status data every 5 minutes to the Client 
Segment.   Alternatively, advanced users can also log into 
the remote laptop directly to modify the settings 
associated with the collection process. 

A.  Collection Segment 

The collection segment is subdivided into two 
computer software configuration items, namely: Remote 
and Base Unit, and Field Laptop.  The remote sensor 
units are mounted on the structure under study and are 
tasked with monitoring hurricane winds.  The base unit 
resides near the perimeter of the house in a secured 
storage box together with the remote laptop.  Together, 
the base unit and remote laptop manage data collection 
and transmission to the Data Processing Segment. 

1)  Remote and Base Unit 
The remote sensor units contain custom hardware 

hosted by a protective metal casing, as seen in Figure 2.  
The protective casing is designed carefully so that the 
electronics are shielded from the elements [5]. 

Figure 2 – Remote Sensor Unit 

The hardware hosts real-time embedded software 
designed as a state machine to properly execute built-in 
tests, data collection, and transmission.  When power is 
applied to the remote sensor units, the embedded software 
transitions to the Initialization State, where hardware and 
software tests are performed to ensure proper operation of 
the remote sensor unit.  Once initialization tests are 
complete, the remote sensor unit software waits for 
direction from the base unit to report test results.  The 
base unit manages network data transmissions using a 
scheduling algorithm that assigns internal transmission 
slots to remote sensor units. The scheduling algorithm 
uses these time slots to request data from the specific 
sensor unit associated with the active time slot.  When the 

base unit requests data, the remote sensor unit software 
transitions to the Reporting State, where it transmits data 
wirelessly to the base unit using a half-duplex 
communication link.  Upon successful data transmission, 
the remote sensor unit software transitions to the 
Operational State, where data collection using the 
onboard sensors begins.  Data collection continues until 
commanded by the base unit to enter the Reporting State, 
where another transmission cycle occurs.  This process is 
continuous and implemented in all remote sensor units.   
Figure 3 shows the state diagram for the remote sensor 
units.  

Figure 3 – Remote Sensor Unit State Diagram 

2) Field Laptop 
The field laptop hosts the hardware and software that 

manages the wireless sensor network.  The minimum 
hardware requirements for the laptop are: (1) mass data 
storage, (2) serial (i.e., DB-9) transmission port, (3) PS/2 
port, (4) 802.11 wireless card, and (5) HSPA cellular 
network card. The minimum software requirements for 
the field laptop are: (1) Windows XP, (2) Microsoft .NET 
Framework 2.0, (3) Custom Data Collection Software, 
and (4) Custom Networking Software [7].   

a)  Data Collection Software 
The Data Collection Software orchestrates data 

collection by interfacing to the base unit using a standard 
DB-9 serial port and a PS/2 port (for the power supply). 
Once the sensor network is operational, the Data 
Collection Software receives wind characterization data 
from the base unit and deposits it in an outgoing directory 
monitored by the Custom Networking Software. 
Typically five minutes of data collection is deposited as a 
single measured data file.  This process is illustrated in 
Figure 4.           

Figure 4 – Data Collection Software & Networking Software Interface 
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As seen, the files created in the mass storage become a 
critical section where both the Data Collection Software 
and Networking Software must share.  Therefore, the 
software is configured to allow only one process to 
acquire the data file at any given time.    

The files created by the Data Collection Software 
require specific information to allow the Data Processing 
Segment to identify status and data collected by specific 
remote sensor units.  Therefore, a specific protocol is 
devised to allow compatibility between the collection 
segment and the data processing segment.  Figure 5 
displays the data file format, as specified by the protocol. 

Figure 5 – File Data Format 

As seen, the file data contains the following ASCII 
fields: time stamp, sensor id, type of signal, pivot sample, 
and differential digital unit samples, all separated by the 
space character.  The Time Stamp field is a coded value 
that represents the collection time with resolution of a 
centesimal of a second with respect to midnight (0:00 
hrs). For example, a collection time of 21:25:14:46 (i.e., 
9:25 p.m. with 14 seconds and 46/100 centesimal of a 
second) is coded as follow:  

Passing midnight twice causes the time stamp to wrap 
around and start over from 0:00 hrs, however since the 
file name contains the creation date, this is not an issue.  
The Type of Signal field contains information about the 
specific status reported by the remote sensor units.  The 
following measurements are performed: 

• P = Pressure   
• S = Wind speed   
• T = Temperature   
• R = RSSI (Signal quality)  
• B = Battery charge   
• D = Wind direction   

The Sensor ID Number field provides identification for 
every remote sensor unit.  The actual system contains 30 
remote sensor units, each assigned an Id from 1 to 30.  
Finally, the Pivot Sample field and Differential Digital 
Unit Sample fields contain the actual sampling of the 
signal (i.e., Pressure, Temperature, RSSI, Wind 
Direction, Wind Speed, or Battery) in coded format.  The 
Pivot Signal field corresponds to the real value of the 
signal, which usually results in a relatively large number.  
The Differential Digital Unit Sample fields contain step-
incremental of the signal with respect to the Pivot Signal 
field value.  Once the data is received at the data 
processing segment, it is decoded and translated into 

proper units, such as millibars, miles per hour, degrees, 
etc.    

The Data Collection Software is developed using the 
Visual Basic .NET language, which is natively supported 
by MS Windows operating system. Figure 6 presents the 
Graphical User Interface (GUI) of the Data Collection 
Software.  

Figure 6 - Data Collection Software GUI 

b) Collection Networking Software 
The Networking Software is a separate software 

module that provides the necessary communications 
infrastructure between remote sensor units and the Data 
Processing Segment.  The architecture, which is 
described extensively in [9], has been extended to include 
the Global Messaging layer.  An overview of the 
extended networking software’s architecture for the 
hurricane monitoring system is presented in Figure 7. 

Figure 7 – Networking Software Architecture 

The User Layer is responsible for all aspects of the 
visualization of the data in the system.  This layer is 
necessary to separate the processing and communication 
of the system from the visuals.  The manager layer is 
where all logic and processing are orchestrated.  The 
main functions managed at this layer are compression, 
events, and file system common tasks.   The manager 
layer delegates all visualization aspects to the user layer 
through the observer design pattern [10], and also 
delegates all details of communication to the 
communication layer.  The communications layer is 
responsible for handling the details of the FTP 
communication protocol for successful data transmission.  
Finally, the Global Layer provides a central repository for 
functionality common to all layers.  Mainly, this layer 
contains Messaging objects that are passed between 
layers and serve as the main interface of communication.  
New messages can be added to provide new tasks that 
can be passed to any software object residing at any layer 
of the system.  
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Upon startup, the networking software reads the 
windows registry to determine the path where newly 
collected sensor data is stored.  Once the path is 
identified, the File System Manager uses the Microsoft’s 
.NET FileSystemWatcher object to monitor the path.  As 
wind characterization data from the sensor nodes are 
collected by the Data Collection Software and placed in 
the outgoing directory, the File System Manger creates a 
compressed copy using the Compression Manager.  Once 
compressed, the Networking Software uses the FTP 
Client, at the communication layer, to transfer the file 
using FTP.  The FTP client component uses the 
Microsoft’s .NET FtpWebRequest object, which resides 
in the System.Net namespace, to provide capabilities to 
easily implement reliable FTP clients without the effort 
required in traditional languages such as C/C++.  By 
leveraging on the .NET framework, implementing 
features such as file system monitoring, compression, and 
FTP communication are trivial.   

Using the layered design approach [11], new 
capabilities can be incorporated to the system without 
affecting any other part of the software, simply by adding 
new objects at specific layers.  Each layer serves as 
compartment for related software objects, therefore 
minimizing the dependency between unrelated software 
objects.  Also, by relying on a common messaging 
interface, software objects whether currently existing or 
newly added, are always independent from all other 
objects and from other layers in the software architecture.  
Figure 9 displays a sequence diagram for the Networking 
Software operations discussed above.   

B.  Data Processing Segment 

The data processing segment contains one Client 
Server Communication Interface (CSCI), namely: 
Remote Server.  The Remote Server consists of a 
Personal Computer (PC) executing customized software. 
The minimum hardware requirements of the server are: 
(1) mass data storage capabilities and (2) Ethernet 
network card. The minimum software requirements are: 
(1) Windows XP, (2) Microsoft .NET Framework 2.0, (3) 
Custom Server Software, (4) Microsoft’s Internet 
Information Server (IIS), and (5) FTP Server.    

1) Remote Server Configuration 
The Remote Server requires custom 

configuration in order to operate properly.  First, the 
Remote Server requires a public static IP address to allow 
communication between the collection and client 
segments.  Once communication is established, the FTP 
server requires multiple different FTP directories where 
data from the  different house locations are stored.  FTP 
clients accounts are created each containing a home 
directory, username, and password.  Each field laptop is 
configured with specific FTP account, therefore by using 
unique accounts, the data are sent to the right location 
(i.e. home directory) in the Remote Server.    

2) Remote Server Software 
The Custom Server software is a GUI-less windows 

service that executes in the background from the moment 
the computer is powered on.  Its design reuses the design 
layers from the Networking Software with small software 
changes.  Specifically, the Custom Server Software 
design reuses the File System Manager, Compression 
Manager, Event Manager, and all objects residing in the 
Global Layer.  These objects revert the operations applied 
to the sensor data at the collection segment before 
transmission. 

 The server software is configured in the windows 
registry to monitor mass storage locations for new files.  
Upon startup, the server software reads the windows 
registry to determine the file system paths to monitor.  
Each file system path stores sensor data from individual 
houses.  Therefore, data collected from one house is not 
combined with data from other houses.  This process is 
for a case of four houses is illustrated in Figure 8. 

Figure 8 – Server Side Process 

Once data are transmitted, the server software 
decompresses it using the Compression Manager, and 
creates HTML files using the Web User Interface object 
that resides in the User Layer.  Once in HTML format, 
client computers can view the data from any location 
using the Internet Browser.  The details of this process 
are captured in the server software sequence diagram as 
seen in Figure 9. 

Figure 9 – Server Software Sequence Diagram 
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C.  Client Segment 

The client segment is composed of computers 
connected to the Internet.  The main requirements for 
computers in the client segment are Internet connection 
and Internet Browser (e.g., Explorer, Firefox, etc.).   The 
client segment software is composed of HTML files that 
are dynamically created and delivered to the client 
segment upon requests using the HTTP protocol.  The 
HTML files are configured to initiate an internal timer of 
5 minutes.  When the timer expires, the browser initiates 
an HTTP request to the Remote Server (in the Data 
Collection Segment), which provides an HTTP response 
containing the latest sensor data collected.  

V. PERFORMANCE ANALYSIS

Performance analysis is important to accurately 
evaluate the efficiency of the system. The main metrics 
associated with the software system are: sampling rate 
and network transmission rate.  The following sections 
provide analysis for both metrics. 

A)  Sampling Rate 

Sampling rate is the average number of samples per 
second collected by each remote sensor unit.  Due to 
limited throughput on the Sensor-Base interface, the 
sampling rate varies according to the number of remote 
sensor units installed on the residential structure.  A 
simplified timing diagram outlining the operation of the 
system is presented in Figure 10. For the sake of 
simplicity, the diagram shows only two remote units. 
Extension to the case of more units is straightforward.  As 
seen, there are four variables that describe the data 
collection process.  They are defined as follows: 

• TCYC : the time that elapses between two 
consecutive calls to the same remote unit 

• TRB  : the time required for data transfer from 
remote unit to base unit 

• TBC : the time required for data transfer from base 
unit to data collection software 

• NR  : the number of active remote sensor units. 

Figure 10 – Simplified Timing Diagram of the System

Initial sampling rate for the software system was 
computed in [5] using the metrics above, however 
through the application of optimization techniques in the 

real time embedded software, the sampling rate 
calculation formulas are modified as follow: 
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where NS is the number of samples read on a remote 
sensor unit; TP is the time required to ensure data 
transmission; TRTR is the time required for the transceiver 
to stabilize after switching from receive and transmit 
modes; Rair is the transmission rate on the air interface (in 
kbps), and TOHR is the overhead time experienced due to 
communication delays on remote sensor units caused by 
bad reception quality (RSSI), low battery charge, or other 
defects in the remote sensor units.  The TOHR variable has 
been approximated for the current system configuration 
and categorized in Table I. 

TABLE I. VALUES (IN MSEC) AND CATEGORIES FOR TOHR

Given the current system parameters of TP= 1 msec, TRTR 

= 3 msec,  Rair = 45 Kbps, one can easily compute the 
approximate relationship (Rs) between the number of 
remote sensor units and achievable sampling rate at each 
level of  TOHR  (i.e., Excellent = 0, Very Good = 5, Good 
= 10, Regular = 15, and Bad = 20 msec.).  Results are 
shown in Figure 11. 
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Figure 11 – Sampling Rate versus Number of Remote Sensor Units 

Figure 11 shows both the expected theoretical values 
and the experimental values for Rs at different levels of 
TOHR.  It can be seen that the system’s measured sampling 
rate closely matches the expected theoretical sampling 
rate at all levels of TOHR.  Based on Figure 11, Table II 
provides estimates of achievable sampling rates for 
system deployment having different number of remote 
sensor units. 

TABLE II. ACHIEVABLE SAMPLING RATE FOR VARIOUS SYSTEM 
CONFIGURATIONS

B)  Networking Software Efficiency 

Most of the communications efficiency achieved by 
the networking software is attributed to compression 
provided by the Microsoft’s .NET framework.  The 
compression component resides in the System. 
IO.Compression namespace and allows programmatic 
compression and decompression using the GZIP format, 
which uses a broadly accepted algorithm.  The built-in 
.NET compression tools are convenient and easy to use; 
however, experimental results showed that other formats, 
such as the .zip format, provide better compression as the 
size of the data increases [9].  Also, it was noticed that 
the time for compression is longer for the .NET 
compression tools.  Figure 12 displays the results of 
compressing several ASCII files using both the .NET 
compression and the .zip format:  

Figure 12 – Comparison between .NET built-in compression and 
standalone ZIP 

It can be seen that the compression algorithms have 
relatively similar efficiency when the original data are 
less than 10 MB.  After 10 MB the increased compression 
efficiency of the .zip format is evident.  However, since 
the software system is designed to normally transfer 5 
MB of data every 5 minutes, it does not experience much 
of the .NET compression inefficiency.  After compression 
using .NET, 5 MB of data are compressed to 
approximately 94 KB, which is easily handled by either 
one of two wireless networks. Even with the known 
drawbacks, compression with .NET shows great 
advantages and significant gains in bandwidth usage, as 
seen in Figure 13.  Figure 13 shows the theoretical 
characterization of transmission time using the 
networking software at several supported data size.    

Figure 13 – Transmit Time versus Data Size (in sec)

Both communications links used by the networking 
software (i.e., WLAN and Wireless Cellular Network) 
provide theoretical bandwidth above 500 Kbps.  
However, when using cellular data networks, throughput 
could be limited by coverage, signal quality, and overall 
data traffic demand placed on the cellular network in the 
deployment area.  Assuming that degradation lowers the 
data rate to 500 Kbps, the networking software can still 
transfer up to 80 MB of data in less than 25 seconds, 
which is way below the 5 minutes transmission cycle.  
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Using the theoretical transmission calculation from 
Figure 13, table III shows the resulting transmission time 
(in seconds) for various data sizes using the networking 
software.   

TABLE III. THEORETICAL TRANSMISSION TIMES (IN SEC) 

Since the typical operation consists of 5 MB data file 
transmission, the expected transmission time from the 
Data Collection Segment to Data Processing Segment is 
(1.50 + .75 + .25 + .15) /4 = .7 sec.  Preliminary tests 
have resulted in comparable numbers between theoretical 
and experimental.   

VI. BENEFITS OF SOFTWARE SYSTEM

There are many benefits of using the described 
software system.  First, by separating application specific 
software from the communication framework, the 
software can easily be ported to a wide variety of sensor 
network applications with little effort.   Second, by 
leveraging on Microsoft’s .NET framework, the software 
system employs a relative small amount of code to add 
capabilities that would have made the software more 
complex and error prone if done with an older language 
such as C or C++.  By embedding well known object 
oriented design patterns into the architecture, the software 
has a high level of modularity, which results in reusable 
and easily maintainable code as proven by the reuse in 
both collection and data processing segments.  Also, 
addition of new capabilities to the system such as new 
user interfaces, new processing tasks, or new 
communication protocols is trivial.  Another notable 
benefit is the use of a convenient web interface for status.  
This means that information is available anywhere, 
anytime.  Finally, the use of both wireless LAN and 
cellular networks provide robustness in harsh 
environments.  Power outages will not be an issue as long 
as the field laptop operates on battery power and the 
cellular network is available. 

VII. CURRENT AND FUTURE WORK

The system was recently tested at the University of 
Florida using their Hurricane Simulator on a mock up 
house-roof. A total of 15 pressure sensors  and the Young 
anemometer were deployed. The schematics of the sensor 
locations and a picture of the deployment are presented in 
Figure 14.  The software system was used for the 
collection and on-line system performance monitoring.  
The pressure and wind speed data from selected sensors 
are shown in Figures 15 and 16.  The effective sampling 
rate of each channel was 30 samples/s.  Sensor number 16 
was mounted inside an enclosure to measure the 
reference pressure. 

Figure 14 - University of Florida (Gainesville) deployment 
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Figure15 - Time trace of pressure variation during wind gust 

Figure 16 - Time trace of 3-sec average wind gust. 

Although the software system described in this paper 
performs adequately for the task at hand, there are several 
avenues for its improvement.  Some of the possible 
improvement directions are listed as follows. 

A)  Encryption 

Security issues in network communications can be the 
most important requirement for some remote wireless 
sensor network applications.  For this reason, the 
software architectural framework must include 
cryptographic support to fit the needs of these 
applications.  Cryptography may be one of the most 

challenging tasks for software developers, since it 
requires knowledge of advanced encryption algorithms.  
Native to the .NET framework is the System.Security. 
Cryptography namespace which includes tools to 
facilitate the process of providing security to software 
applications via encryption.  Future versions of the 
architecture presented in this paper could benefit from a 
Crypto Manager object that resides in the Manager Layer 
and handles all aspects of encryption and decryption 
when communicating across remote sties. 
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B)  Connection Management 

The current implementation requires configuration of 
the field laptop to Wireless LAN or cellular network.   
Switching between communication links requires 
physical presence at the site.  Current efforts are under 
way to investigate ways in which the communication link 
can be switched automatically via software in case one of 
the links fails.   

C)  Field Laptop Remote Desktop Management 

Current efforts are underway to add remote desktop 
capabilities to the field laptop.  Open source software 
solutions have been tested and initial results allowed 
complete control of the field laptop from the Remote 
Server through both wireless LAN and cellular network. 
Further investigation is required to identify security 
considerations to safely add this feature to the system. 

VIII. CONCLUSION

We have presented a distributed software system used 
in a real sensor network to collect, transmit, and present 
hurricane wind data in real time.  The main goal is to 
safely collect wind data as it interacts with residential 
structures to determine possible effects caused by this 
interaction. The results of this study may serve as an 
influential factor in the way engineers design residential 
structures to minimize loss due to hurricanes.  The 
complete system is currently under test and will be ready 
for deployment for the 2009 hurricane season. 
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