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Abstract—This paper focuses on the basic operations of 
Chomsky’s languages. The validity and the effectiveness of 

some closure operations, such as union operator, product 
operator and Kleene Closure operator, are discussed in 
detail. The crosstalk problems in Context-Sensitive 
Languages (CSL) and Phrase Structure Languages (PSL) 
are analyzed, and a valuable method to solve this problem is 
presented by suing the alphabet of the operating languages. 
In addition, according to the valid closure property of 
regular languages (RL), a simple method to create a regular 
expression (RE) is proposed. The closure property of the 
permutation operator in Context-Free Languages (CFL) is 
proved and tested. In conclusion, by using our proposed 
methods, the exact type of a given language can be proved 
theoretically. By the way, the grammar to produce complex 
language can be created easy. Finally ,the constructing  ε
-NFA with the closure property is proved. 
 

Index Terms—language operation, valid closure property, 
crosstalk, context-free permutation  
 

I.  INTRODUCTION 

Given alphabet ∑,Ψ is a type of language of ∑, 

language L1,L2∈Ψ,let α be a binary operation of the 

language: 
(L1,L2)→α(L1,L2) 

βis the unary operation of the language: 
L1→β(L1) 

If for any language of Ψ, L1 and L2,α(L1,L2) is also a 
language of Ψ, then we say Ψ is closed on the operation 

ofα; if for any language L1 of Ψ,β(L1) is also a language 
of Ψ, then we say that Ψ is closed on the operation ofβ

[1]. 
For grammars generating languages, given a specified 

operation, the grammar of the same type language can be 
created, then the language is effectively closed on that 
operation. 

The closure issue of language operation is important in 
language research and has significant value in both theory 
and practice[1,2,3]. 

  Linz Peter proposed the crosstalk problem of context-
dependent language and the corresponding solutions[1] 
without discussing the crosstalk problem of 4 types 
languages of Chomsky theory by Kleene closure 
operation. Prof. Jiang Zongli and Prof. Chen Youqi 
proved that for different alphabets, regular language and 
context-free language are effectively closed by basic 
language operations[2,3]. From the standpoint of 
automata,  especially Turing machine, Michael Sipser 
discussed the valid closure property issue of language 
operations[4,5]. 

  From the view of formal language, the paper proves 
that  4 types languages of Chomsky theory are effectively 
closed by join, product and Kleene closure operations. 
The paper proposes solution to crosstalk problem of 
context-dependent language and phrase structure 
language by product and Kleene closure operations and 
discusses the valid closure property of context-free 
language by context-free in-placement.  

II.  LANGUAGE CLASSIFICATION 
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For any grammar G=(∑,V,S,P), G is type-0 grammar, 
or PSG(Phrase Structure Grammar). G generates type-0 

language, or Phrase Structure Language correspondingly.  
Grammar G, if for any →∈P, we have ||≤||, then 

G is type-1 grammar, or Context-Sensitive 
Grammar(CSG). G generates type-1 language, or 
Context-Sensitive Language correspondingly.  

If for any →∈P, we have |≤|| and ∈V, then G 
is type-2 grammar, or Context-Free Grammar(CFG). The 
language generated by G is type-2 language or Context-
Free Language(CFL).  

If for any →∈P,→, we have forms like Aw or 
AwB, in which, A,B∈V, w∈∑

+,then G is type-3 
grammar, or Regular Grammar(RG). Correspondingly, 
the language generated by G is type-3 language or 
Regular language(RL).  

The basic principle to classify grammar disallows ε-
formula in type-1, type-2 and type-3 grammars; if S is not 
on the right side of any formula of the grammar, and if G 
is type-1, type-2 or type-3 grammar, then 

G′=(∑,V,S,P∪{S→ε}) 
G″=(∑,V,S,P -{S→ε}) 

are still type-1, type-2 or type-3 grammars, and the 
languages correspondingly generated are also type-1, 
type-2 or type-3 languages.  

III.  BASIC LANGUAGE OPERATIONS S 

Languages L1 and L2 are based on alphabet ∑1 and ∑2 
respectively, the union operation  of  L1 and L2 is:  

L1∪L2 
={w|w∈L1 or  w∈L2} 

the product operation of L1 and L2 is: 
L1L2 

= { w | w=w1w2 ,w1∈L1,w2∈L2} 
the Kleene closure operation (or Star operation) of L1 is 

L1* 
= {w|w=w1w2…wm,wi∈L1,m≥0 } 
=∪L1

n         对 n≥0 

IV.  THE VALID CLOSURE PROPERTY OF LANGUAGE ON 
OPERATIONS 

The valid closure property can be described as 
following: given same type grammars G1 and G2 

L1=L(G1) 
L2=L(G2) 

Same type grammar G must be created to satisfy 
L(G)=α(L1,L2) 

or 
                                      L(G)=β(L1)  

V. THE VALID CLOSURE PROPERTY OF BASIC 
OPERATIONS IN 4 TYPES OF LANGUAGES 

Let language L1 and L2 attribute to the languages of 
alphabet ∑1 and ∑2 respectively, grammar G1 generates 
language L1 

G1=（∑1,V1,S1,P1） 
grammar G2 generates language L2 

              G2=（∑2,V2,S2,P2） 

Then 
S1=>α=>*w1 ∈L1 

        S2=>β=>*w2 ∈L2 
Suppose 

        ∑1∩∑2=Ф; V1∩V2=Ф; SV1; SV2 
Set 

      ∑=∑1∪∑2 
        V=V1∪V2∪{S} 

 

A.  The Valid Closure Property on Union Operation 

Create grammar 
G3=（∑,V,S,P3） 

in which 
P3={ S→S1} ∪{ S→S2}∪ P1 ∪ P2 

For i=0, 1, 2, if G1 and G2 are type-i grammar, then G3 
is the same type grammar. 

G3 could use 
S=> S1=>α=>*w1 ∈L1 

to obtain L1; or use 
              S=>S2=>β=>*w2 ∈L2 

to obtain L2, that is  
L(G3)=L1∪L2 

So, languages of type-0,1,2 are effectively closed on 
union operation. 

For example, type-2 grammar  G1 is 
S1→aS1a 

                        S1→bS1b 
S1→cS1c 
S1→a|b|c 
S1→aa|bb|cc 

so L1 is 
        {x|x=xT,x∈{a,b,c}+} 

and type-2 grammar G2 is 
S2→AC 
 A→0A1 
A→01 

C→2|2C 
so L2 is 

        {0n1n2m|n.m>0} 
Set type-2 grammar G3 is 

        S→S1 
 S→S2 

        S1→aS1a 
 S1→bS1b 
S1→cS1c 
S1→a|b|c 

S1→aa|bb|cc 
S2→AC 

 A→0A1 
A→01 
C→2|2C 

so L3 is 
        {x|x=xT,x∈{a,b,c}+}∪{0n1n2m|n.m>0} 

that is  
L3=L1∪L2 

If G1 and G2 are type-3 grammar while G3 is not type-3 
grammar, then create type-3 grammar 

G4=（∑,V,S,P4） 
in which 

P4= {S→α|S1→α∈P1} 
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∪ {S→β|S2→β∈P2} 
  ∪ P1∪ P2 

then G4 is a type-3 grammar. 
G4 could use 

S=>α=>*w1 ∈L1 
to obtain L1; or use 

        S=>β=>*w2 ∈L2 
to obtain L2, that is, 

L(G4)=L1∪L2 
So, language of type-3 is effectively closed by union 

operation. 
The method to create G4 can also be used to create 

grammars of type-0,1,2. 
For example, type-3 grammar  G1 is 

        S1→aS1|aA 
 A→bA|bB 

B→cB|c 
so L1 is 

        a+b+c+ 
and type-3 grammar G2 is 

S2→0|0C                               
      C→0|1|0C|1C  

so L2 is 
        0(0+1)*   

Set type-3 grammar G4 is 
S→aS1|aA 
S→0|0C 

S1→aS1|aA 
A→bA|bB 
B→cB|c 
S2→0|0C 

C→0|1|0C|1C 
so L4 is 

        a+b+c+0{0+1}* 

that is  
L4=L1∪L2 
 

B.  The Valid Closure Property on Product Operation 

Create grammar 
G5=（∑,V,S,P5） 

in which 
P5={ S→S1S2 }∪ P1 ∪ P2 

For i=0, 1, 2, if G1 and G2 are grammar of type-i, then 
G5 is also type-i grammar. 

G5 uses 
S=>S1S2=>α β =>*w1w2∈L1L2 

to obtain the product of L1 and L2. 
That is, L(G5)=L1L2 
So, type-0, type-1, type-2 languages are closed on 

product operation. 
For example, type-2 grammar  G1 is 

        S1→aS1a 
 S1→bS1b 
S1→cS1c 
S1→dS1d 

S1→aa|bb|cc|dd 
so L1 is 

        {xxT | x∈{a,b,c,d}+} 

and type-2 grammar G2 is 
S2→AC 

 A→0A|0 
C→1C2|12 

so L2 is 
        {0n1m2m|n.m>0} 

Set type-2 grammar G5 is 
S→S1S2 

S1→aS1a 
 S1→bS1b 
S1→cS1c 
S1→dS1d 

S1→aa|bb|cc|dd 
S2→AC 
A→0A|0 

C→1C2|12 
so L5 is 

        {xxT | x∈{a,b,c,d}+}{0n1m2m|n.m>0} 
that is  

L5=L1L2 
If G1 and G2 are type-3 grammar while G5 is not type-3 

grammar, create type-3 grammar, 
G6=（∑,V1∪V2,S1,P6） 

in which 
P6= {A→wS2|A→w ∈ P1} 

－{A→w} 
             ∪ P1 ∪ P2 

For every formula like 
A→w 

rewritten as 
        A→wS2 

Grammar G6 uses  
S1 =>+ r1r2…rkA 

          =>r1r2…rkwS2 

=>* w1w2∈L1L2 

in which, r1r2…rkw ∈L1, that is, 
L(G6)=L1L2 

So,language of type-3 is effectively closed on product 
operation. 

For example, type-3 grammar  G1 is 
        S1→aS1|aA 

 A→bA|cA|bB|cB 
B→dB|d 

so L1 is 
        a+(b+c)+d+ 

and type-3 grammar G2 is 
                        S2→0C  

      C→0|1|0C|1C  
so L2 is 

        0{0+1}+   
Set type-3 grammar G6 is 

S1→aS1|aA 
 A→bA|cA|bB|cB 

B→dB 

B→dS2 

S2→0C  
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      C→0|1|0C|1C  
so L6 is 

       a+(b+c)+d+0{0+1}+ 

that is  
L6=L1L2 

 
C.  The crosstalk of Product operation 

G1 and G2 are type-0 or type-1 grammar, if  
∑1∩∑2≠Ф (∑1=∑2 is possible) 

the grammar G5 is not always correct . For example: 
Grammar G1: 

S1→a 
Grammar G2: 

S2→aS2 
        aS2→bc 

then 
L1={a},L2={a*bc} 

        L1L2= a+bc 
However, if G5 uses 

        S=>S1S2 =>aS2=>a+S2=>+ a+bc  
there can also be 

S=>S1S2=>aS2=>bc   
the language generated by grammar G5 is 

a*bc≠L1L2= a+bc 
The crosstalk between sentence patterns generated by 

S1 and S2 is the reason why G5 is not we want sometimes. 
Namely, the sentence pattern generated by S1 might take 
for the sentence generated by S2 as the following text, 
while the sentence generated by S2 might take for the 
sentence generated by S1 as the preceding text; and the 
crosstalk could only be caused by the terminal symbol. 

To solve the problem above, copy ∑  as ∑′  and  
∑″ 

∑′={x′|x∈∑} 
∑″={x″|x∈∑} 

Replace x in P1 by x′and then obtain P′, replace x 
in P2 by x″ and then obtain P″ , the process is to 
distinguish the terminator symbols between G1 and G2 in 
deduction. Finally, x′and x″ need to be restored to the 
original terminator symbols. 

Create grammar 
G7=(∑,V ∪ ∑′∪∑″,S,P7) 

in which 
P7= { S→S1S2 } ∪ P′∪ P″ 

∪ {x′→x|x∈∑} 
∪ {x″→x |x∈∑} 

G7 uses 
S=>S1S2=>+w1′w2′ 

=>+ w1w2∈L1L2=>∈L1L2 
to obtain the product of L1 and L2, that is, 

L7=L1L2 
thus, the crosstalk problem is solved. 

In the example above, 
Grammar G1： 

S1→a 
Grammar G2： 

S2→aS2       

aS2→bc 
P7 is 

        S→S1S2 

        S1→a′ 
        S2→a″S2 

        a″S2 →b″c″ 
        a′→a 

a″→a         
        b″→b  
        c″→c 

G7 uses 
S=>S1S2 

              =>a ′S2              //Can’t use  a″S2 →b″c″ 
=> a ′a″S2           

         => +a ′a″*b″c″ 
         =>+ a+bc 

to create the product language a+bc of L1 and L2. 
D.  The Valid Closure Property on Kleene Closure 

operation 

The generation of sentence ε and any number of 
products must be considered in Kleene Closure operation. 

Adding a formula  
S→ε |SS1  

to generate empty sentence and any number of products 
of L1. 

Since S is on the right side of the formula, which is not 
satisfied the principle of closure, and can generate other 
extra strings so we add a new non-terminal symbol to 
solve the problem. 

Rewrite the newly added formula, 
       S→ε |S′ 

       S′→S1|S1S′ 
then only ε and S1

n(n≥1) can be deducted from S. 
Create grammar 

G8=(∑,V1∪{S,S′},S,P8) 
in which 

P8={S→ε |S′}∪{S′→S1|S1S′}∪P1 
If G1 is type-2 grammar, then G8 is also type-2 

grammar and  
L(G8)=L1* 

  So, language of type-2 is closed on Kleene Closure.  
If G1 is type-0 or type-1 grammar, grammar G8 may also 
has crosstalk problem. That because 

       S=>+S1…S1S1…S1 
each S1 could only generate sentence of L1 from the 
formula of P1, and the sentence patterns generated by any 
two consecutive S1 might be following and preceding text 
with each other, then crosstalk is appear. 

  To avoid crosstalk, copy ∑ as ∑′and ∑″, create 
P′and P″; rewrite S1 as S′, create grammar 

G′=(∑,V1∪∑′∪ {S′}-{S1},S′,P′) 
Rewrite S1 as S″, create grammar 

G″=（∑,V1∪∑″∪{S″}-{S1},S″, P″) 
Create grammar 

G9=(∑,V1∪∑′∪∑″∪{S′, S″, S1,S2}, S,P9) 
in which 

P9= {S→ε |S1|S2}  
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∪{ S1→S′|S′S2} 
           ∪{ S2→S ″ | S ″ S1} 

           ∪P′∪P″ 
           ∪{x′→x|x∈∑}∪{x″→x |x∈∑} 

To avoid crosstalk itself, S ′ and S ″ must be 
alternated to satisfy: 

S=>S1=> S′ S ″ S′ S ″…S′ S ″  
or 

S=>S1=> S′ S ″ S′ S ″… S′  
and 

        S=>S2=> S ″ S′ S ″ S′… S ″ S′ 
or 

S=>S2=> S ″ S′ S ″ S′… S ″  
then the consecutive S1 are replaced by alternated S′and 
S″ , each S′ and S″ could only deduce from the 
formula of P ′ or P ″ respectively, and crosstalk is 
avoided.  

S′and S ″each generates language of alphabet∑′

and ∑ ″ (The sentence structures are equal to the 
sentence structure of L1）, then after restoration, L1* is 
obtained, that is 

L(G9)=L1* 
So, language of type-0 and type-1 are closed on Kleene 

Closure operation. 
For Example, type-1 grammar  G1 is 

S1→aS1BC 
S1→aBC           
CB→BC           
aB→ab           
bB→bb           
bC→bc           
cC→cc           

so L1 is 
        {anbncn|n>0} 

Set ∑′is 

        { a′,b′,c′} 
Set ∑″is 

{ a″, b″, c″} 
Set type-1 grammar G′ is 

S′→a′S′B′C′ 
S→a′B′C′           
C′B′→B′C′           
a′B′→a′b′           
b′B′→b′b′           
b′C′→b′c′           
c′C′→c′c′    

Set type-1 grammar G″ is 
S″→a″S″B″C″ 

S″→a″B″C″           
C″B″→B″C″           
a″B″→a″b″           
b″B″→b″b″           
b″C″→b″c″           
c″C″→c″c″           

Set type-1 grammar G9 is 

S→ε |S1|S2  
S1→S′|S′S2 

        S2→S″| S″S1 
S′→a′S′B′C′ 

S→a′B′C′           
C′B′→B′C′           
a′B′→a′b′ 
b′B′→b′b′           
b′C′→b′c′           
c′C′→c′c′ 

S″→a″S″B″C″ 
S″→a″B″C″           

C″B″→B″C″           
a″B″→a″b″           
b″B″→b″b″           
b″C″→b″c″           
c″C″→c″c″   

        a′→a 
        b′→b 

c′→c  
a″→a         

        b″→b  
        c″→c 

so L9 is 
        {anbncn|n>0}* 

that is  
        L9=L1* 

  If G1 is type-3 grammar while G8 is not type-3 
grammar, add new starting symbol S and  

S→ε  
ε is generated,add 

S→r 
in which 

S1→r ∈P1 
to deduce (r=wB or r=w)。 

For every formula like A→w, add 
        A→wS1 (A→w is not deleted) 

from S, the sentence pattern could be deduced,  
         r1r2…rkA 

in which 
r1,r2,…,rk ∈L1 

Stop deduction when 
r1r2…rkw 

is deduced or having deduced another sentence from 
r1r2…rkwS1 

until L1*. 
G1 is type-3 grammar, create -3type grammar, 

G10=（∑,V1∪{S},S,P10） 
in which  

P10= {S→ε }∪ (P1 - {S1→ε } )  
∪{ S→r | S1→r∈P1} 

∪{A→wS1| A→w∈P1} 
then  

L(G10)=L1* 
So, language of type-3 is closed on Kleene Closure 

operation.  
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For example, type-3 grammar  G1 is 
        S1→aS1|bS1 

 S1→aA|bB 
 A→aA|bA 

A→aC 
B→aB|bB 

B→bC 
C→a|b 

so L1 is 
        (a+b)*a(a+b) * a(a+b)+ (a+b)*b(a+b) * b(a+b) 

Set type-3 grammar G10 is 
        S→ε  

 S→aS1|bS1 
        S→aA|bB 

A→aA|bA 
A→aC 

B→aB|bB 
B→bC 
C→a|b 

C→aS1|bS1 
so L10 is 

       ( (a+b)*a(a+b)*a(a+b)+ (a+b)*b(a+b)*b(a+b))* 

that is  
L10=L1* 

 
Therefore, whether alphabet 

        ∑1∩∑2＝Ф     
or 

        ∑1∩∑2≠Ф（∑1=∑2 is included） 
language of type-0,type-1, type-2 and type-3 are closed 

on union, product and Kleene Closure operations.  

VI.  THE CREATION OF REGULAR EXPRESSION  

For regular language, regular expression can be 
generated as the method above. 

R1 and R2 are regular expressions of language L1 and 
L2. 

Suppose  
L=L1∪L2  

regular expression of L is (R1)+(R2) 
L=L1L2  

regular expression of L is (R1)(R2) 
L=L1* 

regular expression of L is (R1)* 

VII.  CFL IS EFFECTIVELY CLOSED TO CONTEXT-FREE IN-
PLACEMENT  

For context-free language, there is another useful 
operation, that is in-place operation[1]. 

Suppose X and Y are alphabets, mapping 
g: X*→Y* 

if  
g（ε ）= ε  

and for any n≥1 
g(x1x2…xn)=g(x1)g(x2)…g(xn) 

in which     
        xi∈X 

g(xi)=y∈Y* 
or 

        g(xi)={y1 ,y2 ,…}  
then g is a context-free in-placement.  

If L is a language of alphabet X, then 
g(L)=∪g(w) 

in which 
w∈L 

Context-free grammar G= （ X,V,S,P ） , generates 
context-free language L , g is a context-free in-placement: 

g(x)= 
xL  

in which 
x∈X 

Copy X as X′ 
X′={x′|x∈X} 

for every formula of P, replace the terminal symbol x on 
the right side by x′, and P′is obtained. 

Rewrite G as: 
G′=（Y,V ∪ ∑′,S,P′） 

The language generated by grammar G is based on 
alphabet X, and the language generated by grammar G′

is based on alphabet X′. The sentence structures of the 
languages are all the same. (Only differ in alphabet.) 

For every x′, add a group of context-free formulas to 
satisfy: 

x′=>+ 
xL  

P″is obtained. 
Create context-free grammar, # 

        G″=（Y,V ∪ ∑′,S,P″） 
Grammar G generates 

x1x2…xn 
Grammar G″first uses P′to generate 

x1′x2′…xn′ 
and then uses the new formulas to obtain 

1x
L

2xL …
nxL  

Language g(L) generated by grammar G ″is also 
context-free. For example, 

Context-free grammar G generates anbn for 
S→aSb 
S→ab 

Suppose context-free in-placement is: 
g(a)=0+=

aL  
g(b)=101*=

bL  
Create grammar G′ 

S→a′S b′  
S→a′b′ 

a′nb′n is generated 
Add formula 

a′→0|0a′ 
0+ is generated。 

Add formula 
b′→10|10A 
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A→1|1A 
101* is generated 

Create G″ 
S→a′S b′  
S→a′b′ 

        a′ →0|0 a′  
      b′→10|10A 

A→1|1 A 
language 0+(101* )+ is generated. . 

VIII.  CONSTRUCTING  NFA WITH THE CLOSURE  
PROPERTY   

Suppose L1, L2 be two type-3 languages, the DFA 
which receive these two languages is 

M1=（Q1,∑1,δ 1,q1,{f1}） 
and 

  M2=（Q2,∑2,δ 2,q2,{f2}） 
Suppose Q1 and Q2 not be intersect. 
Construct  

ε -NDA=（Q1∪Q2∪{q0,f0}, 
∑1∪∑2,δ ,q0,{f1}∪{f2}） 

function δ  is  
δ （q0,ε ）= q1 
δ （q0,ε ）=q2 

to all states q ∈ Q1,a ∈ ∑1∪{ε } 
    δ （q,a）=δ 1（q,a） 

to all states q ∈ Q2,b ∈ ∑2∪{ε } 
   δ （q,b）=δ 2（q,b） 

This can be shown visually as Fig.1. 
                         M1 

 
               

         ε                     ε  
         ε                                         

     q0                        ε      f0         
 

                       M2 
Figure 1ε -NDA for union operator 

This ε -NDA concludes all function δ of M1 and 
M2,and adds 4 δ functions that scan ε ,then we get: 
setting out from the ε -NDA beginning appearance, 
passing twoε actions:  

δ （q0,ε ）= q1  
and 

δ （q0,ε ）=q2  
it can arrive the beginning appearance q1 or q2 of M1 or 

M2,then, with the usage of own δ function that belong to 
M1 or M2, it can reach the only receiving states f1 or f2, 
finally, enter the only receiving states f0. 

Obviously, the language thatε -NDA receive is union 
of L(M1) and L(M2).  

Construct 
ε -NDA =（Q1∪Q2,∑1∪∑2,δ ,q1,{f2}） 

function δ is : 
to all states q ∈ Q1-{f1},a ∈ ∑1∪{ε } 

  δ （q,a）=δ 1（q,a） 
δ （f1,ε ）={ q2} 

to all states q ∈ Q2-{f2},b i∈ ∑2∪{ε } 
  δ （q,b）=δ 2（q,b） 

This can be shown visually as Fig.1. 
          M1                         M2 

                  

                   ε                                       

                                         
Figure 2ε -NDA for product operator 

                                                    

This ε -NDA concludes all function δ of M1 and 
M2,and adds one δ functions that scan ε ,then we get: 
setting out from the beginning states q1 of M1, with the 
usage of its ownδ  function, can reach the only receiving 
state f1,then, using the new added function 

δ （f1,ε ）={ q2} 
it get the beginning state q2 of M2, as the same ,with the 
own δ  function of M2, it can reach the only receiving 
appearance f2(it is also the only receiving state of ε -
NDA), then receive strings from language L(M2). 

Obviously, the language that ε -NDA receive is 
product of languages L(M1) and L(M2). 

Construct 
ε -NDA=（Q1∪{q0,f0},∑1,δ ,q0,{f0}） 

functionδ is： 
δ （q0,ε ）=q1 

    δ （q0,ε ）=f0 

δ （f1,ε ）={ q0,f0} 
to all appearance q ∈ Q1-{f1},a ∈ ∑1∪{ε } 

    δ （q,a）=δ 1（q,a） 
This can be shown visually as Fig.3. 

                 ε  
                          
                                   

      ε                        ε            
         

q0                                   f0 
Figure 3ε -NDA for Kleene Closure operator 

Thisε -NDA concludes all function δ of M1,and adds 
4 δ functions that scan ε ,then we get: setting out from 
theε -NDA beginning appearance, passing twoε actions:        

δ （q0,ε ）=q1  
and 

δ （q0,ε ）=f0  
it can straightly reach the only receiving states f0(in order 
to receive null stringε ),or reach the beginning state q1 of 
M1,then, setting out from the beginning state q1,using the 
own δ  function of M1,it can reach the only receiving 
state f1, at that time, pass twoε actions, it straightly get 
the receiving state f0 so that it can finish this receiving 
process; also ,this state can be changed to the beginning 
sate q1 of M1, in order to receiving strings. 

Obviously, the language thatε -NDA receive is the 
Kleene Closure  of L(M1). 

    … 
q1        f1  

    … 
 q2        f2 

     ε       M1 
q1             f1 

     
 q1       f1 

      
 q2         f2 
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IX.  CONCLUSION  

Usually, complex language could be decomposed into 
several simple languages of the same type and re-
composed by union, product and Kleene closure 
operations. The paper proves that the 4 types of language 
of Chomsky theory are effectively closed on the above 
three operations, and proposes a general method to create 
grammar of complex languages.  

The valid closure property of positive closure 
operation can be referred to the effective closure of 
Kleene closure without considering the generation of 
sentenceε . 

The closure of other operations, like intersection and 
complementary operations are not discussed in this paper. 

We can construct NFA with the closure of language 
calculation. 
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