
Analysis of Valid Closure Property of Formal
Language

Chen Wenyu
School of Computer Science and Engineering, University of Electronic Science & Technology of China, Chengdu,

Sichuan, China
Email: cwy@uestc.edu.cn

Wang Xiaobin
School of Computer Science and Engineering, University of Electronic Science & Technology of China, Chengdu,

Sichuan, China
Email: xbwang@uestc.edu.cn

Cheng Xiaoou
School of Computer Science and Engineering, University of Electronic Science & Technology of China, Chengdu,

Sichuan, China
Email: carlyhawk@gmail.com

Sun Shixin
School of Computer Science and Engineering, University of Electronic Science & Technology of China, Chengdu,

Sichuan, China
Email: sxsun@uestc.edu.cn

Abstract—This paper focuses on the basic operations of
Chomsky’s languages. The validity and the effectiveness of

some closure operations, such as union operator, product
operator and Kleene Closure operator, are discussed in
detail. The crosstalk problems in Context-Sensitive
Languages (CSL) and Phrase Structure Languages (PSL)
are analyzed, and a valuable method to solve this problem is
presented by suing the alphabet of the operating languages.
In addition, according to the valid closure property of
regular languages (RL), a simple method to create a regular
expression (RE) is proposed. The closure property of the
permutation operator in Context-Free Languages (CFL) is
proved and tested. In conclusion, by using our proposed
methods, the exact type of a given language can be proved
theoretically. By the way, the grammar to produce complex
language can be created easy. Finally ,the constructing ε
-NFA with the closure property is proved.

Index Terms—language operation, valid closure property,
crosstalk, context-free permutation

I. INTRODUCTION

Given alphabet ∑,Ψ is a type of language of ∑,

language L1,L2∈Ψ,let α be a binary operation of the

language:
(L1,L2)→α(L1,L2)

βis the unary operation of the language:
L1→β(L1)

If for any language of Ψ, L1 and L2,α(L1,L2) is also a
language of Ψ, then we say Ψ is closed on the operation

ofα; if for any language L1 of Ψ,β(L1) is also a language
of Ψ, then we say that Ψ is closed on the operation ofβ

[1].
For grammars generating languages, given a specified

operation, the grammar of the same type language can be
created, then the language is effectively closed on that
operation.

The closure issue of language operation is important in
language research and has significant value in both theory
and practice[1,2,3].

 Linz Peter proposed the crosstalk problem of context-
dependent language and the corresponding solutions[1]
without discussing the crosstalk problem of 4 types
languages of Chomsky theory by Kleene closure
operation. Prof. Jiang Zongli and Prof. Chen Youqi
proved that for different alphabets, regular language and
context-free language are effectively closed by basic
language operations[2,3]. From the standpoint of
automata, especially Turing machine, Michael Sipser
discussed the valid closure property issue of language
operations[4,5].

 From the view of formal language, the paper proves
that 4 types languages of Chomsky theory are effectively
closed by join, product and Kleene closure operations.
The paper proposes solution to crosstalk problem of
context-dependent language and phrase structure
language by product and Kleene closure operations and
discusses the valid closure property of context-free
language by context-free in-placement.

II. LANGUAGE CLASSIFICATION

322 JOURNAL OF COMPUTERS, VOL. 5, NO. 2, FEBRUARY 2010

© 2010 ACADEMY PUBLISHER
doi:10.4304/jcp.5.2.322-329

mailto:xbwang@uestc.edu.cn

For any grammar G=(∑,V,S,P), G is type-0 grammar,
or PSG(Phrase Structure Grammar). G generates type-0

language, or Phrase Structure Language correspondingly.
Grammar G, if for any →∈P, we have ||≤||, then

G is type-1 grammar, or Context-Sensitive
Grammar(CSG). G generates type-1 language, or
Context-Sensitive Language correspondingly.

If for any →∈P, we have |≤|| and ∈V, then G
is type-2 grammar, or Context-Free Grammar(CFG). The
language generated by G is type-2 language or Context-
Free Language(CFL).

If for any →∈P,→, we have forms like Aw or
AwB, in which, A,B∈V, w∈∑

+,then G is type-3
grammar, or Regular Grammar(RG). Correspondingly,
the language generated by G is type-3 language or
Regular language(RL).

The basic principle to classify grammar disallows ε-
formula in type-1, type-2 and type-3 grammars; if S is not
on the right side of any formula of the grammar, and if G
is type-1, type-2 or type-3 grammar, then

G′=(∑,V,S,P∪{S→ε})
G″=(∑,V,S,P -{S→ε})

are still type-1, type-2 or type-3 grammars, and the
languages correspondingly generated are also type-1,
type-2 or type-3 languages.

III. BASIC LANGUAGE OPERATIONS S

Languages L1 and L2 are based on alphabet ∑1 and ∑2
respectively, the union operation of L1 and L2 is:

L1∪L2
={w|w∈L1 or w∈L2}

the product operation of L1 and L2 is:
L1L2

= { w | w=w1w2 ,w1∈L1,w2∈L2}
the Kleene closure operation (or Star operation) of L1 is

L1*
= {w|w=w1w2…wm,wi∈L1,m≥0 }
=∪L1

n 对 n≥0

IV. THE VALID CLOSURE PROPERTY OF LANGUAGE ON
OPERATIONS

The valid closure property can be described as
following: given same type grammars G1 and G2

L1=L(G1)
L2=L(G2)

Same type grammar G must be created to satisfy
L(G)=α(L1,L2)

or
 L(G)=β(L1)

V. THE VALID CLOSURE PROPERTY OF BASIC
OPERATIONS IN 4 TYPES OF LANGUAGES

Let language L1 and L2 attribute to the languages of
alphabet ∑1 and ∑2 respectively, grammar G1 generates
language L1

G1=（∑1,V1,S1,P1）
grammar G2 generates language L2

 G2=（∑2,V2,S2,P2）

Then
S1=>α=>*w1 ∈L1

 S2=>β=>*w2 ∈L2
Suppose

 ∑1∩∑2=Ф; V1∩V2=Ф; SV1; SV2
Set

 ∑=∑1∪∑2
 V=V1∪V2∪{S}

A. The Valid Closure Property on Union Operation

Create grammar
G3=（∑,V,S,P3）

in which
P3={ S→S1} ∪{ S→S2}∪ P1 ∪ P2

For i=0, 1, 2, if G1 and G2 are type-i grammar, then G3
is the same type grammar.

G3 could use
S=> S1=>α=>*w1 ∈L1

to obtain L1; or use
 S=>S2=>β=>*w2 ∈L2

to obtain L2, that is
L(G3)=L1∪L2

So, languages of type-0,1,2 are effectively closed on
union operation.

For example, type-2 grammar G1 is
S1→aS1a

 S1→bS1b
S1→cS1c
S1→a|b|c
S1→aa|bb|cc

so L1 is
 {x|x=xT,x∈{a,b,c}+}

and type-2 grammar G2 is
S2→AC
 A→0A1
A→01

C→2|2C
so L2 is

 {0n1n2m|n.m>0}
Set type-2 grammar G3 is

 S→S1
 S→S2

 S1→aS1a
 S1→bS1b
S1→cS1c
S1→a|b|c

S1→aa|bb|cc
S2→AC

 A→0A1
A→01
C→2|2C

so L3 is
 {x|x=xT,x∈{a,b,c}+}∪{0n1n2m|n.m>0}

that is
L3=L1∪L2

If G1 and G2 are type-3 grammar while G3 is not type-3
grammar, then create type-3 grammar

G4=（∑,V,S,P4）
in which

P4= {S→α|S1→α∈P1}

JOURNAL OF COMPUTERS, VOL. 5, NO. 2, FEBRUARY 2010 323

© 2010 ACADEMY PUBLISHER

∪ {S→β|S2→β∈P2}
 ∪ P1∪ P2

then G4 is a type-3 grammar.
G4 could use

S=>α=>*w1 ∈L1
to obtain L1; or use

 S=>β=>*w2 ∈L2
to obtain L2, that is,

L(G4)=L1∪L2
So, language of type-3 is effectively closed by union

operation.
The method to create G4 can also be used to create

grammars of type-0,1,2.
For example, type-3 grammar G1 is

 S1→aS1|aA
 A→bA|bB

B→cB|c
so L1 is

 a+b+c+
and type-3 grammar G2 is

S2→0|0C
 C→0|1|0C|1C

so L2 is
 0(0+1)*

Set type-3 grammar G4 is
S→aS1|aA
S→0|0C

S1→aS1|aA
A→bA|bB
B→cB|c
S2→0|0C

C→0|1|0C|1C
so L4 is

 a+b+c+0{0+1}*

that is
L4=L1∪L2

B. The Valid Closure Property on Product Operation

Create grammar
G5=（∑,V,S,P5）

in which
P5={ S→S1S2 }∪ P1 ∪ P2

For i=0, 1, 2, if G1 and G2 are grammar of type-i, then
G5 is also type-i grammar.

G5 uses
S=>S1S2=>α β =>*w1w2∈L1L2

to obtain the product of L1 and L2.
That is, L(G5)=L1L2
So, type-0, type-1, type-2 languages are closed on

product operation.
For example, type-2 grammar G1 is

 S1→aS1a
 S1→bS1b
S1→cS1c
S1→dS1d

S1→aa|bb|cc|dd
so L1 is

 {xxT | x∈{a,b,c,d}+}

and type-2 grammar G2 is
S2→AC

 A→0A|0
C→1C2|12

so L2 is
 {0n1m2m|n.m>0}

Set type-2 grammar G5 is
S→S1S2

S1→aS1a
 S1→bS1b
S1→cS1c
S1→dS1d

S1→aa|bb|cc|dd
S2→AC
A→0A|0

C→1C2|12
so L5 is

 {xxT | x∈{a,b,c,d}+}{0n1m2m|n.m>0}
that is

L5=L1L2
If G1 and G2 are type-3 grammar while G5 is not type-3

grammar, create type-3 grammar,
G6=（∑,V1∪V2,S1,P6）

in which
P6= {A→wS2|A→w ∈ P1}

－{A→w}
 ∪ P1 ∪ P2

For every formula like
A→w

rewritten as
 A→wS2

Grammar G6 uses
S1 =>+ r1r2…rkA

 =>r1r2…rkwS2

=>* w1w2∈L1L2

in which, r1r2…rkw ∈L1, that is,
L(G6)=L1L2

So,language of type-3 is effectively closed on product
operation.

For example, type-3 grammar G1 is
 S1→aS1|aA

 A→bA|cA|bB|cB
B→dB|d

so L1 is
 a+(b+c)+d+

and type-3 grammar G2 is
 S2→0C

 C→0|1|0C|1C
so L2 is

 0{0+1}+
Set type-3 grammar G6 is

S1→aS1|aA
 A→bA|cA|bB|cB

B→dB

B→dS2

S2→0C

324 JOURNAL OF COMPUTERS, VOL. 5, NO. 2, FEBRUARY 2010

© 2010 ACADEMY PUBLISHER

 C→0|1|0C|1C
so L6 is

 a+(b+c)+d+0{0+1}+

that is
L6=L1L2

C. The crosstalk of Product operation

G1 and G2 are type-0 or type-1 grammar, if
∑1∩∑2≠Ф (∑1=∑2 is possible)

the grammar G5 is not always correct . For example:
Grammar G1:

S1→a
Grammar G2:

S2→aS2
 aS2→bc

then
L1={a},L2={a*bc}

 L1L2= a+bc
However, if G5 uses

 S=>S1S2 =>aS2=>a+S2=>+ a+bc
there can also be

S=>S1S2=>aS2=>bc
the language generated by grammar G5 is

a*bc≠L1L2= a+bc
The crosstalk between sentence patterns generated by

S1 and S2 is the reason why G5 is not we want sometimes.
Namely, the sentence pattern generated by S1 might take
for the sentence generated by S2 as the following text,
while the sentence generated by S2 might take for the
sentence generated by S1 as the preceding text; and the
crosstalk could only be caused by the terminal symbol.

To solve the problem above, copy ∑ as ∑′ and
∑″

∑′={x′|x∈∑}
∑″={x″|x∈∑}

Replace x in P1 by x′and then obtain P′, replace x
in P2 by x″ and then obtain P″ , the process is to
distinguish the terminator symbols between G1 and G2 in
deduction. Finally, x′and x″ need to be restored to the
original terminator symbols.

Create grammar
G7=(∑,V ∪ ∑′∪∑″,S,P7)

in which
P7= { S→S1S2 } ∪ P′∪ P″

∪ {x′→x|x∈∑}
∪ {x″→x |x∈∑}

G7 uses
S=>S1S2=>+w1′w2′

=>+ w1w2∈L1L2=>∈L1L2
to obtain the product of L1 and L2, that is,

L7=L1L2
thus, the crosstalk problem is solved.

In the example above,
Grammar G1：

S1→a
Grammar G2：

S2→aS2

aS2→bc
P7 is

 S→S1S2

 S1→a′
 S2→a″S2

 a″S2 →b″c″
 a′→a

a″→a
 b″→b
 c″→c

G7 uses
S=>S1S2

 =>a ′S2 //Can’t use a″S2 →b″c″
=> a ′a″S2

 => +a ′a″*b″c″
 =>+ a+bc

to create the product language a+bc of L1 and L2.
D. The Valid Closure Property on Kleene Closure

operation

The generation of sentence ε and any number of
products must be considered in Kleene Closure operation.

Adding a formula
S→ε |SS1

to generate empty sentence and any number of products
of L1.

Since S is on the right side of the formula, which is not
satisfied the principle of closure, and can generate other
extra strings so we add a new non-terminal symbol to
solve the problem.

Rewrite the newly added formula,
 S→ε |S′

 S′→S1|S1S′
then only ε and S1

n(n≥1) can be deducted from S.
Create grammar

G8=(∑,V1∪{S,S′},S,P8)
in which

P8={S→ε |S′}∪{S′→S1|S1S′}∪P1
If G1 is type-2 grammar, then G8 is also type-2

grammar and
L(G8)=L1*

 So, language of type-2 is closed on Kleene Closure.
If G1 is type-0 or type-1 grammar, grammar G8 may also
has crosstalk problem. That because

 S=>+S1…S1S1…S1
each S1 could only generate sentence of L1 from the
formula of P1, and the sentence patterns generated by any
two consecutive S1 might be following and preceding text
with each other, then crosstalk is appear.

 To avoid crosstalk, copy ∑ as ∑′and ∑″, create
P′and P″; rewrite S1 as S′, create grammar

G′=(∑,V1∪∑′∪ {S′}-{S1},S′,P′)
Rewrite S1 as S″, create grammar

G″=（∑,V1∪∑″∪{S″}-{S1},S″, P″)
Create grammar

G9=(∑,V1∪∑′∪∑″∪{S′, S″, S1,S2}, S,P9)
in which

P9= {S→ε |S1|S2}

JOURNAL OF COMPUTERS, VOL. 5, NO. 2, FEBRUARY 2010 325

© 2010 ACADEMY PUBLISHER

∪{ S1→S′|S′S2}
 ∪{ S2→S ″ | S ″ S1}

 ∪P′∪P″
 ∪{x′→x|x∈∑}∪{x″→x |x∈∑}

To avoid crosstalk itself, S ′ and S ″ must be
alternated to satisfy:

S=>S1=> S′ S ″ S′ S ″…S′ S ″
or

S=>S1=> S′ S ″ S′ S ″… S′
and

 S=>S2=> S ″ S′ S ″ S′… S ″ S′
or

S=>S2=> S ″ S′ S ″ S′… S ″
then the consecutive S1 are replaced by alternated S′and
S″ , each S′ and S″ could only deduce from the
formula of P ′ or P ″ respectively, and crosstalk is
avoided.

S′and S ″each generates language of alphabet∑′

and ∑ ″ (The sentence structures are equal to the
sentence structure of L1）, then after restoration, L1* is
obtained, that is

L(G9)=L1*
So, language of type-0 and type-1 are closed on Kleene

Closure operation.
For Example, type-1 grammar G1 is

S1→aS1BC
S1→aBC
CB→BC
aB→ab
bB→bb
bC→bc
cC→cc

so L1 is
 {anbncn|n>0}

Set ∑′is

 { a′,b′,c′}
Set ∑″is

{ a″, b″, c″}
Set type-1 grammar G′ is

S′→a′S′B′C′
S→a′B′C′
C′B′→B′C′
a′B′→a′b′
b′B′→b′b′
b′C′→b′c′
c′C′→c′c′

Set type-1 grammar G″ is
S″→a″S″B″C″

S″→a″B″C″
C″B″→B″C″
a″B″→a″b″
b″B″→b″b″
b″C″→b″c″
c″C″→c″c″

Set type-1 grammar G9 is

S→ε |S1|S2
S1→S′|S′S2

 S2→S″| S″S1
S′→a′S′B′C′

S→a′B′C′
C′B′→B′C′
a′B′→a′b′
b′B′→b′b′
b′C′→b′c′
c′C′→c′c′

S″→a″S″B″C″
S″→a″B″C″

C″B″→B″C″
a″B″→a″b″
b″B″→b″b″
b″C″→b″c″
c″C″→c″c″

 a′→a
 b′→b

c′→c
a″→a

 b″→b
 c″→c

so L9 is
 {anbncn|n>0}*

that is
 L9=L1*

 If G1 is type-3 grammar while G8 is not type-3
grammar, add new starting symbol S and

S→ε
ε is generated,add

S→r
in which

S1→r ∈P1
to deduce (r=wB or r=w)。

For every formula like A→w, add
 A→wS1 (A→w is not deleted)

from S, the sentence pattern could be deduced,
 r1r2…rkA

in which
r1,r2,…,rk ∈L1

Stop deduction when
r1r2…rkw

is deduced or having deduced another sentence from
r1r2…rkwS1

until L1*.
G1 is type-3 grammar, create -3type grammar,

G10=（∑,V1∪{S},S,P10）
in which

P10= {S→ε }∪ (P1 - {S1→ε })
∪{ S→r | S1→r∈P1}

∪{A→wS1| A→w∈P1}
then

L(G10)=L1*
So, language of type-3 is closed on Kleene Closure

operation.

326 JOURNAL OF COMPUTERS, VOL. 5, NO. 2, FEBRUARY 2010

© 2010 ACADEMY PUBLISHER

For example, type-3 grammar G1 is
 S1→aS1|bS1

 S1→aA|bB
 A→aA|bA

A→aC
B→aB|bB

B→bC
C→a|b

so L1 is
 (a+b)*a(a+b) * a(a+b)+ (a+b)*b(a+b) * b(a+b)

Set type-3 grammar G10 is
 S→ε

 S→aS1|bS1
 S→aA|bB

A→aA|bA
A→aC

B→aB|bB
B→bC
C→a|b

C→aS1|bS1
so L10 is

 ((a+b)*a(a+b)*a(a+b)+ (a+b)*b(a+b)*b(a+b))*

that is
L10=L1*

Therefore, whether alphabet

 ∑1∩∑2＝Ф
or

 ∑1∩∑2≠Ф（∑1=∑2 is included）
language of type-0,type-1, type-2 and type-3 are closed

on union, product and Kleene Closure operations.

VI. THE CREATION OF REGULAR EXPRESSION

For regular language, regular expression can be
generated as the method above.

R1 and R2 are regular expressions of language L1 and
L2.

Suppose
L=L1∪L2

regular expression of L is (R1)+(R2)
L=L1L2

regular expression of L is (R1)(R2)
L=L1*

regular expression of L is (R1)*

VII. CFL IS EFFECTIVELY CLOSED TO CONTEXT-FREE IN-
PLACEMENT

For context-free language, there is another useful
operation, that is in-place operation[1].

Suppose X and Y are alphabets, mapping
g: X*→Y*

if
g（ε ）= ε

and for any n≥1
g(x1x2…xn)=g(x1)g(x2)…g(xn)

in which
 xi∈X

g(xi)=y∈Y*
or

 g(xi)={y1 ,y2 ,…}
then g is a context-free in-placement.

If L is a language of alphabet X, then
g(L)=∪g(w)

in which
w∈L

Context-free grammar G= （ X,V,S,P ） , generates
context-free language L , g is a context-free in-placement:

g(x)=
xL

in which
x∈X

Copy X as X′
X′={x′|x∈X}

for every formula of P, replace the terminal symbol x on
the right side by x′, and P′is obtained.

Rewrite G as:
G′=（Y,V ∪ ∑′,S,P′）

The language generated by grammar G is based on
alphabet X, and the language generated by grammar G′

is based on alphabet X′. The sentence structures of the
languages are all the same. (Only differ in alphabet.)

For every x′, add a group of context-free formulas to
satisfy:

x′=>+
xL

P″is obtained.
Create context-free grammar, #

 G″=（Y,V ∪ ∑′,S,P″）
Grammar G generates

x1x2…xn
Grammar G″first uses P′to generate

x1′x2′…xn′
and then uses the new formulas to obtain

1x
L

2xL …
nxL

Language g(L) generated by grammar G ″is also
context-free. For example,

Context-free grammar G generates anbn for
S→aSb
S→ab

Suppose context-free in-placement is:
g(a)=0+=

aL
g(b)=101*=

bL
Create grammar G′

S→a′S b′
S→a′b′

a′nb′n is generated
Add formula

a′→0|0a′
0+ is generated。

Add formula
b′→10|10A

JOURNAL OF COMPUTERS, VOL. 5, NO. 2, FEBRUARY 2010 327

© 2010 ACADEMY PUBLISHER

A→1|1A
101* is generated

Create G″
S→a′S b′
S→a′b′

 a′ →0|0 a′
 b′→10|10A

A→1|1 A
language 0+(101*)+ is generated. .

VIII. CONSTRUCTING NFA WITH THE CLOSURE
PROPERTY

Suppose L1, L2 be two type-3 languages, the DFA
which receive these two languages is

M1=（Q1,∑1,δ 1,q1,{f1}）
and

 M2=（Q2,∑2,δ 2,q2,{f2}）
Suppose Q1 and Q2 not be intersect.
Construct

ε -NDA=（Q1∪Q2∪{q0,f0},
∑1∪∑2,δ ,q0,{f1}∪{f2}）

function δ is
δ （q0,ε ）= q1
δ （q0,ε ）=q2

to all states q ∈ Q1,a ∈ ∑1∪{ε }
 δ （q,a）=δ 1（q,a）

to all states q ∈ Q2,b ∈ ∑2∪{ε }
 δ （q,b）=δ 2（q,b）

This can be shown visually as Fig.1.
 M1

 ε ε
 ε

 q0 ε f0

 M2
Figure 1ε -NDA for union operator

This ε -NDA concludes all function δ of M1 and
M2,and adds 4 δ functions that scan ε ,then we get:
setting out from the ε -NDA beginning appearance,
passing twoε actions:

δ （q0,ε ）= q1
and

δ （q0,ε ）=q2
it can arrive the beginning appearance q1 or q2 of M1 or

M2,then, with the usage of own δ function that belong to
M1 or M2, it can reach the only receiving states f1 or f2,
finally, enter the only receiving states f0.

Obviously, the language thatε -NDA receive is union
of L(M1) and L(M2).

Construct
ε -NDA =（Q1∪Q2,∑1∪∑2,δ ,q1,{f2}）

function δ is :
to all states q ∈ Q1-{f1},a ∈ ∑1∪{ε }

 δ （q,a）=δ 1（q,a）
δ （f1,ε ）={ q2}

to all states q ∈ Q2-{f2},b i∈ ∑2∪{ε }
 δ （q,b）=δ 2（q,b）

This can be shown visually as Fig.1.
 M1 M2

 ε

Figure 2ε -NDA for product operator

This ε -NDA concludes all function δ of M1 and
M2,and adds one δ functions that scan ε ,then we get:
setting out from the beginning states q1 of M1, with the
usage of its ownδ function, can reach the only receiving
state f1,then, using the new added function

δ （f1,ε ）={ q2}
it get the beginning state q2 of M2, as the same ,with the
own δ function of M2, it can reach the only receiving
appearance f2(it is also the only receiving state of ε -
NDA), then receive strings from language L(M2).

Obviously, the language that ε -NDA receive is
product of languages L(M1) and L(M2).

Construct
ε -NDA=（Q1∪{q0,f0},∑1,δ ,q0,{f0}）

functionδ is：
δ （q0,ε ）=q1

 δ （q0,ε ）=f0

δ （f1,ε ）={ q0,f0}
to all appearance q ∈ Q1-{f1},a ∈ ∑1∪{ε }

 δ （q,a）=δ 1（q,a）
This can be shown visually as Fig.3.

 ε

 ε ε

q0 f0
Figure 3ε -NDA for Kleene Closure operator

Thisε -NDA concludes all function δ of M1,and adds
4 δ functions that scan ε ,then we get: setting out from
theε -NDA beginning appearance, passing twoε actions:

δ （q0,ε ）=q1
and

δ （q0,ε ）=f0
it can straightly reach the only receiving states f0(in order
to receive null stringε),or reach the beginning state q1 of
M1,then, setting out from the beginning state q1,using the
own δ function of M1,it can reach the only receiving
state f1, at that time, pass twoε actions, it straightly get
the receiving state f0 so that it can finish this receiving
process; also ,this state can be changed to the beginning
sate q1 of M1, in order to receiving strings.

Obviously, the language thatε -NDA receive is the
Kleene Closure of L(M1).

 …
q1 f1

 …
 q2 f2

 ε M1
q1 f1

 q1 f1

 q2 f2

328 JOURNAL OF COMPUTERS, VOL. 5, NO. 2, FEBRUARY 2010

© 2010 ACADEMY PUBLISHER

IX. CONCLUSION

Usually, complex language could be decomposed into
several simple languages of the same type and re-
composed by union, product and Kleene closure
operations. The paper proves that the 4 types of language
of Chomsky theory are effectively closed on the above
three operations, and proposes a general method to create
grammar of complex languages.

The valid closure property of positive closure
operation can be referred to the effective closure of
Kleene closure without considering the generation of
sentenceε .

The closure of other operations, like intersection and
complementary operations are not discussed in this paper.

We can construct NFA with the closure of language
calculation.

ACKNOWLEDGMENT

This paper is supported by the the Si Chuan science
and technology (2006J13-068).

REFERENCES

[1] Peter Linz .An introduction to formal languages and
automata[M]. Boston :Jones and Bartlett,2001.

[2] JIANG Zong-Li and JIANG Shou-Xu, Theory of Formal
languages and Automata[M], Tsinghua University Press,
Beijing, China, 2007 (in Chinese).

[3] CHEN You-Qi, Formal Languages and Automata[M],
Nankai University Press, Tianjing, China, 1999 (in
Chinese).

[4] Michael Sipser. Introduction to the theory of
computation[M]. New York: Thomson, 1996.

[5] J.E. Hopcroft and J.D. Ullman.Introduction to Automata
Theory, Languages and Computation [M]. 2nd ed. Reading,
MA: Addison-Wesleg, 2000

Chen Wenyu, male, born in 1968. He is an associate
professor of School of Computer Science and Engineering,
University of Electronic Science & Technology of China. His
research interest include: compiling technique, pattern
recognition, formal language and automata.

He received the B.S. and M.S. degrees in computer science
and engineering from University of Electronic Science and
Technology of China(UESTC),Chengdu, China, in 1990 and
1993, respectively. He was a researcher at the School of
Computer Science and Engineering,UESTC. From 2004, he was
a associate professor at the School of Computer Science and

Engineering, UESTC. His research interests include computer
Language and compile, formal language and automation, and
neural networks.

He is a mentor for postgraducate student;a grade college
teacher (for undergraduate);a quality outstanding young teacher
(for postgraducate).

He completed a number of research tasks, both through the
Ministry, the provincial identification; publish over 20 papers
and 6 teaching materials.

Associate prof. Chen is a senior member of China Computer
Federation(E200011786S).

Wang Xiaobin, male, born in 1964.
He is an associate professor of School of Computer Science

and Engineering, University of Electronic Science &
Technology of China. His research interests include data
structure, computer Language and compile, software
engineering, neural networks, and optimization.

He received the B.S. and M.S. degrees in computer science
and engineering from University of Electronic Science and
Technology of China, Chengdu, China, in 1985 and 1988,
respectively. He is currently working toward the Ph.D. degree in
Computational Intelligence Laboratory, School of Computer
Science and Engineering, University of Electronic Science and
Technology of China. From 1988 to 1998, he was a researcher
at the School of Computer Science and Engineering, University
of Electronic Science and Technology of China. From 1998, he
was a Professor at the School of Computer Science and
Engineering, University of Electronic Science and Technology
of China. He is currently the dean of ChengDu College,
University of Electronic Science and Technology of China.

Cheng Xiaoou, female, born in 1984.
She is candidate for Master’s degree in Software Engineering,

School of Software, University of Electronic Science &
Technology of China. Her research interest include: compiling
technique, theory of software.

Sun Shixin, male, born in 1940.
He is a Ph.D supervisor and professor of School of Computer

Science and Engineering, University of Electronic Science &
Technology of China. His research interest include: theory of
Computer Science, Parallel Computer Systems, Numerical
Algorithm & Non-Numerical Algorithm (including Parallel
Algorithm).

Prof Sun 1966. B.A. in Mathematics,Sichuan University,
Chengdu, China;1984-1987. visiting scholar at the Grenoble
University, France,;1990. doing research at Roma University,
Italy and Grenoble;University, France.

JOURNAL OF COMPUTERS, VOL. 5, NO. 2, FEBRUARY 2010 329

© 2010 ACADEMY PUBLISHER

http://union.dangdang.com/transfer/transfer.aspx?from=P-238055&backurl=http://search.dangdang.com/search.aspx?key=%20Introduction%20to%20the%20theory%20of%20computation
http://union.dangdang.com/transfer/transfer.aspx?from=P-238055&backurl=http://search.dangdang.com/search.aspx?key=%20Introduction%20to%20the%20theory%20of%20computation
http://union.dangdang.com/transfer/transfer.aspx?from=P-238055&backurl=http://search.dangdang.com/search.aspx?key=%20Introduction%20to%20Automat
http://union.dangdang.com/transfer/transfer.aspx?from=P-238055&backurl=http://search.dangdang.com/search.aspx?key=%20Introduction%20to%20Automat
http://union.dangdang.com/transfer/transfer.aspx?from=P-238055&backurl=http://search.dangdang.com/search.aspx?key=%20Introduction%20to%20Automat

