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Abstract—The Hindmarsh-Rose (HR) model could describe 
different discharge property of an excitatory or inhibitory 
neuron by changing the parameter r. In this paper, HR 
model is used to be the dynamical equations of the spiking 
model neurons, and different neurons in one neuronal 
population are connected with WS small-world network. A 
neurons spiking model in the hippocampus CA3 based on 
small-world network is established on the Matlab platform. 
Spike trains of the neurons spiking model are simulated 
when no stimulus and a pulse current acted on the model. 
Then rate coding and synchrony coding are used to analyze 
the simulated spiking trains. Experiment results indicate 
when no stimulus acts on the neurons spiking model, the 
spike firing of hippocampus CA3 is sparse. When a stimulus 
acts on the neurons spiking model, the mean population 
firing rate increased obviously. The increasing of neurons 
firing rate could present the ensemble activities, which 
highly correlate with memory. 
 
Index Terms—Hindmarsh-Rose (HR) model, small-world 
network, spike trains, hippocampus CA3, neuronal 
ensemble coding 
 

I.  INTRODUCTION 

Cognitive science is one of the most challenging fields 
that attract the world’s most attention in the 21st century. 
Cognitive science is a multidisciplinary study of mind 
and behavior, including neuroscience, philosophy, 
psychology, artificial intelligence and linguistics [1]. 
Cognitive science studies human mental activity, such as 
memory, perception, learning, thinking, consciousness etc. 
Memory is one of the most important cognitive functions, 
and the studies on memory encoding are regarded as a 
key breakthrough to understand the mechanism of 
information transmission and processing in complex 
brain [2].  

In 1949, Donald Hebb proposed the famous “cell-
assembly” hypothesis [3], which indicated that neural 
information encoding process was not conducted by a 
single neuron but neuronal ensemble. The brain basis of 

mental representation (images, ideas) was groups or 
assemblies of neurons that tended to be active at the same 
time because of Hebbian learning. The firing of neurons 
in a cell-assembly can persist after the triggering event 
and this persistence is a form of memory. Therefore, the 
study of neural ensemble coding of memory mechanism 
is very important and significant in the cognitive science. 

The hippocampus is a structure within the brain that 
plays a key role in memory, attention, perceptual 
awareness and consciousness [4]. The hippocampus CA3 
includes a population of billions of neurons, each making 
thousands of synaptic contacts with its neighbors. How 
the vast neurons connect with each other and process 
neural information has become the center problem of 
cognitive science in recent years [5]. 

Because neuronal population activities of many brain 
areas (hippocampus, cerebral cortex et al.) are difficult to 
be observed and recorded in animal experiment 
accurately, simulation data of neural network models is 
an effective way to validate the neural ensemble coding 
theories and methods. Various neural network models 
have been developed to describe neuronal population 
spiking of hippocampus. For example, the pulse-coupled 
neural networks (PCNN) model was used to simulate 
neuronal population firing of hippocampus CA3 neurons 
[6]. Based on the neural nucleus of hippocampus 
information connection, a hippocampus neural nucleus 
model was built by Meeter [7]. The model was comprised 
of CA1, CA3, dentate gyrus and entorhinal cortex 
nucleus. A neural network computational model has been 
undertaken to investigate how the hippocampus, 
neocortex, and basal ganglia work together to support 
cognitive and behavioral function in the mammalian brain 
[8]. 

The models mentioned above can reproduce neuronal 
population activity of the hippocampus CA3, but the 
synchronization of neuronal population spikes can not be 
exhibited perfectly. With the fast development of the 
neuroinformatics and computational neuroscience, 
researchers found that many biological neural systems 
can be cast into the form of complex networks, among 
which small-world networks have attracted much 
attention in recent years [9]. 

The hippocampus CA3 is a complex network on 
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multiple spatial and time scales. Studies of functional 
connectivity patterns among cortical regions have 
demonstrated that functional brain networks exhibit 
small-world properties, possibly reflecting the underlying 
structural organization of anatomical connections [10]. 
The small-world network could provide a powerful and 
versatile approach to understand the structure and 
function of human brain systems [11].  In addition, the 
spikes of neurons within small-world network could 
exhibit synchronization well. 

There are many methods for neuronal ensemble 
coding, such as rate coding, temporal coding [12], spatio-
temporal coding [13], correlation coding [14], nonlinear 
entropy coding [15] et al. In this article, two methods are 
presented to describe the neurons spiking activity. They 
are ensemble rate coding and ensemble synchrony coding 
respectively. 

In this paper, a neurons spiking model is built 
according to the physiology feature of hippocampus CA3. 
The model is composed of 120 neurons, in which 100 
neurons are excitatory and 20 are inhibitory. We choose 
Hindmarsh-Rose (HR) neuron model to describe the 
different spiking patterns of a neuron and simulate the 
connection of different neurons by WS small-world 
network. Finally, we implement the simulation model on 
Matlab 7.1 platform, and analyze the simulation results 
by neural ensemble rate coding and synchrony coding. 

II.  METHODS 

Hindmarsh-Rose (HR) neuron model is chosen to 
describe the spiking patterns of single neuron. WS small-
world network structure is used to characterize the 
connection of different neurons. The neuronal ensemble 
rate coding and synchrony coding are adopted to analyze 
the neuronal ensemble activity of hippocampus CA3. 

A.  Hindmarsh-Rose model 

The Hindmarsh-Rose (HR) model was proposed in 
1984[16]. It describes the dynamics discharge 
characteristic of the neurons. The HR model is a 
simplified Hodgkin-Huxley (HH) neuron, which used 
four linked first-order differential equations to model the 
membrane potential of a giant squid axon. The HH model 
has served as a basis of most work in recent decades but 
its complexity imposes considerable computational costs 
in modeling large scale neural networks. Unlike even 
simpler models such as the leaky integrate-and-fire 
model, in HR model neurons action potentials are 
explicitly modeled.  

The dynamic equations of HR model are shown in 
formula (1), (2) and (3). Where X stands for the 
membrane potential, Y is the fast recovery currents, Z 
denotes slow adaptive currents, Isim is an exogenous 
stimulus input current, a, b, c, d, r, g are constant 
parameters. In our simulations, the parameter values are 
set as followed [17]: 

 a=1.0, b=3.0, c=1.0, d=5.0, g=5.1. 
 

sim
23 IZbXaXY

dt
dX

+−+−=                                     (1) 

Y−−= 2dXc
dt
dY                                                           (2) 

g))-(Z
4
1X(

dt
dZ

−= r                                                      (3) 

B.  Small-world Network Theory 

The theory and method of small-world networks were 
proposed by Duncan Watts and Steven Strogatz in 1998 
[18].  

Small-world networks are characterized by two 
indices. One is Clustering Coefficient (CC) shown in 
formula (4), and the other is Characteristic Path Length 
(CPL) shown in formula (5).  

The CC is defined as the average fraction of pairs of 
neighbors of a vertex that are also neighbors of each other. 
So CC index is a measure of the connection density of the 
local neighborhoods of a vertex. If a vertex i has ki 
neighbors, at most ki(ki-1)/2 connections are allowed to 
exist between these neighbors. The CCi is the fraction of 
these allowable edges that actually exist around a vertex. 
The CC of the small-world network is the average of all 
CCi for each vertex.  

∑
= −

=
N

i 1 ii

i

)1k(k
2eCC                                            (4) 

where ei is the number of edges that actually exist 
among these ki vertices. 

The CPL is defined to be the mean shortest distance 
between vertex pairs in a network.  

∑
=+

=
N

1i
ijd

1)n(n
2CPL                                        (5) 

Where dij is the number of edges along the shortest 
path connecting vertex i and vertex j. if i = j then dij=0. 

Changing p parameter value in such a way, the 
transition between order (p=0) and randomness (p=1) can 
be closely observed in figure 1. 

 

 
Figure 1.  For p = 0, the original network is unchanged, for p = 1, all 
edges are rewired randomly and for 0 < p < 1, graphs are 
combining elements of regular and randomness. Small-world graph 
occurs at approx. p = 0.02. Randomness increases left to right 
above. 

The three graphs in Fig. 1 are regular network, small-
world network and random network respectively. Small-
world networks are characterized by a high CC in 
combination with a low CPL, whereas both CC and CPL 
are high in regular network structures and low in random 
ones [19]. 
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In our neurons spiking model, the number of neurons 
is N=120. The k value is 2 and the rewiring probability is 
p=0.02. 

C.  Neuronal Ensemble Rate Coding 

There are many methods for neuronal ensemble 
coding, such as rate coding, temporal coding, spatio-
temporal coding, correlation coding, nonlinear entropy 
coding et al.  

The rate coding phenomenon was originally shown by 
ED Adrian and Y Zotterman in 1926. Rate coding has 
been one of the dominant tools for measuring neurons 
activity over the past 80 years of neurological study.  

For many physiologists, rate coding constitutes the 
simplest and clearest notion of how neurons encode 
information. In a “rate code” the only variable of interest 
is the total number of spikes fired by neurons in a 
relatively long time period of several hundred millisecond 
or even seconds. In other words, one neuron would 
receive information from another by “counting” the 
number of spikes from that neuron over some extended 
period of time and determining the mean time between 
firings. Specifically, a shorter time period implies a 
higher activation. The rate coding model of neuronal 
firing communication states that as the intensity of a 
stimulus increases the rate of spike firing increases. 

Rate coding is believed that neuron communicated 
information in their mean firing rate [20]. In this study, 
rate coding is used to represent the neural ensemble 
activity of hippocampus CA3 neurons under external 
stimulation. 

Although spikes can have different amplitudes, 
durations or shapes they are typically treated as discrete 
events. By discrete events, we mean that in order to 
describe a spike train, one only needs to know the 
succession of emission times: 

{ }KK ,t, n
ii =Η  with KK <<<< n

i
2
i

1
i ttt      (6) 

Where n
it corresponds to the nth spike of the neuron of 

index i. 

Let us consider a spiking neuron i. The spike train Hi 
associated to this neuron is defined in (6). The windowed 
firing rate )(i ⋅γ  by 

       
t

)t,tt(
)t,t( i

i ∆
∆−

=∆
η

γ ,                                          (7) 

where )(i ⋅η counts the number of spikes emitted by 

neuron i inside the sliding time window ( )t,tt ∆− . 

D.  Neuronal Ensemble Synchrony Coding 
To obtain a time-resolved measure of the firing rate 

of the spike train { x
it }, in a first step the value of the 

current interspike interval is assigned to each time 
instance. 
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{ y
jt }. The ratio between isix  and  isiy  is taken, and the 

final measure is thereby obtained after introducing a 
suitable normalization,  
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The measure becomes zero in case of iso-frequent 
behavior, and approaches -1 and 1, respectively if the 
firing rate of the first (or second) train is infinitely high 
and the other infinitely low [21].  

In order to derive a measure of spike train distance, the 
spike-weighted method is characterized.  

 ∑
=

=
M

1i
iI |)t(I|D                                                        (10) 

E.  Neurons spiking model of Hippocampus CA3 
The hippocampus is perhaps the most studied 

structure in the brain. It forms the central axis of the 
Limbic System. It is critical to spatial learning and 
awareness, navigation, memory and associational 
recollection. The regions CA1 and CA3 contain 
pyramidal cells as their principal neurons (CA stands for 
Cornu Ammonis - so called because the whole structure 
looks like rams horns).  

  
Figure 2. The hippocampus CA3 anatomy position 

The hippocampus is a part of the forebrain, located in 
the medial temporal lobe. It belongs to the limbic system 
and plays major roles in short term memory and spatial 
navigation. Fig. 2 shows that the hippocampus CA3 area 
anatomy position. The hippocampus CA3 is involved in 
memory formation [22].   

The neurons of the hippocampus CA3 are mainly 
composed of pyramidal cells and inhibitory interneuron. 
The majority of pyramidal cells are prone to excitatory 
neurons. The anatomical sampling of the neurons in the 
hippocampus CA3 has shown that about 84% of the 
neurons are excitatory and the rest 16% are inhibitory 
[23]. The ratio of excitatory neurons to inhibitory neurons 
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is about 5 to 1 in the hippocampus CA3.  
In our neural population spiking model, we use HR 

model as the dynamical equations for the nodes, and all 
nodes are connected by small-world networks. The model 
is described by the following equations: 

j

N

1j
ijsimi

2
i

3
ii

i XA
N
eIZbXaXY

dt
dX ∑

=

++−+−=           (11) 

i
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dt
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Y−−=                                                         (12) 
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Where the subscript i denotes the neuron number and 
N represents the total number of neurons. For simplicity 
we use N=120 throughout simulation because the number 
of neurons N=120 can be used to describe small-world 

property. ∑
=

N

1j
jijXA

N
e

is the coupling term of the neural 

population spiking model, where e is the coupling 
strength. Aij represents the coupling matrix of the neurons 
and when a connection exists between neurons i and j, 

Aij=1, otherwise, Aij=0, and ∑
=

≠−=
N

1j
ijii )ij(AA . 

In our neurons spiking model equations, the 
parameter values are set as followed: 

a=1.0, b=3.0, c=1.0, d=5.0, e=0.5, g=5.1. 

III.  RESULTS 

A. Hippocampus CA3 small-world network topology 
connection 

According to the anatomical characteristics, our 
simulation model is composed of 120 neurons, in which 
100 neurons are excitatory and 20 are inhibitory. WS 
small-world network generation algorithm is adopted. 
Three network topologies are constructed by changing 
rewiring probability p. The network is a regular network 
when p=0, and a random network when p=1. In our 
simulation experiment, the 120 neurons are connected 
with small-world network structure when rewiring 
probability is p=0.02. The connections among the 
neuronal population are shown in Fig. 3.  

 
Figure 3.  Small-world network topology graph (120 neurons) 
 
To compare characteristics of different network, we 

calculate the CC and CPL indexes according to formula 
(4) and (5). The results are shown in table 1. 

 
TABLE I.  

CC AND CPL INDEXES OF THREE NETWORKS 

Networks CC CPL 

Regular network 0.60 8.76 

Small-world network 0.48 3.09 

Random network 0.06 2.75 

As shown in table 1, the CC of the small-world 
network (120 neurons) is 0.48 and the CPL is 3.09. The 
two indexes satisfy the small-world network property. 

B.  RS  and FS neurons spiking pattern 

The HR model exhibits realistic neuronal response 
properties, including a range of periodic, chaotic, and 
irregular bursting behavior depending on a single input 
parameter r. 

There are mainly two physiological types of 
hippocampus CA3 neurons. They are excitatory regular 
spiking (RS) neurons and inhibitory fast spiking (FS) 
neurons. The RS neurons are identified as spiny and 
pyramidal neurons and exhibit evident and rapid firing 
frequency adaptation responding to a continuous 
depolarizing current injection. The hippocampus CA3 
excitatory neurons spiking pattern is shown in Fig. 4.  
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Figure 4. The hippocampus CA3 excitatory neurons spiking pattern 
(RS) 

The FS neurons are identified as non-spiny and non-
pyramidal neurons and respond to long depolarizing 
current stimulus with higher rate of firing and less 
prominent spike frequency adaptation than the RS 
neurons. The parameter rRS=0.16 and rFS=0.006 describe 
the excitatory and inhibitory spiking properties in the HR 
neuron models. The hippocampus CA3 inhibitory 
neurons spiking pattern is shown in Fig. 5. 

 
Figure5. The hippocampus CA3 inhibitory neurons spiking pattern 
(FS) 

C.  Spike Trains 
In our experiment, the simulation time is set to be 

1000ms. In order to achieve the stable results, we choose 
the neurons spiking trains from 200 to1000ms.  

The external stimulus event is a pulse current. The 
duration of the stimulus is set to be 100ms. When no 
stimulus current acts on the neurons spiking model, that 
is Istim=0.  At the time 300ms, the stimulus current acts 
on the neurons spiking model. The intensity is set to be 
2mA, that is Istim=2.0. 

Simulation of the spike trains before and after the 
external stimulus acting on the neurons spiking model is 
shown in Fig. 6.  

 
Figure 6. Spike trains of the neurons spiking model. The start of the 
stimulus is indicated by the red triangle, and the end of the stimulus 
is indicated by the red circle. 

 
In Fig. 6, the X axes represent the spiking time (unit 

is ms), and the Y axes is the index of neurons.  A dot 
represents the time of a neuronal spike train.  

D.  Neuronal ensemble rate coding 
The average spike firing in unit time is defined as 

mean population firing rate [24]. In this experiment, 
when no stimulus acts on the model, that is before the 
zero time in Fig. 6. The mean population firing rate is 
7.8% in accordance with the sparse spike firing 
characteristic of hippocampus CA3.  

When stimulus current acts on the neurons spiking 
model, the start of the stimulus is indicated by the red 
triangle and the end of the stimulus is indicated by the red 
circle. The duration of the stimulus is 100ms. During the 
stimulus time, the mean population firing rate is increased 
to 28%. When the stimulus event is removed, the mean 
population firing rate is decreased gradually. 

 
Figure 7. The neuron spike histogram before and after the stimulus 
acting on the neurons spiking model. The start of the stimulus is 
indicated by the red triangle and the end of the stimulus is indicated 
by the red circle. 
 

Fig. 7 shows that the neuron spike histogram before 
and after the stimulus effects on the neurons spiking 
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model. In Fig. 7, the X axes represent the spiking time 
(unit is ms), and the Y axes is the neurons population 
spikes number. The red triangle represents the onset time 
of stimulus and the red circle represents the finish time of 
stimulus in the figure.  

The neuron mean spikes number is about 7 before the 
stimulus act on the neurons spiking model can be seen 
from Fig.7. 

When the stimulus act on the neurons spiking model 
via small-world network connection, the neuron mean 
spikes number is increased to 28. The increasing of 
neurons firing rate presents the ensemble activities, which 
highly correlate with memory. When the stimulus event is 
finished, the neuron mean spikes number is decreased. 

 
Figure 8. Dynamic neuronal ensemble rate coding 

 
The dynamic rate coding of neuronal firing around 

the stimulus point is shown in Fig.8. The X axes 
represent the spiking time (unit is ms) before and after the 
stimulus acting on the neurons spiking model, and the Y 
axes is the index of neurons. The firing rate values (after 
normalization) are described via color. The results show 
that the firing rate is lower when no stimulus act on the 
network model with no ensemble activity. When the 
stimulus event is appeared, the firing rates are higher, 
where presented obvious ensemble activity. 

E.  Neuronal ensemble synchrony coding 
The number 63 neuron is marked in blue and the 

number 56 neuron is marked in red. For this pair of spike 
trains an ISI-distance DI=0.054 is obtained.  In Fig.9 the 
ISI-distance is applied to two spike trains of 800ms 
duration.  

 
     Figure 9. Synchrony measure based on ISI-distance between 
neuron 63 and neuron 56. 

  
In Fig.9, the X axes represent the neurons spiking time 

(unit is ms). In the middle traces the two neurons spike 
trains are shown. The neuron 63 spike time series is 
marked in blue, and the neuron 56 spike time series is 
marked in red. According to equation (8), the two 
neurons ISI-values are depicted on the top. At the bottom 
the corresponding renormalized ISI-distance is shown. 
Here colors mark the times where the respective spike 
train is slower. In the first 300ms, the two spike trains are 
desynchronized and this is reflected by a large ISI-
distance value. When the stimulus (pulse current) acts on 
the neurons spiking model at the time of 300ms, the 
synchrony relation of the two spike trains is changed. 
During the stimulus time(100ms), the two spike trains are 
1:1 synchronized and this is reflected by an ISI-distance 
I(t)≈0. When the stimulus is removed from the neurons 
spiking model, the two spike trains are desynchronized 
again.  
       In Fig.10, the two spike trains are neuron 63 and 
neuron 69 spiking time series. The synchrony measure of 
the two spike trains in the same way as in Fig.9. In this 
case the two spike trains are desynchronized during the 
stimulus acts on the neurons spiking model. This is 
reflected by a large ISI-distance value during the stimulus 
time (100 ms).  
       In this way, the synchrony measure of other neurons 
and neuron 63 can be undertaken.  The neuronal 
assembly is composed of the highly synchrony neurons 
(neuron 63, 56, 50, 32, 20, 83, 97, 112). When the 
stimulus event is occurred, the neuronal ensemble is 
formed.   
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Figure 10. Synchrony measure based on ISI-distance between 
neuron 63 and neuron 69. 

IV. CONCLUSIONS 

In this paper, a neurons spiking model of 
hippocampus CA3 is established based on the small-
world network theory and anatomical connections 
features. 

In our experiments, the neurons spiking model is 
composed of 120 neurons. According to the anatomical 
characteristics of hippocampus CA3, the ratio of the 
excitatory to inhibitory neurons is about 5 to 1. Therefore, 
we designate 100 excitatory and 20 inhibitory neurons in 
our simulation model. HR model is chosen to describe the 
different spiking patterns of a neuron. Furthermore, the 
connection of different neurons is implemented by WS 
small-world network on Matlab 7.1 platform.  

Experiment results indicate the neuronal population 
spiking model of hippocampus CA3 could simulate spike 
trains. It is evident that neuronal firings are provided with 
completely different coding patterns before and after the 
stimulus act on the neurons spiking model. Neuronal 
ensemble rate coding and synchrony coding are used to 
represent the neuronal ensemble activity of the 
hippocampus CA3. The synchrony measure of spike 
trains based on ISI-distance is an effective neuronal 
ensemble coding method. 

When no stimulus acts on the neurons spike model, 
the spike firing of hippocampus CA3 is sparse (the mean 
population firing rate is less than 10%). This means that 
no ensemble activity is presented, which indicated that 
memory is not formed. When a stimulus acts on the 
neurons spike model, the mean population firing rate is 
increasing obviously (in our experiment is 28%). The 
increasing of neurons firing rate could present the 
ensemble activities, which showed that the memory 
(external stimulus event) has been built up. 
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