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Abstract—We propose a new method for analysis of the 
sampling and reconstruction conditions of signals by use of 
the multiple-parameter fractional Fourier transform 
(MPFRFT). It is shown that the MPFRFT may provide a 
novel understanding of sampling process. The proposed 
sampling theorem generalizes classical Shannon sampling 
theorem and Fourier series expansion, and provides a full-
reconstruction procedure of certain signals that are not 
bandlimited in the conventional Fourier transform domain. 
An orthogonal basis for the class of signals which are 
bandlimited in the MPFRFT domain is also given. 
Experimental results are proposed to verify the accuracy 
and effectiveness of the obtained results. 
 
Index Terms—sampling theorem, fractional Fourier 
transform, multiple-parameter fractional Fourier transform 
 

I. INTRODUCTION 

In recent years, the concept of fractional operator has 
been investigated extensively in many engineering 
applications and science [1-5]. Fractional operators are 
defined as fractionalizations of some commonly used 
operators. In this paper, the fractional Fourier transform 
(FRFT) are considered. The FRFT, as a generalization of 
the Fourier transform, has different kinds of mathematical 
definitions [6-9]. This fact enables us to represent signals 
in different ways. Shih [10] proposed a method to 
fractionalize the Fourier transform as a composition of   
the given signal, its ordinary Fourier transform and their 
reflected versions, only according to three postulates that 
the FRFT should obey. We generalize the weighted 
coefficients of the FRFT proposed by Shih to contain two 
vector parameters. Therefore a generalized FRFT is 
defined by replacing the weighted coefficients with the 
generalized ones, which is regarded as the multiple-
parameter fractional Fourier transforms (MPFRFT). 

Sampling theorem plays a crucial role in signal 
processing and communications [11-13]. In the sampling 
problem, the objective is to reconstruct a signal from its 
samples. For a bandlimited signal, Shannon sampling 
theorem provides a full reconstruction by its uniform 
samples with a sampling rate higher than its Nyquist 

frequency [11]. For non-bandlimited signals, several 
sampling criteria have been proposed associated with 
wavelet transform and Wigner distribution function etc. 
[14-19]. Herein we propose another transform for 
investigating sampling: the MPFRFT. We show that the 
MPFRFT may provide additional insights that are not 
observed with traditional Fourier transform, wavelet 
transform etc. 

The main result from our MPFRFT-based sampling 
analysis is a generalization of Shannon sampling theorem 
and Fourier series expansion. The proposed sampling 
theorems enable us to sample and reconstruct certain 
signals that are not bandlimited in the conventional 
Fourier transform domain. In section II, the definitions of 
one dimensional (1D) and two dimensional (2D) 
MPFRFT are defined. The sampling analysis based on 
MPFRFT is given in Section III. An orthogonal basis for 
the class of bandlimited signals in MPFRFT domain is 
also given in section III. In section IV, experimental 
results are proposed to demonstrate the effectiveness of 
the proposed sampling theorems. Section V concludes 
this paper. 

II.  MULTIPLE-PARAMETER FRACTIONAL FOURIER 
TRANSFORM 

Let   be an operator.  :     .g x G u     It is 

generally agreed that the fractional operation  of 
operation should satisfy the following postulates:  

i. Continuity postulate:   should be continuous for 
all real values . 

ii. Boundary postulate:  
   0 g x g x    ,    1 g x G u               (1) 

iii. Additivity postulate: 
       g x g x g x                        (2) 

According to above postulates, one can fractionalize 
any operation in different ways.  

A. One dimensional MPFRFT 
It is well known that the Fourier transform F  is 

periodic with periodicity 4. Therefore, it is reasonable to 
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assume that any fractional operator F  of the Fourier 
transform F is a weighted combination of the four basic 
operators 0F , 1F , 2F  and 3F . Analogous to Shih’s 
technique [10], we can define the fractional Fourier 
transform  F  with order  as 

     
3

0

k
k

k

F x p F x 


                     (3) 

where the weighted coefficients are the functions of 
transform order .  According to above three postulates, 
the coefficients should satisfy the following conditions 

i. The coefficients are continuous functions of 
transform order ;  

ii. When  is an integer, the coefficients should be 
certain values which serve as boundary conditions, see 
Table I; 

iii. The coefficients should satisfy the following 
coupling equations 

0 0 0 1 3 2 2 3 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )p p p p p p p p p               
1 0 1 1 0 2 3 3 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )p p p p p p p p p                  
2 0 2 1 1 2 0 3 3( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )p p p p p p p p p                  
3 0 3 1 2 2 1 3 0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )p p p p p p p p p                (4) 
In order to calculate the values of the coefficients, we 

take the following transformation 
0 0

1 1

2 2

3 3

( ) ( )1 1 1 1
( ) ( )1 1
( ) ( )1 1 1 1
( ) ( )1 1

q p
q pi i
q p
q pi i

 
 
 
 

    
         
     
    

     

        (5) 

Using this transformation, we get the following four 
equations with much simpler forms 

0 0 0

1 1 1

2 2 2

3 3 3

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

q q q
q q q
q q q
q q q

   
   
   
   

   
         
         

            (6) 

The solutions of (6) are simple exponential functions. 
Considering the new boundary conditions for ( )kq   
k =0, 1, 2, 3 shown in Table I, we can get the solution of 
(6) as 

( ) exp{ 2 (4 1)(4 ) / 4}k k kq i m n k          (7) 
where parameter vectors  

  4
0 1 2 3, , ,m m m m Z m ,   4

0 1 2 3, , ,n n n n Z n  
are two arbitrary 4-dimensional integer vectors. Taking 
the inverse transform of (5), we can obtain the weighted 
coefficients ( ), 0,1,2,3kp k   as 

3

0

1( ) exp{ 2 / 4[(4 1) (4 ) ]}
4k l l

l
p i m n l kl  



       (8) 

Thus the fractional Fourier transform with order  of 
signal f , or briefly, the ( ) -FRFT of f , can be defined 
as  

     
3

0
, , k

k
k

F x p F x 


  m n                   (9) 

with the weighted coefficients  , ,kp  m n  given by (8). 
Due to the additional freedom degrees provided by 
parameter vectors , ,m n we call this kind of FRFT 
multiple-parameter fractional Fourier transform 
(MPFRFT).  

Note that when (0,0,0,0)=m n , the MPFRFT 
reduces to the FRFT proposed by Shih. As shown in Fig. 
1, the randomicity of parameter vectors m and n  
provides us more choices to represent signals. 

B.  two dimensional MPFRFT 
Now we extend the 1D MPFRFT to 2D case. Similar 

to the 1D case, the 2D ( ) -MPFRFT of signal 
( , )f x y can be defined as 

 
3

0
[ ( , )] , , [ ( , )]k

k
k

f x y p f x y 


 F Fm n       (10) 

where kF denotes the k -order 2D Fourier transform, the 
weighted coefficients  , ,kp  m n , 0,1, 2,3k  are the 
same as (8). 

III. SAMPLING THEOREM ASSOCIATED WITH MPFRFT 

A.  Sampling theorem associated with one dimensional 
MPFRFT 

A signal f is said to be  bandlimited in (  )-
MPFRFT domain, if there exists a positive  such that  

[ ]( ) 0,F f u u   . 
Theorem 1: Suppose ( )f t  is  bandlimited in (  )-
MPFRFT domain, then ( )f t can be uniquely determined 
by the samples of its ( 1  )-MPFRFT, and can be 
completely reconstructed by the following sampling 
formula: 

1( ) [ ]( ) ( , )n n
n

f t F f t t t             (11) 

where / (2 )nt n  , ( , )nt t  is the ( 1  )-MPFRFT of 
sinc[2 ( )]nt t   and sinc( ) sin( ) / ( )t t t  . 

TABLE I.   
BOUNDARY VALUES FOR THE COEFFICIENTS ( )kp  AND ( )kq  . 

  0 ( )p   1( )p   2 ( )p   3( )p   0 ( )q   1( )q   2 ( )q   3( )q   
0 1 0 0 0 1 1 1 1 

1 0 1 0 0 1 i  -1 i  

2 0 0 1 0 1 -1 1 -1 

3 0 0 0 1 1 i  -1 i  
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Proof: Let ( )g u  denote the ( 1)  -MPFRFT of ( )f t . 
It is a common engineering practice to model the 
sampling process by a multiplication with a sampling 
sequence of  

1 comb( )
s s

u
u u

 

where su  is the sampling period. Without loss of 
generality, we let 0su  . Here the corresponding 
sampled signal representation is  

1( ) ( ) comb( )s
s s

ug u g u
u u

                         (12) 

with 

comb( )= ( )s s
ns

u u u u
u

   

It is known that the Fourier transform of the 
multiplication of two signals corresponds to a 
convolution of the Fourier transforms of each signal.  
Taking into account the properties of the comb function 

and the additive property of MPFRFT, we can write the 
Fourier transform ( )sG w  of  ( )sg u  as 

( ) [ ]( ) comb( )s sG w F f w u w   

 1 [ ]( )
ns s

nF f w
u u

                      (13) 

where superscript   denotes a convolution. Thus the 
sampling process results in a periodization of the ( )-
MPFRFT of f , as illustrated in Fig. 2. Choose ideal low-
pass filter 

1,
R( )=

0,
w

w
w




 
 

                      (14) 

and 1/ (2 )su  , we have 
( ) ( ) 2 [ ]( )sG w R w F f w                 (15) 

By the additive property of MPFRFT, in the ( 1)   
MPFRFT domain, we have 

( ) ( ) sinc (2 )sg u g u u   
       ( ) sinc[2 ( - )]n n

n
g t u t               (16) 

 

Figure 1. Real parts of the weighted coefficients, plotted as a function of the transform order, with different parameter vectors: Solid curves with
parameter vectors  0,0,0,0=m n and dashed curves with parameter vectors  1,3,0, 2m  and  3,0, 2,1n . (a)  0 , ,p  m n , (b) 

 1 , ,p  m n , (c)  2 , ,p  m n , (d)  3 , ,p  m n . 
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Since ( )f t is the (1 ) -MPFRFT of ( )g u , we have 
1( ) [ ( )]( )f t F g u t                                           

 1( ) sinc[2 ( - )] ( )n n
n

g t F u t t        (17) 

Obviously, when 1  and  0,0,0,0=m n , Eq. 
(11) reduces to  

( ) ( )sinc[2 ( )]n n
n

f t f t t t             (18) 

which means that Theorem 1 includes Shannon 
sampling theorems as special case. Compared with 
Shannon sampling theorem, sampling condition is 
enlarged and the samples are not limited to time domain. 

It is interesting to see that when 0  and 
 0,0,0,0=m n , Eq. (11) reduces to  

21(2 ) ( ) ,
( )

0,

ni t t
n

n
F t e t

f t
t

 



   
 


       (19) 

which means that a timelimited signal can be 
represented by a Fourier series. Thus, classical Fourier 
series expansion can also be viewed as a sampling 
formula in the sense of MPFRFT. Furthermore, the 
proposed sampling theorem based on MPFRFT gives a 
continuous conversion from Fourier series expansion to 
Shannon sampling theorem when  0,0,0,0=m n=  
and transform order ranges from 0 to 1. 
Theorem 2: Let H  denote the class of signals which 
are   bandlimited in ( ) -MPFRFT, then we have the 
following results: 

1) The sequence  , nt t（ ） forms an orthogonal basis 
for H ; 

2) With respect to above basis, the coordinates of 
signal are actually the uniform samples of its ( 1)  -
MPFRFT. 

Proof: 1) Let 1H  denote the class of signals which are 
  bandlimited in the conventional Fourier transform 
domain. It has been given before that  , nt t（ ）  is the 
(1 ) -MPFRFT of sinc[2 ( )]nt t  . Since the MPFRFT 
is a unitary mapping of 2 ( )L R  into itself under which 
H is the image of 1H , it follows that sinc[2 ( )]nt t   is 
an orthogonal basis for 1H  if and only if  , nt t（ ） is an 
orthogonal basis for H . It is well known that 
sinc[2 ( )]nt t   is an orthogonal basis for 1H . Therefore, 

 , nt t（ ） forms an orthogonal basis for H . 
2) From 1) for any ( )f t H , we have  

( ) ( , )n n
n

f t c t t                           (20) 

where ,nc n Z  denote the coordinates of ( )f t  and can 
be calculated as 

2

( , )
( ),

( , )
n

n
n

t t
c f t

t t



                     (21) 

where ,   denotes the inner product and   is the 2-
norm. By the additive property of MPFRFT, it is easy to 
see that the ( ) -MPFRFT ( )w  of  , nt t（ ） is actually 
the Fourier transform of sinc[2 ( )]nu t  . Thus ( )w  

equals to 21(2 ) ni t te    for t  and equals to zero 
otherwise. The unitary property of MPFRFT yields that  

2 2 1( , ) ( )
2nt t w 


                   (22) 

So  
2 ( ), ( , )n nc f t t t   

   2 [ ( )]( ), [ ( , )]( )nF f t w F t t w    
2[ ]( ) ni t wF f w e dw


   

1[ ]( )nF f t                                             (23) 
It can be seen from Theorem 2 that  , nt t n Z （ ）,  

and their any linear combinations are bandlimited in 
( ) -MPFRFT domain, and can then be completely 
reconstructed according to sampling formula (11). 
Obviously, when 1  ,  , nt t n Z （ ）,  are not 
bandlimited in the conventional Fourier transform 
domain. Therefore, Theorem 1 provides a full-
reconstruction of certain signals that are not bandlimited 
in the conventional Fourier transform domain. 

B.  Sampling theorem associated with two dimensional 
MPFRFT 

For notational simplicity, 2D variables ( , )x y  are 
denoted as a vector T=[   ]X x y . Let ( )W X denote the 
( 1)  -2D MPFRFT of f . Let us denote the sampled 
version of ( )W X  by ( )sW X  for which the periodic 
sampling geometry is indicated by the sampling matrix 
V as  

Figure 2. Effect of sampling in ( 1)  -MPFRFT domain. (a) The
( ) -MPFRFT of analog input signal f . (b) Sampling process results
in a periodization of the ( ) -MPFRFT. (c) The analog signal is
reconstructed by ideal low-pass filtering. 
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( ) ( ) ( )s
N

W X W X X VN              (24) 

where ( )X  is the 2D impulse function, [   ]TN n m  
and n  and m are integers. Sampling matrix  

0
0

s

s

x
V

y
 

  
 

 

with sx  and sy are the distances between samples in the 
x and y directions, respectively.  In the Fourier domain, 
multiplication corresponds to a convolution. Therefore, 
by the additive property of MPFRFT, the Fourier 
transform sW of sW can be written as 

( ) [ ( )]s sW U W X F  

                 11[ ]( ) ( )
det N

f U U V N
V

    F  

11 [ ]( )
det N

f U V N
V

  F                (25) 

where [   ]TU u v , as usual. The double asterisks 
denotes 2D convolution operator. It can be seen that the 
Fourier transform of sW is formed from infinite 
superposed, shifted replicas of the ( ) -MPFRFT of the 
original signal ( )f X . The effect of sampling in the 
( 1)  -MPFRFT domain is illustrated in Fig. 3. 

As shown in Fig. 3, the sampling process results in 
superposed, shifted replicas of the ( ) -MPFRFT of the 
original signal ( )f X  and the replicas are located at 

1V N . Therefore, if ( )f X  is bandlimited in the ( ) -
MPFRFT domain, say within a band U B   
[ , ] [ , ]u u v vb b b b   , and if the sampling matrix V is 
chosen to satisfy nonoverlapping replicas in the ( ) -
MPFRFT domain, say 1(2 )s ux b   and 1(2 )s vy b  , 
then [ ]( )f UF  can be fully recovered by low-pass 

filtering the Fourier transform sW of sW . 
Mathematically, we have 

1( ) ( ) [ ]( )
det

sW U R U f U
V

 F             (26) 

where 
1,

( )
0, else

U B
R U


 


 

Therefore, ( )W X  can be written as  
-1( ) ( ) sinc ( )sW X W X V X   

                      -1( )sinc[ ( - )]
N

W VN V X VN       (27) 

Since f  is the (1 ) -MPFRFT of ( )W X , we thus 
have  

( ) ( ) ( )n
N

f X W VN X                      (28) 

where ( )n X  is the (1 ) -MPFRFT of 
-1sinc[ ( - )]V X VN . 

The above discussion yields the following sampling 
theorem. 
Theorem 3: Suppose ( )f X  is [ , ] [ , ]u u v vB b b b b     
bandlimited in ( ) -2D MPFRFT domain, then ( )f X  
can be fully reconstructed from its ( 1)  -2D MPFRFT 
domain samples according to formula (28). 

IV. SIMULATION EXAMPLES 

Figures 4 and 5 depict the results of a numerical 
experiment demonstrating the effectiveness of sampling 
formula (11) presented in this work. Figs. 4(a) and (b) 
show a MPFRFT pair with 0.2  ,  1,3,0, 2=m  

and  3,0,2,1n . The MPFRFTed signal [ ]( )F f w  

equals to iwe , for w[-1,1], and equals to zero otherwise; 
that is the original signal ( )f t  illustrated in Fig. 4(a) is 

1   bandlimited in (0.2)-MPFRFT domain with 
parameter vectors  1,3,0, 2=m  and  3,0,2,1n . 
Therefore, from Theorem 1, we can reconstruct ( )f t  by 
use of the samples of it (-0.8)-MPFRFT and interpolation 
functions , nt t（ ）. The (-0.8)-MPFRFT domain samples 

nc  and the reconstructed signal based on Theorem 1 are 
plotted in Figs. 4(c) and (d), respectively. Several 
interpolation functions  , nt t（ ） in (11) are illustrated in 
Fig. 5. We can see that an almost perfect reconstruction 
of ( )f t  can be obtained. 

 
Figure 3. Effect of sampling in the ( 1)   2D MPFRFT domain. (a) 
Sampling lattice (spaced by sx  and sy  in the x and y directions, 

respectively) of the ( 1)  -MPFRFT domain, (b) The sampling 
process results in replications of the ( ) -MPFRFT. 
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Figure 4. Example of reconstruction of a signal based on Theorem 1. (a) The original signal ( )f t . (b) The (0.2)-MPFRFT [ ]( )F f w of ( )f t with 

 1,3,0, 2m ,  3,0,2,1n . (c) The (-0.8)-MPFRFT domain samples nc . (d) Reconstructed signal based on Theorem 1. It can be seen that an 
almost perfect reconstruction is obtained. 

Figure 5. Interpolation functions  , nt t（ ）  with 0.2   1  , and (a) n = 0, (b) n = 1, (c) n = 2, (d) n = 3, (e) n = 4 , (f) n = 5. Solid curves stand 
for real parts and dashed curves stand for imaginary parts. 

700 JOURNAL OF COMPUTERS, VOL. 5, NO. 5, MAY 2010

© 2010 ACADEMY PUBLISHER



 
Simulation example shown in Fig. 6 gives further 

insight. The real and imaginary parts of a 2D signal are 
shown in Figs. 6(a) and (b), respectively. The real and 
imaginary parts of its (0.6)-MPFRFT with parameter 
vectors  2,5,3,1=m  and  7,4,1,2n are shown in 
Figs. 6(c) and (d), respectively. It can be seen from (c) 
and (d) that the original signal is B   
[ 1,1] [ 1,1]   bandlimited in (0.6)-MPFRFT with 
parameter vectors  2,5,3,1=m  and  7,4,1,2n . 
Therefore, from Theorem 3, the original signal can be 
fully reconstructed by the samples of its (-0.4)-MPFRFT. 
The (-0.4)-MPFRFT is sampled with a sampling 
matrixV ,  

0.5 0
0 0.5

V
 

  
 

 

Figs. 6(e) and (f) display the real and imaginary parts, 
respectively, of the reconstruction signal. It can be seen 
that an almost perfect reconstruction is obtained. 
 

V. CONCLUSION 

In this paper, we first generalized the fractional 
Fourier transform (FRFT) proposed by Shih to multiple-
parameter FRFT (MPFRFT) and extend the 1D MPFRFT 
to 2D case. Then we proposed a new method for analysis 
of sampling and reconstruction of signals by use of the 
MPFRFT. On the basis of observations in MPFRFT 

domain, we derived a generalization of Shannon 
sampling theorem and Fourier series extension. The 
proposed theorem unifies classical Shannon sampling 
theorem with Fourier series expansion. It also provides a 
full-reconstruction procedure of certain signals that are 
not band-limited in the conventional Fourier domain. An 
orthogonal basis for the class of bandlimited signals in 
MPFRFT domain is also given, with respect to which the 
coordinates of signal are actually the samples of its 
( 1)  -MPFRFT. Experimental results have verified the 
accuracy and effectiveness of the obtained results. 
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