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Abstract—Mind evolutionary algorithm (MEA) uses 
‘similartaxis’ operation and ‘dissimilation’ operation to 
imitate the human mind evolution to processes optimization, 
overcoming the prematurity and improving searching 
efficiency. But it has several defects: the generation of the 
initial population is blind, random and redundant; the 
addition of naturally washed out temporary subpopulations 
is monotonous; existing searching modes easily to fall into 
local convergence. This paper proposed Chaos Mind 
Evolutionary Algorithm.  Two chaotic sequences produced 
in different ways bring adequate diversity to the population. 
As a result, the searching area is widened. Chaotic Mind 
Evolutionary Algorithm is used in antenna array synthesis 
in this paper. Computer simulations show that Chaos Mind 
Evolutionary Algorithm can be applied in optimization 
problems of uniformly-spaced linear array and the 
optimization result is better than that obtained from Genetic 
Algorithm.  
 
Index Terms—mind evolutionary algorithm, chaotic 
optimization, similartaxis operation, dissimilation operation, 
pattern synthesis 
 

I.  INTRODUCTION 

With the rapid development of the telecommunications 
industry, the electromagnetic environment of space is 
increasingly deteriorating, electromagnetic interference is 
enhancing and the quality of communication is declining. 
To solve these problems, smart antenna which has the 
ability of low side-lobes, strong directional and anti-
interference has been a great deal of concern. The 
antenna pattern synthesis problem becomes a hot research. 
Antenna array synthesis means in a given antenna 
radiation pattern or antenna performance, design antenna 
array element number, element spacing, elements’ current 
amplitude and phase distribution. For some antenna 
arrays with given element number and element spacing, 
this problem is to find every elements’ excitation current 
amplitude and phase distribution. 

 
 

Because the objective function or constrains of antenna 
optimization problems are multi-parameter, nonlinear, 
non-differentiable and even discontinuous, so the 
traditional numerical optimization methods which based 
on gradient optimization technology can not effectively 
achieve the satisfactory results of the project. Intelligent 
algorithm has become a powerful tool for optimal design 
because of its strong global search and the search is not 
dependent on the specific problems’ gradient information 
and searching space’s information. In recent years, 
Intelligent Algorithm gets access to a wide range of 
applications and the development in microwave 
technology and antenna design. 

Genetic algorithm (GA) is a kind of intelligent 
algorithm which often applied to study synthesis of 
antenna arrays in recent years. GA was applied in 
synthesis of antenna arrays in 1994 first by J. M. Johnson 
and Y. R. Samii[1]. But GA is easy to be trapped in part 
optimum value, and convergence speed reduces 
obviously in later searching stage. 

Mind evolutionary algorithm (MEA) is brought 
forward based on thinking of human mind development 

[2]. MEA simulated the similartaxis and dissimilation 
phenomenon in human society and resolved the problem 
of prematurity and low convergence speed of traditional 
Intelligent Algorithm to a certain extent. In this paper, 
chaos is incorporated into MEA to construct a Chaotic 
MEA (CMEA), where the parallel population-based 
evolutionary searching ability of MEA and chaotic 
searching behavior are reasonably combined. The 
algorithm not only has good searching guide but also 
make the best of chaos’s ergodicity, so that the algorithm 
has higher convergence rate and better searching ability. 
CMEA is applied in optimization problems of uniformly-
spaced linear array. Simulation results and comparisons 
demonstrate the effectiveness and efficiency of CMEA in 
antenna synthesis. 

II.  MIND EVOLUTIONARY ALGORITHM 

Many real optimization problems can be formulated as 
the following functional optimization problem. 

)(min xf  
 ),(,3,2,1, 2,1 niii xxxxnibxa LL ==≤≤    (1) 
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where f  is the objective function, ia  and ib  are lower 

and upper bounds for the variable ix  , and n  is the 
dimensions of the variable vector x  . 

The aggregation of all individuals in every generation 
in MEA is called a population; a population is divided 
into some subpopulations. There are two kinds in 
subpopulations: superior subpopulations and temporary 
subpopulations. Superior subpopulations record the 
winners’ information in global competition; temporary 
subpopulations record the middle process in global 
competition. The billboard provides the chance for the 
communication of the individuals and the subpopulations. 
There are three basic kinds of information in billboard: 
the sequence number, action and score of the individual 
or the subpopulation. The score is the valuation that the 
environment evaluates to the action of the individual or 
subpopulation. The individuals in subpopulations paste 
their information on local billboard. And the global 
billboard is used to paste the subpopulations’ 
information. 

MEA has two important operations ‘similartaxis’ 
operation and ‘dissimilation’. In all subpopulations, the 
process that the individuals compete for the winners is 
called similartaxis. In the whole solution space, the 
process of each subpopulation competing for the global 
winner and ceaselessly prospecting for new point in the 
solution space is called dissimilation. Similartaxis 
exploits the part information that system gets from the 
environment, quickly search for the local optimum. 
However, the dissimilation operation searches in the 
whole solution space and choose better individuals as 
centers to create new temporary subpopulations. If a 
subpopulation can’t produce new point in the similartaxis 
process, the subpopulation has been mature. 

 
Figure 1.  Framework of MEA 

The simple MEA is described as following: 
Step1 Set evolutionary parameters: population size, 

subpopulation size and conditions for end. 
Step2 Initialization: scatter individuals composing 

initial population in whole solution space. 

Step3 Similartax: individuals are produced by normal 
distribution with variance around each winner and the 
individual with highest score is the new winner replacing 
the old one in following steps. 

Step4 Dissimilation: realize global optimization, some 
with lower score are washed out and replaced by new 
ones scattered at random in solution space. 

Step5 Conditions for end: if the end conditions are 
filled, turn to step6; else repeat step3 and step 4. 

Step6 Output evolutionary result, algorithm ends. 

III.  CHAOS OPTIMIZATION ALGORITHM 

The phenomenon of chaos is the common phenomenon 
in the nonlinear dynamic systems. The chaos’s behaviors 
are complex and similar to the random process, but have 
the inherent property of regularity. The chaos 
optimization algorithm is sensitively to the initial value, 
easily to jump out the local minimum, and quickly to 
search out the global optimization. The computation 
precision of chaos optimization algorithm is high. It has 
the property of global asymptotical convergence [4-6]. 

A.  The Chaostis Characteristic of Logistic Mapping 
Logistic mapping is the most typical model of Chaos 

Dynamics. It can be expressed as follow: 
)1(1 kkk xxx −⋅⋅=+ µ , Nn ,...,1,0=  )1,0(0 ∈x     (2) 

where µ  is the control parameter. Regard the finite 
difference eq. (2) as a dynamic system and it exhibits 
chaotic dynamics when 4=µ  and }1,75.0,5.0,25.0,0{0 ∉x  . 
That is, when the control parameter 4=µ , the system 
which doesn’t have the stable solution at the completely 
chaotic state, and the chaos variable nx  ergodic in the 
scope (0,1). It also exhibits the sensitive dependence on 
initial conditions, which is the basic characteristic of 
chaos. A minute difference in the initial value of the 
chaotic variable would result in a considerable difference 
in its long time behavior. The track of chaotic variable 
can travel ergodically over the whole search space. 

The probability density function of logistic mapping is  
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Figure 2.  Logistic’s probability density function 
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The curve shows that the probability is higher in 
[0,0.05] and [0.95,1]. As a result, the distribution of 
Logistic is non-uniform. If the points produced by chaotic 
mapping is the range of [0.05, 0.95], the searching time 
will be longer. 

B.  The Chaostis Characteristic of Tent Mapping 
Tent map has uniform probability density, power 

spectral density and ideal related characteristics. Its 
formulate is 
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Its probability density function is  
1)( =xρ                                 (5) 

Tent mapping has simple structure and good ergodic 
uniformity, more suitable for a large number of data 
processing sequences. It iterates faster than Logistic 
mapping. But there are small iterative cycle and unstable 
periodic point in tent mapping. It will make the iteration 
to the fixed point 0. In order to avoid iterates to fixed 
point, this paper uses the following method to improve 
tent mapping: 

⎩
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We can see that from Fig.3 the points generated by 
improved tent mapping are scattered uniformly in [0.1]. It 
overcomes its own lacks, such as small cycle and 
instability cycle points. 

 
Figure 3.  The chaos state of improved tent mapping 

IV.  CHAOTIC MIND EVOLUTIONARY ALGORITHM 

Based on the proposed SMEA and the chaotic local 
search(CLS), a two-phased iterative strategy named 
Chaotic MEA (CMEA) is proposed, in which SMEA is 
applied to perform global exploration and CLS is 
employed to perform locally oriented search (exploitation) 
for the solutions resulted by MEA.  

The method of improving the algorithm is: use 
improved tent chaotic sequence to generate initial 
population. And use logistic chaotic sequence to add 
washed out temporary subpopulations. 

The randomness, ergodicity and the initial data’s 
sensitivity of chaotic sequence ensure that the values will 
be uniformly distributed in the solution space. So it may 
be able to overcome data redundancy of the random 
sequence. On the other side, it increases the diversity of 
the population and expands the searching scope of the 
algorithm by using different chaotic sequence to add 
washed out temporary subpopulations. 

To assess the performance of CEMA, this paper selects 
three typical functions that commonly used to test 
optimization algorithm to experiment, which has multi-
peaks, non-raised and so on. The objective function is 
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1F  is Rosenbrock function which has a global minimum. 
The global minimum position is (1, 1) and the value is 0. 
It is used to test the premature convergence of the 
algorithm. 2F  is Camel function which has six local 
minimums. The two global minimums are -1.031628, and 
their positions are (-0.0898, 0.7126) and (0.0898, -
0.7126). 3F  is Schaffer function which has infinite local 
maximum . The only one global is maximum 1 and its 
position is (0, 0). The parameters of the experiment are: 
MEA and CMEA have the same large initial populations, 
the population size is 30, the subpopulation size is 18, the 
temporary subpopulation is 12, and termination time is 
100. 
 

 
Figure 4.  The convergence curve of Rosenbrock 
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Figure 5.  The convergence curve of Camel 

 
Figure 6.  The convergence curve of Schaffer 

TABLE I.   
COMPARISON OF  THREE FUNCTIONS’ OPTIMIZATION RESULTS 

function algorithm X1 X2 solution 

Rosenbrock 
MEA 0.9947 0.9990 1.8231e-6 

CMEA 0.9996 0.9992 8.0936e-7 
GA 0.9091 0.8309 3.0325e-3 

Camel 
MEA 0.0899 -0.7122 -1.031625035 

CMEA -0.0898 0.7126 -1.031628033 
GA -0.0876 0.7106 -1.031600471 

Shaffer 
MEA 0.0066 -0.0030 0.9975 

CMEA 0.0014 -0.0001 0.9981 
GA 0.0098 0.0098 0.9975 

 
From Fig.4-6 and Table 1, it can be seen in the three 

kinds of functions optimization, MEA and CMEA are 
effective. They are both able to find the optimal solution. 
From the solutions’ accuracy, the optimal values’ 
accuracy gained by CMEA is higher than those gained by 
MEA and the solutions’ positions are more accurately. 
This is because in different stages of the optimization 
process adopting different chaotic sequences to generate 
subpopulations. It’s not only to ensure the uniform 
distribution of the subpopulations and also improves the 
quality of the individuals. Thereby enhance the 
convergence of the algorithm and the accuracy of the 
optimal value. 

V.  THE THEORY OF ANTENNA ARRAY SYNTHESIS 

A.  Traditional Methods of Antenna Array Synthesis 
The antenna array synthesis is that given the radiation 

pattern of antenna array or given the antenna array’s 
performance parameters, designing the elements’ number, 
the space between elements, the amplitudes and phases of 
all the elements. For an antenna array with given 
elements’ number and the space between elements, it is to 
optimize the amplitudes and phases of the array elements.   

Generally speaking, antenna pattern synthesis can be 
classified into three categories. One group requires that 
the patterns exhibit a desired distribution in the entire 
visible region. This is referred to as beam-forming, and it 
can be accomplished using the Fourier transform and the 
Woodward-Lawson method. Another category requires 
that the antenna patterns possess nulls in desired 
directions. The method introduced by Schelkunoff can be 
used to accomplish this. A third group includes 
techniques that produce patterns with narrow beams and 
low side lobes.  

There have been many classic methods in antenna 
array synthesis, such as Woodward method, Chebyshev 
polynomial method, Taylor synthesis method, 
Schelkunoff polynomial method and so on. Woodward 
method is that for a required radiation pattern, through 
sampling in different discrete location to achieve the 
expected pattern. But if the number of antenna array 
element is too large, the antenna radiation pattern gained 
by Woodward method is more ups and down, as it shows 
in Fig.7. Chebyshev polynomial method is that if the 
side-lobes’ level is given, we can gain the narrowest 
main-lobe; if the width of the main-lobe is given, we can 
gain the lowest side-lobes’ level. However it restricts all 
of the side-lobe on the same level, as it shows in Fig.8. It 
is not good for the whole antenna design. And if the 
element space is smaller than 4λ , Chebyshev 
polynomial method is not suitable for this kind of 
problem. 

 

 
Figure 7.  The antenna pattern gained by Woodwrd 
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Figure 8.  The antenna pattern gained by Chebyshev 

This shows that classic methods of antenna array 
synthesis often have following characteristics:  

· They are generally based on gradient search 
optimization. 

· Most of these methods are pointed at special 
problems and their application scopes are small. 

·Two problems can not be avoided. Firstly it must 
choose good initial data to ensure the achievement of the 
optimization objective. Finally in the solution space, there 
are special requirements for the continuity and 
differentiability of the objective function, such as 
requiring the objective function is continuous and 
differentiable in the solution space. However, the object 
functions for synthesis of array antennas usually have the 
characteristics of multi-parameters, non-differentiable 
even discontinuities.  

Therefore classic gradient-based optimization methods 
are difficult to achieve satisfactory results. 

B.  The Mathematical Model of Antenna Array Synthesis 
For a linear antenna array (shown as Figure9) with 

given elements and   spacing arranged in axis as it shows 
in Fig.9, its pattern formula is 

( ) ( )[ ]∑
=

+−=
N

n
nn kdnjIF

1

cos1exp ϕθθ  

where nI  is the n  element’s amplitude; nϕ  is the phase 
difference between adjacent elements; θ  is the angle 
between the array axis and the ray; d  is the space 
between the elements; λπ2=k  is wave number. 

 
Figure 9.  The model of uniform linear antenna 

Let the antenna array’s main-lobe point at 0θ  , then  
( ) 0cos1 θϕ kdnn −−= , eq. (7) can be written as following 

( ) ( ) ( )[ ]∑
=

−−=
N

n
n kdnjIF

1
0coscos1exp θθθ       (8) 

Let the pattern’s imaginary part be zero, equation (8) 
can be written as following 

( ) ( ) ( )[ ]∑
=

−−=
N

n
n kdnIF

1
0coscos1cos θθθ       (9) 

If N is even and the current’s amplitudes is 
symmetrical, then the equation is  

( ) ( )∑
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In antenna array, the symmetric array is usually used to 
cut down the parameters’ number, then reducing the 
computing amount. 

C.  The General Objective Function of Antenna Array 
Synthesis  

Antenna array synthesis is a multi-objective, multi-
parameters and non-linear optimization problem. In 
engineering application, it is impossible to set null in 
every interference location to restrict interference. We 
can only choose some strong interference to generate null. 
At the same time, adopt design of low side-lobes level to 
restrict other interference from other direction. 
Considering the main-lobe position, the main-lobe width, 
side-lobes’ level, null position and null depth, we can 
choose a general objective function [7]: 

∑
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where 0θ  is the main-lobe’s position in experiment and 

desθ is the required main-lobe’s position; maxSLL is the 
highest side-lobes’ level in experiment and desSLL  is the 
required side-lobes’ level; BWFNθ  is the main-lobe’s 
width in experiment and desBWFN _θ  is the required main-

lobe’s width; 
I

NULLθ is the null depth at iθ in 

experiment and desI
NULL _θ is the required null depth 

at iθ . iw is every objective’s weight coefficient. Weight 
coefficients are very important for the whole design. 
They are directly related to the objectives’ convergence 
trend and convergence rate. So we must analyze every 
objective’s value and choose appropriate weight 
coefficients to balance the optimization rate of every 
optimization objective and obtain a best global optimal 
solution. Through analysis and computer simulation, we 
obtain the weight factors’ general range: 

[ ]5.0,3.01 ∈w , [ ]4.1,9.02 ∈w , [ ]8.0,5.03 ∈w , [ ]3.0,1.04 ∈w . 
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VI.  SIMULATION RESULTS 

Different methods, GA and CMEA, were investigated 
and compared with simulation solutions in order to assess 
the effectiveness and the flexibility of the proposed 
method. The experiment parameters of GA are: pc=0.6, 
pm=0.1. The experiment parameters of CMEA are: the 
subpopulation size is 18, the temporary subpopulation is 
12. In two algorithms, the evolutionary generation is 100 
and the population size is 30. 

Example 1 
For a antenna array with 2λ=d  , 12=N , we request 

main lobe point at 0° , the shaped range is [-45°,45°], the 
normalized antenna pattern is ( ) 1=θF  in the shaped 
range. The simulation results are as Fig.10: 

 

 
Figure 10.  Radiation pattern of shaped beam 

TABLE II.   
COMPARISON OF OPTIMIZED RESULTS OF NORMALIZED 

AMPLITUDES 

Number GA MEA 
1 0.0098 0.0021 
2 0.0325 0.0046 
3 0.6636 0.4575 
4 0.8344 0.6863 
5 1.0000 0.9150 
6 0.9955 1.0000 
7 0.9955 1.0000 
8 1.0000 0.9150 
9 0.8344 0.6863 
10 0.6636 0.4575 
11 0.0325 0.0046 
12 0.0098 0.0021 

 
From Fig.10 and Fig.2, we can see that the antenna 

pattern gained by Woodward-Lawson, fluctuating about 
10 dB in shaped range. But the optimization patterns 
gained by GA and CMEA are similar and satisfy the 
requirement. It is interesting to observe that the CMEA 
can make the better main-lobe, the less null level, as well 
as the side-lobe peak value is lower than GA.   

Example 2 
For a antenna array with 2λ=d  , 9=N  , we request 

the antenna pattern is ( ) θθ 2csc=F  in shaped range 
[9°,30°] , the side-lobes must be lower as possible as they 
can. Simulation results are as Fig.11: 

 
Figure 11.  Radiation pattern of shaped beam 

TABLE III.   
COMPARISON OF OPTIMIZED RESULTS OF NORMALIZED 

AMPLITUDES AND PAHSES DIFFERENCE 

N GA CMEA 
amplitude phase amplitude phase 

1 0.9798 -47° 0.7869 -18° 
2 1.0000 -55° 1.0000 -36° 
3 0.9073 -87° 0.7183 -83° 
4 0.6855 -84° 0.1439 -72° 
5 0.2460 -75° 0.4034 -3° 
6 0.0968 -67° 0.2303 -77° 
7 0.6331 -90° 0.0001 -80° 
8 0.1532 -47° 0.0001 -54° 
9 0.1452 -70° 0.0883 -68° 

 
From the antenna pattern, it can be seen that the pattern 

optimized by CMEA is good agreement with the desired 
radiation patterns while its side-lobes reduce greatly. The 
comparative side-lobe is 15dB lower than GA’s. From 
their convergence curves, we can know that CMEA has 
faster convergence rate and better fitness function than 
GA. From Table 3 we can see that the optimized 
amplitudes and phases are very different because the 
optimization problem of array antenna is a multi-value 
problem which has the similar pattern with different 
amplitudes and phases of elements. 

Example 3 
For a antenna array with 4/λ=d  , 16=N  , we 

request the main-lobe point at 0
0 0=θ , the width of 

main-lobe is 20°and the highest side-lobe level is -30dB. 
The simulation results are as Fig.12: 

 
Figure 12.  Radiation pattern of least side-lobe in designed range 
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TABLE IV.   
AMPLITUDES OF ARRAY ELEMENTS 

N GA CMEA 
1 0.7497 0.4572 
2 0.0000 0.7879 
3 1.0000 0.7349 
4 0.5484 0.1837 
5 0.0971 0.7795 
6 0.9537 0.6898 
7 0.5596 0.3837 
8 0.8846 1.0000 
9 0.8846 1.0000 
10 0.5596 0.3837 
11 0.9537 0.6898 
12 0.0971 0.7795 
13 0.5484 0.1837 
14 1.0000 0.7349 
15 0.0000 0.7879 
16 0.7497 0.4572 

 
As it can be seen from Fig.12, the two kinds of 

algorithm can also satisfy the requirement that the main-
lobe points at 0°, the width of main-lobe is 20°. However, 
the highest side-lobe’s level of GA is -26dB, and in the 
results of CMEA every side-lobe’s level is lower than 
that at the same direction in GA. The minimum can be 
achieved -40dB. 

Example 4 
For a antenna array with 2λ=d  , 12=N  , we 

request the main-lobe point at 0
0 0=θ , the width of 

main-lobe is 10°, the highest side-lobe level is -20dB. 
And at 10, 20, 30, 35, 40, 60 form nulls which below -
100dB.  The simulation results are as Fig.13: 

 

 
Figure 13.  Radiation pattern of nulls in designed positions 

TABLE V.   
PHASES OF ARRAY ELEMENTS 

N 1 2 3 4 5 6 
phase 15° 49° 24° 12° 19° 40° 

N 7 8 9 10 11 12 
phase 25° 8° 54° 6° 59° 46° 

 
In this optimization, we only choose phase as the 

optimization parameter. This is because the digital phase 
shifter technology has matured, and in phased antenna 
array it does not need to pay additional costs. So that in 
recent years this method is much more attractive. 
According to the experimental requirements, six locations 

need to achieve -100dB null depth, at the same time 
consider the main-lobe’s position and the largest side-
lobe level. The problem belongs to multi-objective 
optimization problem. For multi-objective optimization 
problems, it often not only has one global optimal 
solution. In this optimization, we adopt weighted method 
(choose different weights for different objectives) to 
design the objective. As Fig.13 shows, the antenna 
pattern gained by CMEA satisfies the multi-objective 
requirement. 

VII.  CONCLUSION 

Point at the lacks of Mind Evolutionary Algorithm 
such as the generation of the initial population is blind; 
the addition of naturally washed out temporary 
subpopulations is monotonous, we integrated of Mind 
Evolutionary Algorithm and Chaos Optimization 
Algorithm with their respective advantages and proposed 
a new hybrid optimization algorithm. It uses improved 
tent chaotic sequence to generate initial population. And 
use logistic chaotic sequence to add washed out 
temporary subpopulations, increasing the diversity of the 
population and expanding the searching scope of the 
algorithm. CMEA is adopted to optimize the amplitude 
and phase of equal interval linear array. There is good 
agreement between the desired and calculated radiation 
patterns. The optimizing result is better than that of GA.  
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