
Power Aware Job Scheduling in Multi-Processor
System with Service Level Agreements

Constraints

Congfeng Jiang, Jian Wan, Xindong You
Grid and Service Computing Technology Lab, Hangzhou Dianzi University, Hangzhou 310037, China

Email: cjiang@hdu.edu.cn

Yinghui Zhao
Department of Hydraulic Engineering and Agriculture, Zhejiang Tongji Vocational College of Science and Technology,

Hangzhou, 311231, China
Email: zhaoyinghuihust@gmail.com

Abstract—Conventional hardware based per-component
and system-wide power management methods can save
more power consumptions if they are in assistance with
software-level adaptation. Since the conventional coarse-
grained methods are not adaptive to various fluctuating
workload in real scenarios, the system performance can be
deteriorated greatly if the objective is only to minimize the
total power consumptions separately, despite of the
violations of Service Level Agreements (SLAs). In this paper
a fine-grained job-level power aware scheduling algorithm
is proposed to minimize power consumption in multi-
processor system with SLA constraints. Simulation results
show that the proposed algorithm can save significant power
consumptions while still providing SLAs guarantees and the
performance degradation is acceptable. The results also
show that fine-grained job-level power aware scheduling
can achieve better power/performance balancing between
multiple processors than coarse grained methods.

Index Terms—power aware computing system, job
scheduling, service level agreements, power estimation,
workload characterization

I. INTRODUCTION

With active deployment of large multi-core servers to
support thousands of concurrent jobs, the computing
ability of future multi processor platforms will depend on
the increasing numbers of cores. When the scales of multi
processor system, power consumption has become the
most important design consideration and the major
bottlenecks to system scalability since higher power
consumption results in more heat dissipation, cooling
costs and makes servers more prone to failures.
Researchers have proposed various per-component
energy management approaches and solutions to reduce
power and energy hotspots, such as CPUs, memories, and

hard disks. However, conventional hardware based per-
component and system-wide power management methods
can not save considerable power consumptions because
they are coarse-grained and not adaptive to various
fluctuating workload in real scenarios. Moreover, the
system performances, for example, availability,
responsiveness, and throughput, do not scale with the
number of processors but the power consumption dose.
Most unfortunately, the whole system performance can
be deteriorated greatly if the objective is to minimize the
total power consumptions separately, despite of the
violations of Service Level Agreement (SLAs)
requirements.

Virtualization offers management capabilities for
service consolidation, isolation and power reductions.
However, it is hard to coordinate SLAs requirements and
power management decisions among multiple Virtual
Machines (VMs).It is also desirable to schedule jobs
among various VMs while still satisfying their SLAs
requirements in response to changing data center
conditions.

The literature of current power management schemes
has mostly limited to mechanisms of DVS/DFS
(Dynamic Voltage Scaling/ Dynamic Frequency Scaling)
and not applicable for better performance such as load
balancing and energy balancing. Due to the high density
of service consolidation and the increasing number of
users with heterogeneous requests, providing users with
SLA guarantees and saving power consumption have
become a crucial problem that needs to be addressed. In
this paper a fine-grained job-level power aware
scheduling algorithm is proposed to minimize power
consumption in multi-processor system with SLA
constraints.

The proposed algorithm responds to power supply
constraint situations by using closed-loop policies to set a
safe performance level and it consider the coordinated
optimization of power consumption and SLA
requirements together. It also attempts to address hotspots
problem in multi-processor systems through job-

Corresponding author: Congfeng Jiang,email:cjiang@hdu.edu.cn

JOURNAL OF COMPUTERS, VOL. 5, NO. 8, AUGUST 2010 1193

© 2010 ACADEMY PUBLISHER
doi:10.4304/jcp.5.8.1193-1203

redispathing and migrations. Simulation results show that
the proposed algorithm can save significant power
consumptions while still provides SLAs guarantees and
the performance degradation is acceptable. The results
also show that fine-grained job-level power aware
scheduling can achieve better load balancing and energy
balancing between multiple processors than coarse
grained methods.

The remainder of this paper is organized as follows: In
section 2 we analyze some related work on power aware
computing system, and SLA constrained job scheduling
in multi-processor systems. In section 3 we present a
power aware job scheduling algorithm for multi-
processor systems with SLA constraints. Then, in Section
4, we present simulation results and the effectiveness,
practicality and performance of the proposed scheduling
algorithm. We also compare the performance data with
conventional power-unaware job scheduling algorithms
or job scheduling algorithms without SLAs constraints in
Section 4. In Section 5, we present experimental results in
real-world application and discuss the relative
performance and scalability of the proposed job
scheduling algorithm. Finally, we summarize the work in
Section 6.

II. RELATED WORK

Power consumption has become a main concern for
enterprise server system in order to achieve a high quality
of service level in terms of, for example, availability and
reliability. The adaptive power management has to ensure
peak power safety but should also intelligently schedule
individual jobs to computing resources to guarantee
negotiated SLAs.

Since the overall system power consumption has
strong relationship to processor resource usage, various
excellent Dynamic Voltage Scaling/Dynamic Frequency
Scaling (DVS/DFS) algorithms have been proposed to
reduce the power consumption of processors [1, 2].

Memory is another source contribution for power
consumptions in server systems. Existing techniques
usually manage power for the main memory by passively
monitoring the memory traffic and regulation. Some
algorithms are proposed to predict when to power down
which memory units and into which low-power state to
transition [1,3,4].

In large scale data centers, server systems, or in the
enterprise storage system, power consumption of hard
disks is a critical issue where data-intensive applications
exhaust disk storage extensively. Since energy
consumptions directly affects hard disk drive reliability
and system performance, reducing energy consumptions
of disks can dramatically save overall enterprise IT costs
[2, 5-9].

Mor Harchol-Balter et al [10] investigates the
performance of task assignment policies for server farms,
as the variability of job sizes (service demands)
approaches infinity and they found that the Size-Interval-
Task-Assignment policy (SITA), which assigns each
server a unique size range, was inferior to the much
simpler greedy policy, Least-Work-Left (LWL), for

certain common job-size distributions, including many
modal, hyper-exponential, and Pareto distributions.

The Service Level Agreement (SLA) is an electronic
contract between a service user and a provider, and
defines service quality like online time, response time,
failure percentage, etc. From a general-purpose viewpoint,
performance can be defined by SLA constraints for
corresponding underlying workload heterogeneity
[11].However, existing job scheduling algorithms are
developed with consideration of overall system
performance such as throughput, average response time,
mostly ignoring power consumption and SLA guarantees.
In this regard, we propose a novel scheduling strategies in
this paper aimed at leveraging performance and power
consumption for parallel applications running on multi-
processor system.

In this paper, we propose a model for negotiating
SLAs and a matchmaking algorithm based on service
gains which is the ability to fulfill the service requestor
requirements. In this model the SLAs negotiation is
configured with the top-ranked service identified in the
matchmaking phase. This model acts as a component of
the Power and SLA-aware job scheduler that has the
capability to predict the performance of the computing
system it manages and allocate jobs in such a way that
SLAs are satisfied.

Our research focuses on scheduling SLAs constrained
parallel tasks and thus heuristics are applied to schedule
parallel tasks to minimize power consumption and
performance overheads. Unlike the existing scheduling
algorithms that ignore all the power consumption of each
task, the proposed algorithm schedules a task to proper
processor if this scheduling can help in conserving power
consumption. Our power-aware scheduling algorithm is
conducive to balancing workloads and power
consumptions of a set of SLAs constrained parallel tasks.
We conducted extensive experiments using both synthetic
benchmarks and real-world applications to compare our
algorithms with two existing approaches. Experimental
results based on simulated clusters demonstrate the
effectiveness and practicality of the proposed scheduling
algorithm.

III. POWER AWARE JOB SCHEDULING WITH SLAS
CONSTRAINTS

The main idea of this paper is the intuition that in
lower loaded periods, there is a potential to save power
consumption by dynamically powering off part of or
whole servers to address the actual computing demands.
Under such lower-load conditions, an appropriate fine-
grained job scheduling scheme can considerably reduce
power consumption. In the meantime, under higher load
condition, power aware scheduling can also schedule jobs
properly to balance power consumption between various
processors and avoid hotspots. Therefore, the proposed
power aware job scheduling in this paper contains three
parts: workload characterization and prediction, power
consumption measuring and estimation, feedback control
of power consumption through job scheduling with SLAs

1194 JOURNAL OF COMPUTERS, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER

constraints. Fig.1 illustrates the control framework of the
power and SLA-aware scheduling algorithm.

Figure 1. Simplified system framework of feedback based controlling.
The tasks of computing, sensing, and actuation are illustrated. The
interaction among control tasks may affect the control performance.

Fig.1 shows that the controller will interact with

different parts of the system since they are sharing
resources such as CPU, memories, network, etc. Since the
multi-processor computing system usually is connected
by networks, deadlines of jobs may be missed. Moreover,
the performance requirement of each control loop should
be satisfied respectively.

According to the control theory, the framework of
feedback based controlling in Fig.1 can be considered as
a classical multi-input, multi-output control system. The
controlling system can be defined as follows:

0() [(), (),], [,]fx t f x t u t t t t t= ∈& (1)

Where:
x is the system state vectors, nx R∈ ;
u is system controlling vectors and mu R∈
In a deterministic state 0 0()x t x= , Eq.1 has a unique

solution, i.e. ()x t given that u is preset and known.
Assume that the controlling system is a linear system,

and the system can be defined as follows:

0
() (,) ()t

ty t G t u dτ τ τ= ∫ (2)

Where (,)G t τ is a q p× unit pulse response matrix:

11 12 1

21 22 2

1 2

(,) (,) ... (,)
(,) (,) ... (,)

(,)

(,) (,) ... (,)

p

p

q q qp

g t g t g t
g t g t g t

G t

g t g t g t

τ τ τ
τ τ τ

τ

τ τ τ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M M M M

 (3)

The Service Level Agreements Constraints can be
summarized as follows:

[(),] 0f fx t tψ = (4)

Where , ; () ()r
fR r n x tψ ψ∈ ≤ ∈ ⋅

Here we use a PID controller to keep the scheduling
satisfying the SLA requirements and saving more power
consumptions. This controller is specified by the
following equations:

p i d
duU K e K e K
dt

= ⋅ + ⋅ + ⋅ (5)

Where:
e is the control error and it is the difference between

the measured control value, i.e., QoS gains and makespan
of all the jobs. pK , iK , and dK are the proportional,
integral and dividal gains of the controller respectively.

pK produces a controller input proportional to the current
control errors. iK accumulates the control error and
produces a control input based on historical control errors.

We will describe these parts in detail in the following.

A. Workload Characterization and Prediction
Workload characterization is an important technique to

help understand the performance of system applications
and demands. A good understanding of the workload of
multi processor computing system should provide
insights about user requests, program activities and help
in improving the quality of the service provided to users.
In a real computing system, workloads are varying
dynamically due to various reasons such as user
behaviors, usage modes of diverse applications,
unforeseen load fluctuations, etc. In multi processor
system, the workload of a processor dynamically changes
in nature, because there is no effective and accurate way
to predict when and where a task will arrive for service.
Therefore, workload characterization acts as a crucial
component of any performance analysis process and
researchers often use processors runtime statistics, trace
data of real workload and algorithms such as online
learning, clustering, and fractal, to predict the workload
of different applications in the future. However, since
there are no specific workload characterization
algorithms that can characterize every kind of workloads
in different computing systems and applications,
workload characterization and prediction schemes must
be developed for specific individual application.

Depending on the type of application tasks, the
workload characterization model could vary in
complexity ranging from a simple specification of the
task demands of the server resources, especially the
processor cycles, to a detailed mathematical model
capturing the flow of control during task execution. We
assume that tasks use the hosts to execute some logic
requiring a given amount of CPU time. Whenever a task
is processed at a host, the actual execution time is
compared with the current estimate of the task demand
and if it is lower the estimate is updated. Thus, as the task
progresses, the estimated task execution time is
iteratively set to the more accurate observed execution
time on the respective host. It is expected that during
periods of lower workload intensity, the observed
execution time will be close to the estimated task
execution time. This approach would work provided that
the time spent waiting is insignificant compared to the
time spent executing the tasks. In this paper, we proposed
a lightweight resource-oriented workload characterization
scheme for multi processor system with parallel
workloads which describes the consumption of system

JOURNAL OF COMPUTERS, VOL. 5, NO. 8, AUGUST 2010 1195

© 2010 ACADEMY PUBLISHER

resources by the workload, such as length of processor
queue, processor time, waiting time, disk operations,
memory, etc. In resource-oriented workload
characterization scheme, resource data can be collected
easily by automated agents or third party packages which
use the OS calls or APIs. The power consumption is
measured by a multimeter and the results are transported
to the dedicated computer through a USB connection.

We monitor the CPU and memory utilization during
task execution and use it to split the measured observed
time into time spent using the CPU and time spent
waiting. This algorithm is conservative in that it starts
with conservative estimates of the CPU cycles and refines
them iteratively in the course of the execution. Therefore,
in the beginning of the execution, its resource
requirements would be overestimated possibly leading to
rejecting or dissatisfying the performance such like
throughput even though they could have been accepted
without violating SLAs. This scheme can be used for
tasks that run for the first time and there is no previous
execution information available in the knowledge base.
Once a new type of task set has been scheduled and
processed, the estimates can be registered in the
knowledge base and used as a starting point in future
executions. Moreover, the estimates can be further
refined as new tasks are executed.

The workload characteristics can be represented by
observations in macro and micro scale. The former
includes resource-oriented performance, such as response
time, processor time, memory utilization, disk operations,
etc. And the latter includes processor instructions
execution time, status of registers, status of threads,
hardware counters, etc. The workload can be
characterized by interpreting these macro and micro
performance tips and metrics. For example, there are 48
event counters and 18 performance counters, among
which are three fixed performance counters in Intel®

Pentium TM IV processor, i.e., INSTR_RETIRED.ANY,
Counter 4: CPU_CLK_UNHALTED.CORE, Counter 5:
CPU_CLK_UNHALTED.REF. Therefore, the un-halted
CPU time can be calculated as follows:

CPU_CLK_UNHALTED.TOTAL_CYCLES
ProcessorFrequency NumberofCores

un haltedTime −

=
×

 (6)

B. Power and SLAs Aware Job Scheduling
In this paper, a host or site refers to a PC, cluster, or a

supercomputer and the term is used interchangeably. And
the terms job, task, and application are used
interchangeably to refer to a request made by a user to
run a given application with QoS requirements or a given
inputs. The following assumptions are made in this paper:

(1) The workload is heavy-tailed, as is characteristic of
many empirically measured multi-processor computing
system workloads.

 (2) The applications have been divided into sub tasks
and each sub task is independent. This assumption is
commonly made in the job scheduling for heterogeneous
distributed environment (e.g., [12-14]). The method we

propose is applicable for tasks with no internal
parallelism. Note that scheduling dependent jobs with
sharing files, DAG (Directed Acyclic Graph) topologies
or precedence constraints can be found in the literature
but is out of the scope of this paper.

(3) The arrival rate of jobs is Poisson distributed.
(4) The estimates of expected task execution times on

each machine in the multi processor computing system
are known. The assumption that these estimated expected
times are known is commonly made when studying
scheduling algorithms [12, 14]. Approaches for doing this
estimation include intrinsic and extrinsic factors method
[15], analytic benchmarking [16], etc. For example,
through code profiling, the execution time of a job can be
calculated by the total clock period number required by it.
Also note that the required execution time is in inverse
proportional to the processor speed. Since the processor
speed may be adjusted, the execution time required for
the same task at the highest processor speed and the
lowest is different. As the processor speed descends a
half or the third, the task can be finished before its
deadline yet, however, the energy consumption may be
the quarter or the ninth of the original.

(5) The execution time of jobs on specific processor is
proportional to the power consumption that the jobs
consumed when the frequency or voltage is fixed.

(6) The execution sequence of tasks on a processor is
FCFS (First-Come, First-Served).The host executes one
task at a time and the task is not preemptive.

(7) Without loss of generality, we assume that the
system components may fail and can be eventually
recovered from failures. Both hardware and software
failures obey the fail-stop failure mode.

(8) Job failures can occur online at any time and the
total number of faulty hosts in a given multi processor
computing system may never exceed a known
percentage. And the sites failures are independent from
each other.

(9) When the primary scheduler fails, there are backup
schedulers to take over all the work of the primary
scheduler.

(10)There is a job table maintained by a server and all
the information of running jobs can be queried through
this table.

Let { | 1, 2,3,..., }iJ J i n= = denote jobs
set, (, , , , ,)i i i i i i iJ a b e c s Q= , M is set of processors,

{ | 1,2,3,..., }jM M j m= = , (, , , ,)j j j j j jM p f d BW PW= .
Where:

ia is arrival time of job iJ ， ib is starting time of job

iJ ， ie is the average execution time of job iJ on all the
processors, i.e. expected executed time on processor jM
where there is no other running jobs except for

iJ , 1 2 3(, , ,...,)m
i i i i ie e e e e= ， ijc is the expected completion

time of job iJ on processor jM ， is is the size of data

needed by job iJ (MB)， iQ is the QoS values of job iJ .

1196 JOURNAL OF COMPUTERS, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER

As for hosts set M , jp is the speed of processor jM

(MHz)， jf is the available memory capacity of host jM

(MB)， jd is the available disk space on host jM (MB)

， jBW is the bandwidth of host jM (Mb/s)， jPW is
the level of power consumption of host jM ,

1 2 3(, , ,...,)u
j j j j jPW PW PW PW PW= ,

[1,],0 1v
jv u PW∀ ∈ < < ,where 0 stands for the lowest and

1 the highest.
Let Q denote a set of Quality of Service

constraint { | 1, 2,..., }iQ Q i n= = , (, , , ,)i i i i i iQ T R S A P= ,
where:

iT (Timeliness) is timeliness requirement, i.e., the
total expected completion time for running jobs, starting
time of running jobs, and the deadline of running jobs;

iR (Reliability) is reliability requirement, i.e., the
probability of job completion;

iS (Security) is security requirement. Since jobs may
be executed at remote hosts in a distributed multi-
processor system, various jobs and data need different
security requirement, including confidentiality and
integrity requirement;

iA (Accuracy) is accuracy requirement. Due to the
hardware limitations, some float computation may result
in accumulated errors, which lead to the final non-
accurate computing results. Therefore, jobs must be
scheduled to hosts where they can be satisfied by the data
accuracy requirement.

iP (Priority) is priority requirement. In multiprocessor
computing system, numerous jobs contents for limited
computing resources. Therefore, jobs with higher priority
values must be scheduled to dedicated hosts be the lower
ones.

For simplicity, we use discrete values to modeling the
Quality of Service constraints, i.e., the Quality of Service
constraint is presented by several levels like very low,
low, medium, high, and very high, not a specific number
like 10% or 90% because in real computing system with
user interaction a user only cares the interactive
experience, not the specific performance numbers.

Let 1 2(, ,...,)J
mec ec ec ec= denote the power

consumption of m threads, and the matrix of n
performance counters in m threads
is ,[](1 ,1)i jC c i m j n= ≤ ≤ ≤ ≤ .

Therefore, in respect to the power prediction modeling,
∃ 1 2(, ,...,)J

nx x x x= , given that

2min(|| ||)
0

C x ec
C x ec

⋅ −⎧
⎨ ⋅ − ≥⎩ (7)

Due to the heterogeneity of multi-processor system,
power consumption among multi-processors is
heterogeneous. And the heterogeneity index of job set
J is

2

1 1

1 1

1 1 1()
| | min() min()i

j jn n
J i i

n n
k kJ J j j
i i

k k

e e
H

J n n e e∈ = =

= =

= −∑ ∑ ∑

 (8)

Similarly, heterogeneity index of QoS is

2

1 1

1 1 1()
| |

i

qn
M j j
J i i

T T j j
H Q Q

T n q∈ = =

= −∑ ∑ ∑
 (9)

Where q is the number of the length of the vector.
We define j

iG is the gains of QoS of job iJ on
host jM , i.e.

1
(,)

q
j k k k

i i i j
k

G w g Q V
=

= ⋅∑
 (10)

Where k
iw is the weight of different QoS requirements

of job iJ , and
1

1
q

k
i

k
w

=

=∑ ； (,)k k
i jg Q V is the kth gain of

QoS requirements of job iJ :

(,)
0

k k k k
j i j ik k

i j k k
j i

Q V V Q
g Q V

V Q

⎧ − ≥⎪= ⎨
<⎪⎩

 , when

 , when
 (11)

Where k
jV is the available QoS capacity of the

corresponding host.
Intuitionally, the more the gains of QoS satisfactions,

the more jobs can be executed with QoS guarantees. For
specific users it is to maximize their gains of QoS
satisfactions. However, from a system point of view, the
situation is conversed. And the maximization of gains of
QoS among various jobs leads to the QoS contention,
performance degradation, and workload imbalance.

We define iD as the available theoretical scheduling set
of job iJ with QoS satisfactions, (| 0)j j

i i iD D G∃ = >
In order to avoid the QoS contention, the gains of

QoS satisfactions must be minimized while still
guarantying the QoS requirements. Assume that

{ }

1

(| 0) min

(| 0) min (,)

j j j
i i i i

q
j j k k k

i i i i j
k

OP D G G

D G w g Q V
=

= > ∩

⎧ ⎫
= > ∩ ⋅⎨ ⎬

⎩ ⎭
∑

 (12)

Then the objective function for power and QoS
constrained scheduling for job set iJ is

min min(max{ ()})

min() min()

i
i

i T T i
J J

J M
J

S OP c

H H

∈
∈

⎧ ⎫⎪ ⎪= ∩⎨ ⎬
⎪ ⎪⎩ ⎭

∩ ∩

∑

 (13)

Eq.13 is NP-hard and can be solved by heuristics
scheduling. We propose a heuristics scheduling
algorithm, PaSLA, to solve this problem of power
aware job scheduling with SLA constraints. The PaSLA

JOURNAL OF COMPUTERS, VOL. 5, NO. 8, AUGUST 2010 1197

© 2010 ACADEMY PUBLISHER

algorithm is triggered by a scheduling event. When the
number of jobs in the job set becomes a fixed maximum
number, like 5, we call this a scheduling event. A job is
submitted to the primary scheduler and the backup
scheduler respectively. A pseudo code of PaSLA is
demonstrated in the following.

1. When scheduling event occurs {
2. for each task in J

3. Compute Qi ,
j

iG

4. End for
5.Compute estimated power consumption of each

job on specific processor through code profiling
6. for each task in J
7.If the tasks have non-negative QoS gains
8.If the tasks are left from the last

scheduling set
9.Sort the tasks by QoS gains and power

consumptions
10.Schedule the tasks with lower QoS gains

first
11. If tasks have equal non-negative QoS gains
12. Schedule the task to processors with lower

power consumptions
13. End if
14. Delete the task from J
15. Update job table
16. End if
17. If tasks have equal non-negative QoS gains
18. Schedule the task to processors with lower

power consumptions
19. Delete the task from J
20. Update job table
21. End if
22. Schedule the task with lower non-negative

QoS gains first to processors
23. Update job table
24.If cpu_queue of targeted processor is

exceeded the maximum length
25.Insert the task into next scheduling tasks

set
26. Update job table
27. End if
28. Else
29.Insert the task into next scheduling tasks

set
30. Update job table
31. End if
32. End for
33. }

Figure 2. The pseudo codes of PaSLA

When scheduling event occurs, PaSLA first computes
attributes of jobs such as arrival times, expected
execution time, expected completion time, QoS gains,
power consumptions, etc. The scheduler first schedule the
tasks left from the last scheduling. After that, the
scheduler chooses a set of candidate processors with
proper CPU length for job execution and orders the jobs
for the job QoS gains and power consumptions. If the
tasks have not non-negative QoS gains, the tasks will
insert the tasks into the next job scheduling set for future
scheduling and execution. Therefore, the complexity of
this scheduling algorithm is O(n).

C. Power Balancing and Job Migration
Let maxpw denote the last available time of all

processors, and the first is minpw , we define a power

balance index as follows:

min

max

pw
eb

pw
=

 (14)

eb can be any value is range [0,1]. If eb equals 1, it
suggests that power is balanced among processors. And if
eb equals 0 it suggests that power is imbalanced among
processors and at least there if one processor which is not
allocated any jobs. In the feedback control process, two
thresholds, leb and heb , l heb eb< are selected. The
scheduler sets eb to 0 before scheduling .Then jobs are
scheduled until heb eb> and then, queue aware
scheduling is used until leb eb< .Appropriate leb and

heb can be got after several control cycles.
Job migration enables to move checkpointable and

rerunnable jobs from one host to another. Through job
checkpoint and restart, a migrated checkpointable job can
be restarted on the new host from the point at which the
job stopped on the original host. In this paper, the jobs
must be migrated from the current host to another in the
following cases:

(i) In the case of failures affecting hosts with pending
jobs, if the host can’t recover from the failures for a
preset time, the jobs scheduled to it must be migrated.

(ii) If there are many hosts whose processors are far
lower utilized, the jobs must be migrated to hosts in that
the hosts running jobs may keep a moderate utilization
level and to keep some hosts idle to save more power
consumptions. For the CMOS based processor,
decreasing the supply voltage can reduce the power
consumption greatly. Dynamic Voltage Scaling (DVS)
technology is mainly proposed for reducing the power
consumption of processor by adjusting the processor
speed and supply voltage. In this paper, the multi
processor computing system with adjustable supply
voltage processors, which uses special instructions for the
voltage control and adjusts its voltage discretely, is
considered. Moreover, the operating system can use the
instructions of the voltage control, such that the supply
voltage can be altered when a task is scheduled or
migrated.

(iii) If the jobs remain idle for a certain period of time,
i.e., waiting for a long time, they are eligible for
migration if there are hosts that match the jobs.

(iv)If a local user submits a job that requests a
particular platform or specific software that does not exist
in the local computing system, it must be migrated to a
different site that does have a computing resource with
that platform. However, we do not consider this resource
availability problem.

In the first case, we use a server to monitor the
heartbeat status of hosts through notification mechanism.
In the former section we have mentioned that all the jobs
are scheduled to the primary scheduler. There is another
backup scheduler to backup all the job replications in
case of host failures. Every host running a job will inform
the execution status of the job to the primary scheduler
periodically. If the primary scheduler receives a job

1198 JOURNAL OF COMPUTERS, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER

completion message from the host, it will drop the job in
the job set. In all other cases, the primary scheduler scans
the job table periodically to see if some hosts didn't send
job execution report. If an execution failure is detected,
an alternative host will be selected.

In the second and third case, the scheduler migrates a
running job to a different set of processors by performing
the following actions:

Step1: Stops the job if it is running
Step2: Checkpoints the job if the job is checkpointable
Step3: Kills the job on the current host
Step4: Restarts or reruns the job on the first available

host, inserting all pending jobs into the next scheduling
task set.

Fig. 3 shows the pseudo codes of the power balancing
and job migration algorithm.

1. Repeat {
2. If any host is failed
3. Insert the current running jobs into the

task set for future scheduling
4. Update job table
5. End if
6. For each host in M
7. If it is under utilized
8. Stop the job if it is running
9. Checkpoint the job if the job is

checkpointable
10. Kill the job on the current host
11. If there exist hosts that match the QoS

requirements of migrated jobs
12. Restart the job on the matched hosts
13. Else
14. Insert all pending jobs into the next

scheduling task set.
15. Update job table
16. End if
17. End if
18. End for
19. }

Figure 3. Power balancing and job migration algorithm

First, when a host fails, the primary scheduler will

insert the current running jobs into the task set for future
scheduling and mark the failed host failed avoiding
further job allocations.

If any host is under utilized, then the primary scheduler
reschedules the replication to hosts that match the QoS
requirements. If a host is found, a replication will be
migrated to the host and both the backup scheduler and
the job table will be updated accordingly. However, if no
host is available, insert the task into the beginning of the
next tasks set.

IV. SIMULATION RESULTS AND PERFORMANCE ANALYSIS

We use simulations and real workload experiments to
study the performance of PaSLA scheduling algorithm.
The common approach to study the performance of
PaSLA scheduling algorithm is to compare it with a non-
power-aware or non-SLA-aware scheduling algorithm.
Thus we studied and compared the performance of the
simple and frequently used heuristics such as EDF
(Earliest Deadline First), Min-min [12], Max-Min, QoS
guided Min-Min[17], Sufferage[18], and MCT

(Minimum Completion Time) [18], with PaSLA by
testing various scenarios.

To evaluate the PaSLA scheduling algorithm, we use
the following metrics:

(1)Makespan: the total running time of all jobs;
(2)Average waiting time: the average waiting time

spent by a job in the grid.
(3)Scheduling success rate: the percentage of jobs

successfully completed in the system;
(4)Power consumption: the power consumed by the

jobs.
(5)Average violating rate of SLA: the percentage of

SLAs violation when scheduling user jobs out of total
jobs.

(6)Average migration rate: the percentage of migrated
jobs out of total scheduled jobs.

The scheduling steps of Min-min algorithm is
described as follows:

Step 1: For each task in the task set, the machine that
gives the task its minimum completion time (first Min) is
determined (ignoring other unmapped tasks).

Step 2: Among all task-machine pairs found in Step 1,
the pair that has the minimum completion time (second
Min) is determined.

Step 3: The task selected in Step 2 is removed from the
task set and is mapped to the paired machine.

Step 4: The ready time of the machine on which the
task is mapped is updated.

Steps 1-4 are repeated until all tasks have been
mapped.

The scheduling steps of Sufferage algorithm is
described as follows:

Step 1: For each task in the task set, the machine mj
that gives the earliest completion time is found.

Step 2: For each task in the task set, the Sufferage
value is calculated. (Sufferage value = second earliest
completion time minus earliest completion time).

Step 3: If machine mj is unassigned then assign tk to
machine mj, delete tk from L, and mark mj as assigned.
Otherwise, if the sufferage value of the task (ti) already
assigned to mj is less than the sufferage value of task tk
then unassigned ti, add ti back to L, assign tk to machine
mj, and remove tk from the task set.

Step 4: The ready times for all machines are updated.
The scheduling steps of MCT algorithm is described as

follows:
Step 1: The first task in the task set is mapped to its

minimum completion time machine (machine ready time
plus estimated computation time of the task on that
machine).

Step 2: The task selected in step 1 is removed from the
task list.

Step 3: The ready time of the machine on which the
task is mapped is updated.

Step 4: Steps 1-3 are repeated until all the tasks have
been mapped.

A. Simulation Setup and Parameters Settings
Feedback control based scheduling algorithm is

capable of modifying its own scheduling decision and
program behavior through time, depending on the

JOURNAL OF COMPUTERS, VOL. 5, NO. 8, AUGUST 2010 1199

© 2010 ACADEMY PUBLISHER

execution characteristics. Here, the objective of PaSLA is
to schedule jobs to processors while guarantying the SLA
requirements and minimizing the total power
consumptions of the computing system, preserving its
simplicity and low overhead. We test this algorithm and
describe its behavior under a number of workloads.
Simulations based on MATLAB TM and MATLAB TM
Simulink TM includes an analysis of the performance
sensibility with the variation of the control parameters
and its application in a multi processor computing
system. In our simulations, we construct synthetic
workloads using jobs with varying arrival rate and
execution time. Moreover, in order to evaluate the
robustness of our algorithm, we allow the jobs to follow
different distributions, such as Gaussian, Possion,
Uniform, Weibull, and heavy tailed distribution. We
generate a wide range of workloads by varying the
number of jobs and their execution times in our
simulations. Specifically, we conduct over 1000 sets of
experiments, and the number of jobs in each experiment
is selected according to a specific distribution. The
relative performance of an algorithm in each experiment
is compared by normalizing its original values. Table 1
lists the key simulation parameters of one simulation.

TABLE I.
REPRESENTATIVE SIMULATION PARAMETERS AND SETTINGS

Number of jobs 10,000,000
Number of processors 16
Site processing speed 8 nodes with 2.4GHz and 8 nodes with

1.8GHz
Job arrival rate Poisson distributed in [0.3, 0.9]
Job execution time Normal distributed in [0.1, 1000] sec
Sites failure rate Poisson distribution with failure rate failλ

B. Simulation Results and Analysis
We assume that the hosts fail in a Poisson distribution

with failure rate failλ and the jobs arrive in the queue in a
Poisson stream with rate taskλ . Without loss of generality,
every task set consist two kinds of jobs, i.e., jobs with
SLA constraints and jobs without SLA constraints. We
compare the relative performance such as makespan,
average waiting time, scheduling success rate, power
consumption, average violating rate of SLA, average
migration rate. The simulation results are shown in Figure
4. All the data in the figures are mean values of 20
simulation results.

In Figure 4(a), the makespan order of the scheduling
algorithms from maximum to minimum is: (1) Max-Min,
(2) QoS-Min-min, (3) Min-Min, (4) PaSLA, (5)
Sufferage, (6) MCT, and (7) EDF. The makespan of EDF
is the smallest because of its smallest computation
consumption. PaSLA dynamically schedules jobs to
computing sites according to the real time power
consumption and SLA constraints. Thus the makespan of
PaSLA is relatively large.

Makespan

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

Scheduling Algorithms

M
ak

es
pa

n(
se

c)

EDF

Min-Min

Max-Min

Qos-Min-min

Sufferage

MCT

PaSLA

4(a) Makespan
Average Waiting Time

0

10

20

30

40

50

60

Scheduling Algorithms

A
ve

ra
ge

 W
ai

tin
g

Ti
m

e(
se

c) EDF
Min-Min
Max-Min
Qos-Min-min
Sufferage
MCT
PaSLA

4(b) Average Waiting Time

Scheduling Success Rate

94

95

96

97

98

99

100

Scheduling Algorithms

Sc
he

du
lin

g
Su

cc
es

s R
at

e(
%

)

EDF
Min-Min
Max-Min
Qos-Min-min
Sufferage
MCT
PaSLA

4(c) Scheduling Success Rate

1200 JOURNAL OF COMPUTERS, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER

Power Consumption

0

1

2

3

4

5

6

7

Scheduling Algorithms

Po
w

er
 C

on
su

m
pt

io
n(

kw
.h

) EDF

Min-Min

Max-Min

Qos-Min-min

Sufferage

MCT

PaSLA

4(d) Power Consumption

Average Violation rate of SLA

0

0.5

1

1.5

2

2.5

3

3.5

4

Scheduling Algorithms

A
ve

ra
ge

 V
io

la
tin

g
R

at
e

of
 S

LA
(%

)

EDF

Min-Min

Max-Min

Qos-Min-min

Sufferage

MCT

PaSLA

4(e) Average Violation Rate of SLAs

Average Migration Rate

0

2

4

6

8

10

12

14

16

18

Scheduling Algorithms

A
ve

ra
ge

 M
ig

ra
tio

n
R

at
e(

%
) EDF

Min-Min

Max-Min

Qos-Min-min

Sufferage

MCT

PaSLA

4(f) Average Migration Rate

Figure 4. Simulation results and relative performance

In Figure 4(b), the average waiting time order of the

scheduling algorithms from maximum to minimum is: (1)
EDF, (2) Max-Min, (3) PaSLA, (4) Sufferage, (5) QoS-

Min-min and MCT, and (6) Min-Min. EDF has the
longest average waiting time because it executes tasks
without global information such as waiting times of other
tasks. Consequently, EDF makes a significant increase of
total execution time and makes the average waiting time
longest eventually.

In our simulations, a task will be dropped if it couldn't
be finished successfully after ten times. Thus, the
scheduling success rate can't reach to 100%.In Figure
5(c), PaSLA has the highest scheduling success rate in a
failure-prone multi-processor environment. PaSLA
reschedules the tasks whose demand couldn't be satisfied
on the current time when next scheduling event occurs.
Thus, PaSLA increases the scheduling success rate
significantly.

In Figure 4(d), the power consumption order of the
scheduling algorithms from highest to lowest is: (1) Max-
Min, (2) Qos-Min-min, (3) Min-Min, (4) Sufferage, (5)
EDF, (6) MCT, and (7) PaSLA. PaSLA has the lowest
power consumption because it takes into account the real
time power consumption when scheduling tasks.

Since PaSLA also optimizes the SLA requirements and
satisfactions while scheduling tasks, it has the lowest
average violation rate of SLAs and the lowest average
migration rate through Fig.4(e) and Fig.4(f).

The results in Figure 4 show that no single algorithm
achieves the highest performance for all metrics.
However, PaSLA exhibits relatively better performance
with highest success rate, moderate level of makespan
and average waiting time, lowest power consumption,
average violation rate of SLAs and the lowest average
migration rate due to its power aware and SLA aware
scheme. We observe from Fig.5 that substantial
performance improvements can be obtained. As the
experimental results finally turn out, the performances of
our algorithm is fairly insensitive to the distributions we
choose.

V. CONCLUSIONS AND FUTURE WORK

Power management is a key problem for IT
management and operation in multi processor system,
especially for Data Centers and cloud computing
environments. Recent processor support for dynamic
frequency and voltage scaling (DVS) makes it possible
for software to affect power consumption by varying
execution frequency and supply voltage. However, DVS
and DFS are not enough for processor power reductions if
they are issued only by entering a sleep mode. Therefore,
it is feasible to coordinate hardware level and software
and job level power management to save more power
consumption. Moreover, fine-grained job-level power
aware scheduling can achieve application specific
performance SLA guarantees than system wide or per-
component power management.

In this paper we analytically derive functions for real-
time estimation of system power consumption using
performance counter data on real hardware. We also
developed our job scheduling model based on feedback
control theory and characterize workload through data
gathered from micro benchmarks and real time user

JOURNAL OF COMPUTERS, VOL. 5, NO. 8, AUGUST 2010 1201

© 2010 ACADEMY PUBLISHER

applications to capture possible application behavior. The
job scheduling model is independent of implementation
platforms and therefore feasible for future applications on
multi-processor systems. Power consumption is reduced
and the SLA constraints are guaranteed by the proposed
power-aware and SLA-aware job scheduler.

We study several job scheduling algorithms for
different workload characteristics. An infrastructure for
investigating scheduling performance is implemented. A
fine-grained job-level power aware scheduling algorithm
is proposed to minimize power consumption in multi-
processor system with SLA constraints. Performance
such as Makespan, Average waiting time, Scheduling
success rate, Power consumption, Average violating rate
of SLA, Average migration rate are assessed for different
job scheduling algorithms. Measurements provides a
quantitative assessment of the potential of energy savings
for power and SLA aware job scheduling algorithms as
opposed to conventional job scheduling algorithms that
disregard power consumption and SLA constraints..
Simulations results show that the proposed algorithm can
save significant power consumptions while still providing
SLAs guarantees and the performance degradation is
acceptable. The results also show that fine-grained job-
level power aware scheduling can achieve better
power/performance balancing between multiple
processors than coarse grained methods.

In order to satisfy the SLA requirements of user
applications, the status of the multiple sites and
processors must be monitored and the performance data
should be recorded. However, in a multi processor
system, the collection of system performance data, the
coordinated optimization of power consumption and SLA
requirements will add on a large amount of computation
and communication overhead. Thus, efficient system-
wide and per-component monitoring and discovering
technologies must be developed. Moreover, estimating
power consumption is critical for OS process scheduling
and for software/hardware developers. However,
obtaining processor and system power consumption is
non-trivial and using real platform simulators is time
consuming and prone to error.

However, in a real multi processor system such as a
data center, asking the users to fully specify their SLA
requirements quantitively is an unreasonable burden. For
example, user only need to specify a power consumption
level such as low, middle, or high when executing jobs
rather than the numerical values. Therefore, how to
evaluate the qualitative and quantitative effects is a key
factor that impacts the coordinated optimization of power
consumption and SLA requirements heavily [19, 20].
However, global energy consumption mode is different in
different systems with specific performance-oriented
applications. Moreover, energy consumption mode is also
different for different platforms with different
performance constraints and SLA requirements and SLA
satisfactions. It is an open problem to reduce energy
consumption, while still meeting performance demands,
system loads and reliability.

ACKNOWLEDGMENTS

The funding support of this work by State Key
Development Program of Basic Research of China (Grant
No. 2007CB310900), Natural Science Fund of China
(NSFC, Grant No. 60873023, 60973029), Science and
Technology Research and Development Program of
Zhejiang Province, China (Grant No. 2009C31033),and
Hangzhou Dianzi University Startup Fund (Grant No.
KYS 055608058, KYS055608033) are greatly
appreciated.

REFERENCES

[1] A. Miyoshi, C. Lefurgy, E. V. Hensbergen, R. Rajamony,
and R. Rajkumar, “Critical power slope: understanding the
runtime effects of frequency scaling,” In Proceedings of
the 16th Annual ACM International Conference on
Supercomputing (ICS'02),New York:ACM,2002,pp.35-44,
doi:10.1145/514191.514200.

[2] W. Kim, M. Gupta, G. Wei, D. Brooks, “System level
analysis of fast, per-core DVS/DFS using on-chip
switching regulators,” In Proceedings of 14th International
Symposium on High-Performance Computer Architecture
(HPCA-14), Los Alamitos :IEEE Computer Society,
2008,pp.123-134, doi:10.1109/HPCA.2008.4658633.

[3] H. Huang, C. Lefurgy, T. Keller, and K. G. Shin,
“Improving energy efficiency by making DRAM less
randomly accessed,” In Proceedings of the International
Symposium on Low-Power Electronics and Design
(ISLPED’05), New York:ACM,2005,pp. 393-398,
doi:10.1145/1077603.1077696.

[4] I. Hur, C. Lin, “A comprehensive approach to DRAM
power management,” In Proceedings of 14th International
Symposium on High-Performance Computer Architecture
(HPCA-14), Los Alamitos :IEEE Computer Society,
2008,pp. 305-316, doi:10.1109/HPCA.2008.4658648.

[5] W. Jiang, C. Hu, Y. Zhou and A. Kanevsky, “Are disks
the dominant contributor for storage failures? A
comprehensive study of storage subsystem failure
characteristics,” In Proceedings of the 6th USENIX
Conference on File and Storage Technologies (FAST'08),
Berkeley: USENIX, 2008, pp.111-125.

[6] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton and J.
Wilkes, “Hibernator: helping disk arrays sleep through the
winter,” ACM SIGOPS Operating Systems Review ,vol.
39 , pp. 177-190, December 2005, doi: 10.1145/ 1095809.
1095828.

[7] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and H.
Franke, “DRPM: dynamic speed control for power
management in server class disks,” In Proceedings of 30th
Annual International Symposium on Computer
Architecture (ISCA-30), Los Alamitos: IEEE Computer
Society,2003,pp.169-179,doi:10.1109/ISCA.2003.1206998.

[8] C. Weddle, M. Oldham, J. Qian, and A. Wang, P. Reiher,
G. Kuenning, “PARAID: a gear-shifting power-aware
RAID, ”In Proceedings of the 5th USENIX Conference on
File and Storage Technologies (FAST'07), Berkeley:
USENIX, 2007,pp.245-260.

[9] L. Cai and Y.-H. Lu, “Joint power management of
memory and disk,” In Proceedings of the Conference on
Design, Automation and Test in Europe (DATE’05),
Washington: IEEE Computer Society, 2005, pp.86-91,
doi:10.1109/DATE.2005.192.

[10] Mor Harchol-Balter, A. Scheller-Wolf , A. Young,
“Surprising results on task assignment in server farms with
high-variability workloads,” In Proceedings of the 11th

1202 JOURNAL OF COMPUTERS, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER

international joint conference on Measurement and
modeling of computer systems (SIGMETRICS'09) , New
York:ACM,2009,pp.287-298,doi:10.1145/1555349.
1555383.

[11] Y. Guo, Solihin,L. Zhao, and R. Iyer, “A framework for
providing service level agreements in chip multi-
Processors, ”Proc. the 40th Annual IEEE/ACM
Symposium on Microarchitecture (MICRO-2007),
Washington: IEEE Computer Society ,2007,pp.343-355,
doi:10.1109/MICRO.2007.6.

[12] T.D Braun, D. Hensgen, R. Freund, H. J. Siegel, “A
comparison of eleven static heuristics for mapping a class
of independent tasks onto heterogeneous distributed
computing systems, ” Journal of Parallel and Distributed
Computing, vol. 61,pp.810-837,June 2001, doi:10.1006
/jpdc.2000.1714.

[13] S. Song, K. Hwang, and Y. Kwok, “Risk-resilient
heuristics and genetic algorithms for security-assured grid
job scheduling,” IEEE Transactions on Computers, vol. 55,
pp.703-719, June 2006, doi:10.1109/TC.2006.89.

[14] J. Kim, S. Shivle, H.J. Siegel, A. Maciejewski,
“Dynamically mapping tasks with priorities and multiple
deadlines in a heterogeneous environment, ” Journal of
Parallel and Distributed Computing, vol. 67,pp. 154-169,
February 2007,doi: 10.1016/j.jpdc.2006.06.005.

[15] K. Jong and K.G. Shin, “Execution time analysis of
communicating tasks in distributed systems,” IEEE
Transactions on Computers, vol. 45, pp.572-579, May
1996, doi:10.1109/12.509908.

[16] M. A. Iverson. Ozguner and L. Potter, “Statistical
prediction of task execution times through analytic
benchmarking for scheduling in a heterogeneous
environment,” IEEE Transactions on Computers, vol. 48,
pp.1374-1379, December 1999, 10.1109/12.817403.

[17] X. He, X. Sun, and G. von Laszewski, “QoS guided min-
min heuristic for grid task scheduling,” Journal of
Computer Science and Technology, vol. 18, pp.442-451,
July 2003, doi: 10.1007/BF02948918.

[18] L.D. Briceño, M. Oltikar, H.J. Siegel, and A. A.
Maciejewski, “Study of an iterative technique to minimize
completion times of non-makespan machines,” In
Proceedings of 2007 IEEE International Parallel and
Distributed Processing Symposium (IPDPS’07), Los
Alamitos: IEEE Computer Society, 2007, pp.1-14,
doi:10.1109/IPDPS.2007.370325.

[19] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, X.
Zhu, “No Power Struggles: Coordinated Multi-level Power
Management for the Data Center,” In Proceedings of 2008
13th International Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS-XIII), New York:ACM,2008, pp.48-59,doi:
10.1145/1353535.1346289.

[20] R. Nathuji, A. Somani, K. Schwan, and Y. Joshi, “CoolIT:
Coordinating Facility and IT Management for Efficient
Datacenters,” In Proceedings of 2008 USENIX Workshop
on Power Aware Computing and Systems (HotPower08),
2008.

Congfeng Jiang is a lecturer of
School of Computer Science and
Technology, Hangzhou Dianzi
University, China. He is with the Grid
and Service Computing Lab in
Hangzhou Dianzi University.

Before joining Hangzhou Dianzi University, he was a PhD
candidate in Huazhong University of Science and Technology
from 2002 to 2007. He received his PhD degree in 2007. His
current research areas include power aware computing system,
virtualization, grid computing, etc.

Dr. Jiang is a member of China Computer Federation (CCF),
IEEE and IEEE Computer Society.

Jian Wan is the director of Grid and
Service Computing Lab in Hangzhou
Dianzi University and he is the dean of
School of Computer Science and
Technology, Hangzhou Dianzi
University, China.

Prof. Wan received his PhD degree in 1996 from Zhejiang

University, China. His research areas include parallel and
distributed computing system, virtualization, grid computing,
etc.

Prof. Wan is a member of China Computer Federation (CCF).

Xindong You is a lecturer of School of
Computer Science and Technology,
Hangzhou Dianzi University, China.
She is with the Grid and Service
Computing Lab in Hangzhou Dianzi
University.

Before joining Hangzhou Dianzi University, she was a PhD

candidate in Northeastern University from 2002 to 2007. She
received her PhD degree in 2007. Her current research areas
include virtualization, distributed computing, etc.

Yinghui Zhao is a lecturer of
Department of Hydraulic Engineering
and Agriculture, Zhejiang Tongji
Vocational College of Science and
Technology, Hangzhou, China.

Before joining Zhejiang Tongji Vocational College of

Science and Technology, she was an engineer in China
Southern Power Grid Company. She received her Master degree
from Huazhong University of Science and Technology in 2007.
Her current research areas include remote sensing images
processing, geographical information system (GIS), etc.

JOURNAL OF COMPUTERS, VOL. 5, NO. 8, AUGUST 2010 1203

© 2010 ACADEMY PUBLISHER

