
Power Aware Job Scheduling in Multi-Processor 
System with Service Level Agreements 

Constraints 
 

Congfeng Jiang, Jian Wan, Xindong You 
Grid and Service Computing Technology Lab, Hangzhou Dianzi University, Hangzhou 310037, China 

Email: cjiang@hdu.edu.cn 
 

Yinghui Zhao 
Department of Hydraulic Engineering and Agriculture, Zhejiang Tongji Vocational College of Science and Technology, 

Hangzhou, 311231, China  
Email: zhaoyinghuihust@gmail.com 

 
 
 

Abstract—Conventional hardware based per-component 
and system-wide power management methods can save 
more power consumptions if they are in assistance with 
software-level adaptation. Since the conventional coarse-
grained methods are not adaptive to various fluctuating 
workload in real scenarios, the system performance can be 
deteriorated greatly if the objective is only to minimize the 
total power consumptions separately, despite of the 
violations of Service Level Agreements (SLAs). In this paper 
a fine-grained job-level power aware scheduling algorithm 
is proposed to minimize power consumption in multi-
processor system with SLA constraints. Simulation results 
show that the proposed algorithm can save significant power 
consumptions while still providing SLAs guarantees and the 
performance degradation is acceptable. The results also 
show that fine-grained job-level power aware scheduling 
can achieve better power/performance balancing between 
multiple processors than coarse grained methods. 
 
Index Terms—power aware computing system, job 
scheduling, service level agreements, power estimation, 
workload characterization 
 

I.  INTRODUCTION 

With active deployment of large multi-core servers to 
support thousands of concurrent jobs, the computing 
ability of future multi processor platforms will depend on 
the increasing numbers of cores. When the scales of multi 
processor system, power consumption has become the 
most important design consideration and the major 
bottlenecks to system scalability since higher power 
consumption results in more heat dissipation, cooling 
costs and makes servers more prone to failures. 
Researchers have proposed various per-component 
energy management approaches and solutions to reduce 
power and energy hotspots, such as CPUs, memories, and 

hard disks. However, conventional hardware based per-
component and system-wide power management methods 
can not save considerable power consumptions because 
they are coarse-grained and not adaptive to various 
fluctuating workload in real scenarios. Moreover, the 
system performances, for example, availability, 
responsiveness, and throughput, do not scale with the 
number of processors but the power consumption dose. 
Most unfortunately, the whole system performance can 
be deteriorated greatly if the objective is to minimize the 
total power consumptions separately, despite of the 
violations of Service Level Agreement (SLAs) 
requirements.  

Virtualization offers management capabilities for 
service consolidation, isolation and power reductions. 
However, it is hard to coordinate SLAs requirements and 
power management decisions among multiple Virtual 
Machines (VMs).It is also desirable to schedule jobs 
among various VMs while still satisfying their SLAs 
requirements in response to changing data center 
conditions.  

The literature of current power management schemes 
has mostly limited to mechanisms of DVS/DFS 
(Dynamic Voltage Scaling/ Dynamic Frequency Scaling) 
and not applicable for better performance such as load 
balancing and energy balancing. Due to the high density 
of service consolidation and the increasing number of 
users with heterogeneous requests, providing users with 
SLA guarantees and saving power consumption have 
become a crucial problem that needs to be addressed. In 
this paper a fine-grained job-level power aware 
scheduling algorithm is proposed to minimize power 
consumption in multi-processor system with SLA 
constraints.  

The proposed algorithm responds to power supply 
constraint situations by using closed-loop policies to set a 
safe performance level and it consider the coordinated 
optimization of power consumption and SLA 
requirements together. It also attempts to address hotspots 
problem in multi-processor systems through job-
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redispathing and migrations. Simulation results show that 
the proposed algorithm can save significant power 
consumptions while still provides SLAs guarantees and 
the performance degradation is acceptable. The results 
also show that fine-grained job-level power aware 
scheduling can achieve better load balancing and energy 
balancing between multiple processors than coarse 
grained methods. 

The remainder of this paper is organized as follows: In 
section 2 we analyze some related work on power aware 
computing system, and SLA constrained job scheduling 
in multi-processor systems. In section 3 we present a 
power aware job scheduling algorithm for multi-
processor systems with SLA constraints. Then, in Section 
4, we present simulation results and the effectiveness, 
practicality and performance of the proposed scheduling 
algorithm. We also compare the performance data with 
conventional power-unaware job scheduling algorithms 
or job scheduling algorithms without SLAs constraints in 
Section 4. In Section 5, we present experimental results in 
real-world application and discuss the relative 
performance and scalability of the proposed job 
scheduling algorithm. Finally, we summarize the work in 
Section 6.  

II.  RELATED WORK 

Power consumption has become a main concern for 
enterprise server system in order to achieve a high quality 
of service level in terms of, for example, availability and 
reliability. The adaptive power management has to ensure 
peak power safety but should also intelligently schedule 
individual jobs to computing resources to guarantee 
negotiated SLAs.  

Since the overall system power consumption has 
strong relationship to processor resource usage, various 
excellent Dynamic Voltage Scaling/Dynamic Frequency 
Scaling (DVS/DFS) algorithms have been proposed to 
reduce the power consumption of processors [1, 2].  

Memory is another source contribution for power 
consumptions in server systems. Existing techniques 
usually manage power for the main memory by passively 
monitoring the memory traffic and regulation. Some 
algorithms are proposed to predict when to power down 
which memory units and into which low-power state to 
transition [1,3,4].  

In large scale data centers, server systems, or in the 
enterprise storage system, power consumption of hard 
disks is a critical issue where data-intensive applications 
exhaust disk storage extensively. Since energy 
consumptions directly affects hard disk drive reliability 
and system performance, reducing energy consumptions 
of disks can dramatically save overall enterprise IT costs 
[2, 5-9]. 

Mor Harchol-Balter et al [10] investigates the 
performance of task assignment policies for server farms, 
as the variability of job sizes (service demands) 
approaches infinity and they found that the Size-Interval-
Task-Assignment policy (SITA), which assigns each 
server a unique size range, was inferior to the much 
simpler greedy policy, Least-Work-Left (LWL), for 

certain common job-size distributions, including many 
modal, hyper-exponential, and Pareto distributions. 

The Service Level Agreement (SLA) is an electronic 
contract between a service user and a provider, and 
defines service quality like online time, response time, 
failure percentage, etc. From a general-purpose viewpoint, 
performance can be defined by SLA constraints for 
corresponding underlying workload heterogeneity 
[11].However, existing job scheduling algorithms are 
developed with consideration of overall system 
performance such as throughput, average response time, 
mostly ignoring power consumption and SLA guarantees. 
In this regard, we propose a novel scheduling strategies in 
this paper aimed at leveraging performance and power 
consumption for parallel applications running on multi-
processor system.  

In this paper, we propose a model for negotiating 
SLAs and a matchmaking algorithm based on service 
gains which is the ability to fulfill the service requestor 
requirements. In this model the SLAs negotiation is 
configured with the top-ranked service identified in the 
matchmaking phase. This model acts as a component of 
the Power and SLA-aware job scheduler that has the 
capability to predict the performance of the computing 
system it manages and allocate jobs in such a way that 
SLAs are satisfied. 

Our research focuses on scheduling SLAs constrained 
parallel tasks and thus heuristics are applied to schedule 
parallel tasks to minimize power consumption and 
performance overheads. Unlike the existing scheduling 
algorithms that ignore all the power consumption of each 
task, the proposed algorithm schedules a task to proper 
processor if this scheduling can help in conserving power 
consumption. Our power-aware scheduling algorithm is 
conducive to balancing workloads and power 
consumptions of a set of SLAs constrained parallel tasks. 
We conducted extensive experiments using both synthetic 
benchmarks and real-world applications to compare our 
algorithms with two existing approaches. Experimental 
results based on simulated clusters demonstrate the 
effectiveness and practicality of the proposed scheduling 
algorithm. 

III.  POWER AWARE JOB SCHEDULING WITH SLAS 
CONSTRAINTS 

The main idea of this paper is the intuition that in 
lower loaded periods, there is a potential to save power 
consumption by dynamically powering off part of or 
whole servers to address the actual computing demands. 
Under such lower-load conditions, an appropriate fine-
grained job scheduling scheme can considerably reduce 
power consumption. In the meantime, under higher load 
condition, power aware scheduling can also schedule jobs 
properly to balance power consumption between various 
processors and avoid hotspots. Therefore, the proposed 
power aware job scheduling in this paper contains three 
parts: workload characterization and prediction, power 
consumption measuring and estimation, feedback control 
of power consumption through job scheduling with SLAs 
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constraints. Fig.1 illustrates the control framework of the 
power and SLA-aware scheduling algorithm. 

 

 
 
Figure 1. Simplified system framework of feedback based controlling. 
The tasks of computing, sensing, and actuation are illustrated. The 
interaction among control tasks may affect the control performance. 

 
Fig.1 shows that the controller will interact with 

different parts of the system since they are sharing 
resources such as CPU, memories, network, etc. Since the 
multi-processor computing system usually is connected 
by networks, deadlines of jobs may be missed. Moreover, 
the performance requirement of each control loop should 
be satisfied respectively. 

According to the control theory, the framework of 
feedback based controlling in Fig.1 can be considered as 
a classical multi-input, multi-output control system. The 
controlling system can be defined as follows: 

0( ) [ ( ), ( ), ], [ , ]fx t f x t u t t t t t= ∈&                                      (1) 

Where: 
x is the system state vectors, nx R∈ ; 
u is system controlling vectors and mu R∈  
In a deterministic state 0 0( )x t x= , Eq.1 has a unique 

solution, i.e. ( )x t  given that u is preset and known.  
Assume that the controlling system is a linear system, 

and the system can be defined as follows: 

0
( ) ( , ) ( )t

ty t G t u dτ τ τ= ∫                                              (2) 

Where ( , )G t τ is a q p×  unit pulse response matrix: 
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        (3) 

The Service Level Agreements Constraints can be 
summarized as follows: 

[ ( ), ] 0f fx t tψ =                                                       (4) 

Where , ; ( ) ( )r
fR r n x tψ ψ∈ ≤ ∈ ⋅  

Here we use a PID controller to keep the scheduling 
satisfying the SLA requirements and saving more power 
consumptions. This controller is specified by the 
following equations: 

p i d
duU K e K e K
dt

= ⋅ + ⋅ + ⋅                                             (5) 

Where: 
e is the control error and it is the difference between 

the measured control value, i.e., QoS gains and makespan 
of all the jobs. pK , iK , and dK are the proportional, 
integral and dividal gains of the controller respectively. 

pK produces a controller input proportional to the current 
control errors. iK accumulates the control error and 
produces a control input based on historical control errors. 

We will describe these parts in detail in the following. 

A.  Workload Characterization and Prediction 
Workload characterization is an important technique to 

help understand the performance of system applications 
and demands. A good understanding of the workload of 
multi processor computing system should provide 
insights about user requests, program activities and help 
in improving the quality of the service provided to users. 
In a real computing system, workloads are varying 
dynamically due to various reasons such as user 
behaviors, usage modes of diverse applications, 
unforeseen load fluctuations, etc. In multi processor 
system, the workload of a processor dynamically changes 
in nature, because there is no effective and accurate way 
to predict when and where a task will arrive for service. 
Therefore, workload characterization acts as a crucial 
component of any performance analysis process and 
researchers often use processors runtime statistics, trace 
data of real workload and algorithms such as online 
learning, clustering, and fractal, to predict the workload 
of different applications in the future. However, since 
there are no specific workload characterization 
algorithms that can characterize every kind of workloads 
in different computing systems and applications, 
workload characterization and prediction schemes must 
be developed for specific individual application.  

Depending on the type of application tasks, the 
workload characterization model could vary in 
complexity ranging from a simple specification of the 
task demands of the server resources, especially the 
processor cycles, to a detailed mathematical model 
capturing the flow of control during task execution. We 
assume that tasks use the hosts to execute some logic 
requiring a given amount of CPU time. Whenever a task 
is processed at a host, the actual execution time is 
compared with the current estimate of the task demand 
and if it is lower the estimate is updated. Thus, as the task 
progresses, the estimated task execution time is 
iteratively set to the more accurate observed execution 
time on the respective host. It is expected that during 
periods of lower workload intensity, the observed 
execution time will be close to the estimated task 
execution time. This approach would work provided that 
the time spent waiting is insignificant compared to the 
time spent executing the tasks. In this paper, we proposed 
a lightweight resource-oriented workload characterization 
scheme for multi processor system with parallel 
workloads which describes the consumption of system 
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resources by the workload, such as length of processor 
queue, processor time, waiting time, disk operations, 
memory, etc. In resource-oriented workload 
characterization scheme, resource data can be collected 
easily by automated agents or third party packages which 
use the OS calls or APIs. The power consumption is 
measured by a multimeter and the results are transported 
to the dedicated computer through a USB connection. 

We monitor the CPU and memory utilization during 
task execution and use it to split the measured observed 
time into time spent using the CPU and time spent 
waiting. This algorithm is conservative in that it starts 
with conservative estimates of the CPU cycles and refines 
them iteratively in the course of the execution. Therefore, 
in the beginning of the execution, its resource 
requirements would be overestimated possibly leading to 
rejecting or dissatisfying the performance such like 
throughput even though they could have been accepted 
without violating SLAs. This scheme can be used for 
tasks that run for the first time and there is no previous 
execution information available in the knowledge base. 
Once a new type of task set has been scheduled and 
processed, the estimates can be registered in the 
knowledge base and used as a starting point in future 
executions. Moreover, the estimates can be further 
refined as new tasks are executed. 

The workload characteristics can be represented by 
observations in macro and micro scale. The former 
includes resource-oriented performance, such as response 
time, processor time, memory utilization, disk operations, 
etc. And the latter includes processor instructions 
execution time, status of registers, status of threads, 
hardware counters, etc. The workload can be 
characterized by interpreting these macro and micro 
performance tips and metrics. For example, there are 48 
event counters and 18 performance counters, among 
which are three fixed performance counters in Intel® 

Pentium TM IV processor, i.e., INSTR_RETIRED.ANY, 
Counter 4: CPU_CLK_UNHALTED.CORE, Counter 5: 
CPU_CLK_UNHALTED.REF. Therefore, the un-halted 
CPU time can be calculated as follows: 

CPU_CLK_UNHALTED.TOTAL_CYCLES
ProcessorFrequency  NumberofCores

un haltedTime −

=
×

      (6) 

B.  Power and SLAs Aware Job Scheduling 
In this paper, a host or site refers to a PC, cluster, or a 

supercomputer and the term is used interchangeably. And 
the terms job, task, and application are used 
interchangeably to refer to a request made by a user to 
run a given application with QoS requirements or a given 
inputs. The following assumptions are made in this paper: 

(1) The workload is heavy-tailed, as is characteristic of 
many empirically measured multi-processor computing 
system workloads.  

 (2) The applications have been divided into sub tasks 
and each sub task is independent. This assumption is 
commonly made in the job scheduling for heterogeneous 
distributed environment (e.g., [12-14]). The method we 

propose is applicable for tasks with no internal 
parallelism. Note that scheduling dependent jobs with 
sharing files, DAG (Directed Acyclic Graph) topologies 
or precedence constraints can be found in the literature 
but is out of the scope of this paper.  

(3) The arrival rate of jobs is Poisson distributed. 
(4) The estimates of expected task execution times on 

each machine in the multi processor computing system 
are known. The assumption that these estimated expected 
times are known is commonly made when studying 
scheduling algorithms [12, 14]. Approaches for doing this 
estimation include intrinsic and extrinsic factors method 
[15], analytic benchmarking [16], etc. For example, 
through code profiling, the execution time of a job can be 
calculated by the total clock period number required by it. 
Also note that the required execution time is in inverse 
proportional to the processor speed. Since the processor 
speed may be adjusted, the execution time required for 
the same task at the highest processor speed and the 
lowest is different. As the processor speed descends a 
half or the third, the task can be finished before its 
deadline yet, however, the energy consumption may be 
the quarter or the ninth of the original. 

(5) The execution time of jobs on specific processor is 
proportional to the power consumption that the jobs 
consumed when the frequency or voltage is fixed. 

(6) The execution sequence of tasks on a processor is 
FCFS (First-Come, First-Served).The host executes one 
task at a time and the task is not preemptive. 

(7) Without loss of generality, we assume that the 
system components may fail and can be eventually 
recovered from failures. Both hardware and software 
failures obey the fail-stop failure mode.  

(8) Job failures can occur online at any time and the 
total number of faulty hosts in a given multi processor 
computing system may never exceed a known 
percentage. And the sites failures are independent from 
each other.  

(9) When the primary scheduler fails, there are backup 
schedulers to take over all the work of the primary 
scheduler. 

(10)There is a job table maintained by a server and all 
the information of running jobs can be queried through 
this table. 

Let { | 1, 2,3,..., }iJ J i n= = denote jobs 
set, ( , , , , , )i i i i i i iJ a b e c s Q= , M is set of processors, 

{ | 1,2,3,..., }jM M j m= = , ( , , , , )j j j j j jM p f d BW PW= . 
Where: 

ia  is arrival time of job iJ ， ib is starting time of job 

iJ ， ie is the average execution time of job iJ  on all the 
processors, i.e. expected executed time on processor jM  
where there is no other running jobs except for 

iJ , 1 2 3( , , ,..., )m
i i i i ie e e e e= ， ijc is the expected completion 

time of job iJ  on processor jM ， is  is the size of data 

needed by job iJ  (MB)， iQ is the QoS values of job iJ . 
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As for hosts set M , jp  is the speed of processor jM  

(MHz)， jf is the available memory capacity of host jM  

(MB)， jd  is the available disk space on host jM  (MB)

， jBW  is the  bandwidth of host jM (Mb/s)， jPW  is 
the level of power consumption of host jM , 

1 2 3( , , ,..., )u
j j j j jPW PW PW PW PW= , 

[1, ],0 1v
jv u PW∀ ∈ < < ,where 0 stands for the lowest and 

1 the highest. 
Let Q denote a set of Quality of Service 

constraint { | 1, 2,..., }iQ Q i n= = , ( , , , , )i i i i i iQ T R S A P= , 
where: 

iT (Timeliness) is timeliness requirement, i.e., the 
total expected completion time for running jobs, starting 
time of running jobs, and the deadline of running jobs; 

iR (Reliability) is reliability requirement, i.e., the 
probability of job completion; 

iS (Security) is security requirement. Since jobs may 
be executed at remote hosts in a distributed multi-
processor system, various jobs and data need different 
security requirement, including confidentiality and 
integrity requirement; 

iA (Accuracy) is accuracy requirement. Due to the 
hardware limitations, some float computation may result 
in accumulated errors, which lead to the final non- 
accurate computing results. Therefore, jobs must be 
scheduled to hosts where they can be satisfied by the data 
accuracy requirement. 

iP (Priority) is priority requirement. In multiprocessor 
computing system, numerous jobs contents for limited 
computing resources. Therefore, jobs with higher priority 
values must be scheduled to dedicated hosts be the lower 
ones. 

For simplicity, we use discrete values to modeling the 
Quality of Service constraints, i.e., the Quality of Service 
constraint is presented by several levels like very low, 
low, medium, high, and very high, not a specific number 
like 10% or 90% because in real computing system with 
user interaction a user only cares the interactive 
experience, not the specific performance numbers. 

Let 1 2( , ,..., )J
mec ec ec ec= denote the power 

consumption of m  threads, and the matrix of n 
performance counters in m  threads 
is ,[ ](1 ,1 )i jC c i m j n= ≤ ≤ ≤ ≤ . 

Therefore, in respect to the power prediction modeling,  
∃ 1 2( , ,..., )J

nx x x x= , given that 

 

2min(|| || )
0

C x ec
C x ec

⋅ −⎧
⎨ ⋅ − ≥⎩                                              (7) 

Due to the heterogeneity of multi-processor system, 
power consumption among multi-processors is 
heterogeneous. And the heterogeneity index of job set 
J is  

2

1 1

1 1

1 1 1( )
| | min( ) min( )i

j jn n
J i i

n n
k kJ J j j
i i

k k

e e
H

J n n e e∈ = =

= =

= −∑ ∑ ∑

       (8)                  

Similarly, heterogeneity index of QoS is 

2

1 1

1 1 1( )
| |

i

qn
M j j
J i i

T T j j
H Q Q

T n q∈ = =

= −∑ ∑ ∑
                        (9) 

Where q  is the number of the length of the vector. 
We define j

iG  is the gains of QoS of job iJ  on 
host jM , i.e. 

1
( , )

q
j k k k

i i i j
k

G w g Q V
=

= ⋅∑
                                             (10)         

Where k
iw  is the weight of different QoS requirements 

of job iJ , and 
1

1
q

k
i

k
w

=

=∑ ； ( , )k k
i jg Q V  is the kth gain of 

QoS requirements of job iJ : 

( , )
0

k k k k
j i j ik k

i j k k
j i

Q V V Q
g Q V

V Q

⎧ − ≥⎪= ⎨
<⎪⎩

 , when 

      , when   
           (11)           

Where k
jV  is the available QoS capacity of the 

corresponding host. 
Intuitionally, the more the gains of QoS satisfactions, 

the more jobs can be executed with QoS guarantees. For 
specific users it is to maximize their gains of QoS 
satisfactions. However, from a system point of view, the 
situation is conversed. And the maximization of gains of 
QoS among various jobs leads to the QoS contention, 
performance degradation, and workload imbalance. 

We define iD as the available theoretical scheduling set 
of job iJ  with QoS satisfactions, ( | 0)j j

i i iD D G∃ = >                           
In order to avoid the QoS contention, the gains of 

QoS satisfactions must be minimized while still 
guarantying the QoS requirements. Assume that  

{ }

1

( | 0) min

( | 0) min ( , )

j j j
i i i i

q
j j k k k

i i i i j
k

OP D G G

D G w g Q V
=

= > ∩

⎧ ⎫
= > ∩ ⋅⎨ ⎬

⎩ ⎭
∑

              (12)             

Then the objective function for power and QoS 
constrained scheduling for job set iJ  is  

min min(max{ ( )})

min( ) min( )

i
i

i T T i
J J

J M
J

S OP c

H H

∈
∈

⎧ ⎫⎪ ⎪= ∩⎨ ⎬
⎪ ⎪⎩ ⎭

∩ ∩

∑

                    (13)                        

Eq.13 is NP-hard and can be solved by heuristics 
scheduling. We propose a heuristics scheduling 
algorithm, PaSLA, to solve this problem of power 
aware job scheduling with SLA constraints. The PaSLA 
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algorithm is triggered by a scheduling event. When the 
number of jobs in the job set becomes a fixed maximum 
number, like 5, we call this a scheduling event. A job is 
submitted to the primary scheduler and the backup 
scheduler respectively. A pseudo code of PaSLA is 
demonstrated in the following. 

 
1. When scheduling event occurs { 
2. for each task in J 

3. Compute Qi , 
j

iG  

4. End for  
5.Compute estimated power consumption of each 

job on specific processor through code profiling 
6. for each task in J 
7.If the tasks have non-negative QoS gains     
8.If the tasks are left from the last 

scheduling set  
9.Sort the tasks by QoS gains and power 

consumptions 
10.Schedule the tasks with lower QoS gains 

first 
11. If tasks have equal non-negative QoS gains 
12. Schedule the task to processors with lower 

power consumptions 
13. End if 
14. Delete the task from J  
15. Update job table 
16. End if 
17. If tasks have equal non-negative QoS gains 
18. Schedule the task to processors with lower 

power consumptions 
19. Delete the task from J  
20. Update job table 
21. End if 
22. Schedule the task with lower non-negative 

QoS gains first to processors  
23. Update job table 
24.If cpu_queue of targeted processor is 

exceeded the maximum length 
25.Insert the task into next scheduling tasks 

set 
26. Update job table 
27. End if 
28. Else 
29.Insert the task into next scheduling tasks 

set 
30. Update job table 
31. End if 
32. End for 
33.  } 
 

Figure 2. The pseudo codes of PaSLA 
 

When scheduling event occurs, PaSLA first computes 
attributes of jobs such as arrival times, expected 
execution time, expected completion time, QoS gains, 
power consumptions, etc. The scheduler first schedule the 
tasks left from the last scheduling. After that, the 
scheduler chooses a set of candidate processors with 
proper CPU length for job execution and orders the jobs 
for the job QoS gains and power consumptions. If the 
tasks have not non-negative QoS gains, the tasks will 
insert the tasks into the next job scheduling set for future 
scheduling and execution. Therefore, the complexity of 
this scheduling algorithm is O(n). 

C.  Power Balancing and Job Migration 
Let maxpw  denote the last available time of all 

processors, and the first is minpw , we define a power 

balance index as follows: 

                         

min

max

pw
eb

pw
=

                                        (14) 

eb can be any value is range [0,1]. If eb  equals 1, it 
suggests that power is balanced among processors. And if 
eb  equals 0 it suggests that power is imbalanced among 
processors and at least there if one processor which is not 
allocated any jobs. In the feedback control process, two 
thresholds, leb  and heb , l heb eb<  are selected. The 
scheduler sets eb  to 0 before scheduling .Then jobs are 
scheduled until heb eb>  and then, queue aware 
scheduling is used until leb eb< .Appropriate leb  and 

heb  can be got after several control cycles. 
Job migration enables to move checkpointable and 

rerunnable jobs from one host to another. Through job 
checkpoint and restart, a migrated checkpointable job can 
be restarted on the new host from the point at which the 
job stopped on the original host. In this paper, the jobs 
must be migrated from the current host to another in the 
following cases: 

(i) In the case of failures affecting hosts with pending 
jobs, if the host can’t recover from the failures for a 
preset time, the jobs scheduled to it must be migrated.  

(ii) If there are many hosts whose processors are far 
lower utilized, the jobs must be migrated to hosts in that 
the hosts running jobs may keep a moderate utilization 
level and to keep some hosts idle to save more power 
consumptions. For the CMOS based processor, 
decreasing the supply voltage can reduce the power 
consumption greatly. Dynamic Voltage Scaling (DVS) 
technology is mainly proposed for reducing the power 
consumption of processor by adjusting the processor 
speed and supply voltage. In this paper, the multi 
processor computing system with adjustable supply 
voltage processors, which uses special instructions for the 
voltage control and adjusts its voltage discretely, is 
considered. Moreover, the operating system can use the 
instructions of the voltage control, such that the supply 
voltage can be altered when a task is scheduled or 
migrated.  

(iii) If the jobs remain idle for a certain period of time, 
i.e., waiting for a long time, they are eligible for 
migration if there are hosts that match the jobs. 

(iv)If a local user submits a job that requests a 
particular platform or specific software that does not exist 
in the local computing system, it must be migrated to a 
different site that does have a computing resource with 
that platform. However, we do not consider this resource 
availability problem. 

In the first case, we use a server to monitor the 
heartbeat status of hosts through notification mechanism. 
In the former section we have mentioned that all the jobs 
are scheduled to the primary scheduler. There is another 
backup scheduler to backup all the job replications in 
case of host failures. Every host running a job will inform 
the execution status of the job to the primary scheduler 
periodically. If the primary scheduler receives a job 
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completion message from the host, it will drop the job in 
the job set. In all other cases, the primary scheduler scans 
the job table periodically to see if some hosts didn't send 
job execution report. If an execution failure is detected, 
an alternative host will be selected. 

In the second and third case, the scheduler migrates a 
running job to a different set of processors by performing 
the following actions: 

Step1: Stops the job if it is running 
Step2: Checkpoints the job if the job is checkpointable 
Step3: Kills the job on the current host 
Step4: Restarts or reruns the job on the first available 

host, inserting all pending jobs into the next scheduling 
task set. 

Fig. 3 shows the pseudo codes of the power balancing 
and job migration algorithm.  

 
1. Repeat { 
2. If any host is failed 
3. Insert the current running jobs into the 

task set for future scheduling 
4. Update job table 
5. End if   
6. For each host in M 
7. If it is under utilized  
8. Stop the job if it is running 
9. Checkpoint the job if the job is 

checkpointable 
10. Kill the job on the current host 
11. If there exist hosts that match the QoS 

requirements of migrated jobs 
12. Restart the job on the matched hosts 
13.  Else 
14. Insert all pending jobs into the next 

scheduling task set. 
15. Update job table 
16. End if 
17. End if 
18. End for 
19.          } 
 
Figure 3. Power balancing and job migration algorithm 
 
First, when a host fails, the primary scheduler will 

insert the current running jobs into the task set for future 
scheduling and mark the failed host failed avoiding 
further job allocations. 

If any host is under utilized, then the primary scheduler 
reschedules the replication to hosts that match the QoS 
requirements. If a host is found, a replication will be 
migrated to the host and both the backup scheduler and 
the job table will be updated accordingly. However, if no 
host is available, insert the task into the beginning of the 
next tasks set. 

IV.  SIMULATION RESULTS AND PERFORMANCE ANALYSIS 

We use simulations and real workload experiments to 
study the performance of PaSLA scheduling algorithm. 
The common approach to study the performance of 
PaSLA scheduling algorithm is to compare it with a non-
power-aware or non-SLA-aware scheduling algorithm. 
Thus we studied and compared the performance of the 
simple and frequently used heuristics such as EDF 
(Earliest Deadline First), Min-min [12], Max-Min, QoS 
guided Min-Min[17], Sufferage[18], and MCT 

(Minimum Completion Time) [18], with PaSLA by 
testing various scenarios.  

To evaluate the PaSLA scheduling algorithm, we use 
the following metrics: 

(1)Makespan: the total running time of all jobs; 
(2)Average waiting time: the average waiting time 

spent by a job in the grid. 
(3)Scheduling success rate: the percentage of jobs 

successfully completed in the system; 
(4)Power consumption: the power consumed by the 

jobs. 
(5)Average violating rate of SLA: the percentage of 

SLAs violation when scheduling user jobs out of total 
jobs. 

(6)Average migration rate: the percentage of migrated 
jobs out of total scheduled jobs. 

The scheduling steps of Min-min algorithm is 
described as follows: 

Step 1: For each task in the task set, the machine that 
gives the task its minimum completion time (first Min) is 
determined (ignoring other unmapped tasks). 

Step 2: Among all task-machine pairs found in Step 1, 
the pair that has the minimum completion time (second 
Min) is determined. 

Step 3: The task selected in Step 2 is removed from the 
task set and is mapped to the paired machine. 

Step 4: The ready time of the machine on which the 
task is mapped is updated. 

Steps 1-4 are repeated until all tasks have been 
mapped. 

The scheduling steps of Sufferage algorithm is 
described as follows: 

Step 1: For each task in the task set, the machine mj 
that gives the earliest completion time is found. 

Step 2: For each task in the task set, the Sufferage 
value is calculated. (Sufferage value = second earliest 
completion time minus earliest completion time). 

Step 3: If machine mj is unassigned then assign tk to 
machine mj, delete tk from L, and mark mj as assigned. 
Otherwise, if the sufferage value of the task (ti) already 
assigned to mj is less than the sufferage value of task tk 
then unassigned ti, add ti back to L, assign tk to machine 
mj, and remove tk from the task set. 

Step 4: The ready times for all machines are updated. 
The scheduling steps of MCT algorithm is described as 

follows: 
Step 1: The first task in the task set is mapped to its 

minimum completion time machine (machine ready time 
plus estimated computation time of the task on that 
machine). 

Step 2: The task selected in step 1 is removed from the 
task list. 

Step 3: The ready time of the machine on which the 
task is mapped is updated. 

Step 4: Steps 1-3 are repeated until all the tasks have 
been mapped. 

A.  Simulation Setup and Parameters Settings 
Feedback control based scheduling algorithm is 

capable of modifying its own scheduling decision and 
program behavior through time, depending on the 
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execution characteristics. Here, the objective of PaSLA is 
to schedule jobs to processors while guarantying the SLA 
requirements and minimizing the total power 
consumptions of the computing system, preserving its 
simplicity and low overhead. We test this algorithm and 
describe its behavior under a number of workloads. 
Simulations based on MATLAB TM and MATLAB TM 
Simulink TM includes an analysis of the performance 
sensibility with the variation of the control parameters 
and its application in a multi processor computing 
system. In our simulations, we construct synthetic 
workloads using jobs with varying arrival rate and 
execution time. Moreover, in order to evaluate the 
robustness of our algorithm, we allow the jobs to follow 
different distributions, such as Gaussian, Possion, 
Uniform, Weibull, and heavy tailed distribution. We 
generate a wide range of workloads by varying the 
number of jobs and their execution times in our 
simulations. Specifically, we conduct over 1000 sets of 
experiments, and the number of jobs in each experiment 
is selected according to a specific distribution. The 
relative performance of an algorithm in each experiment 
is compared by normalizing its original values. Table 1 
lists the key simulation parameters of one simulation.  

TABLE I.   
REPRESENTATIVE SIMULATION PARAMETERS AND SETTINGS 

Number of jobs 10,000,000 
Number of processors 16 
Site processing speed 8 nodes with 2.4GHz and 8 nodes with 

1.8GHz 
Job arrival rate Poisson distributed in [0.3, 0.9]  
Job execution time Normal distributed in [0.1, 1000] sec 
Sites failure rate Poisson distribution with failure rate failλ  

 

B.  Simulation Results and Analysis 
We assume that the hosts fail in a Poisson distribution 

with failure rate failλ  and the jobs arrive in the queue in a 
Poisson stream with rate taskλ . Without loss of generality, 
every task set consist two kinds of jobs, i.e., jobs with 
SLA constraints and jobs without SLA constraints. We 
compare the relative performance such as makespan, 
average waiting time, scheduling success rate, power 
consumption, average violating rate of SLA, average 
migration rate. The simulation results are shown in Figure 
4. All the data in the figures are mean values of 20 
simulation results. 

In Figure 4(a), the makespan order of the scheduling 
algorithms from maximum to minimum is: (1) Max-Min, 
(2) QoS-Min-min, (3) Min-Min, (4) PaSLA, (5) 
Sufferage, (6) MCT, and (7) EDF. The makespan of EDF 
is the smallest because of its smallest computation 
consumption. PaSLA dynamically schedules jobs to 
computing sites according to the real time power 
consumption and SLA constraints. Thus the makespan of 
PaSLA is relatively large. 
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4(e) Average Violation Rate of SLAs 
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4(f) Average Migration Rate 

Figure 4.  Simulation results and relative performance 
 
In Figure 4(b), the average waiting time order of the 

scheduling algorithms from maximum to minimum is: (1) 
EDF, (2) Max-Min, (3) PaSLA, (4) Sufferage, (5) QoS-

Min-min and MCT, and (6) Min-Min. EDF has the 
longest average waiting time because it executes tasks 
without global information such as waiting times of other 
tasks. Consequently, EDF makes a significant increase of 
total execution time and makes the average waiting time 
longest eventually. 

In our simulations, a task will be dropped if it couldn't 
be finished successfully after ten times. Thus, the 
scheduling success rate can't reach to 100%.In Figure 
5(c), PaSLA has the highest scheduling success rate in a 
failure-prone multi-processor environment. PaSLA 
reschedules the tasks whose demand couldn't be satisfied 
on the current time when next scheduling event occurs. 
Thus, PaSLA increases the scheduling success rate 
significantly. 

In Figure 4(d), the power consumption order of the 
scheduling algorithms from highest to lowest is: (1) Max-
Min, (2) Qos-Min-min, (3) Min-Min, (4) Sufferage, (5) 
EDF, (6) MCT, and (7) PaSLA. PaSLA has the lowest 
power consumption because it takes into account the real 
time power consumption when scheduling tasks. 

Since PaSLA also optimizes the SLA requirements and 
satisfactions while scheduling tasks, it has the lowest 
average violation rate of SLAs and the lowest average 
migration rate through Fig.4(e) and Fig.4(f). 

The results in Figure 4 show that no single algorithm 
achieves the highest performance for all metrics. 
However, PaSLA exhibits relatively better performance 
with highest success rate, moderate level of makespan 
and average waiting time, lowest power consumption, 
average violation rate of SLAs and the lowest average 
migration rate due to its power aware and SLA aware 
scheme. We observe from Fig.5 that substantial 
performance improvements can be obtained. As the 
experimental results finally turn out, the performances of 
our algorithm is fairly insensitive to the distributions we 
choose. 

V.  CONCLUSIONS AND FUTURE WORK 

Power management is a key problem for IT 
management and operation in multi processor system, 
especially for Data Centers and cloud computing 
environments. Recent processor support for dynamic 
frequency and voltage scaling (DVS) makes it possible 
for software to affect power consumption by varying 
execution frequency and supply voltage. However, DVS 
and DFS are not enough for processor power reductions if 
they are issued only by entering a sleep mode. Therefore, 
it is feasible to coordinate hardware level and software 
and job level power management to save more power 
consumption. Moreover, fine-grained job-level power 
aware scheduling can achieve application specific 
performance SLA guarantees than system wide or per-
component power management. 

In this paper we analytically derive functions for real-
time estimation of system power consumption using 
performance counter data on real hardware. We also 
developed our job scheduling model based on feedback 
control theory and characterize workload through data 
gathered from micro benchmarks and real time user 
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applications to capture possible application behavior. The 
job scheduling model is independent of implementation 
platforms and therefore feasible for future applications on 
multi-processor systems. Power consumption is reduced 
and the SLA constraints are guaranteed by the proposed 
power-aware and SLA-aware job scheduler. 

We study several job scheduling algorithms for 
different workload characteristics. An infrastructure for 
investigating scheduling performance is implemented. A 
fine-grained job-level power aware scheduling algorithm 
is proposed to minimize power consumption in multi-
processor system with SLA constraints. Performance 
such as Makespan, Average waiting time, Scheduling 
success rate, Power consumption, Average violating rate 
of SLA, Average migration rate are assessed for different 
job scheduling algorithms. Measurements provides a 
quantitative assessment of the potential of energy savings 
for power and SLA aware job scheduling algorithms as 
opposed to conventional job scheduling algorithms that 
disregard power consumption and SLA constraints.. 
Simulations results show that the proposed algorithm can 
save significant power consumptions while still providing 
SLAs guarantees and the performance degradation is 
acceptable. The results also show that fine-grained job-
level power aware scheduling can achieve better 
power/performance balancing between multiple 
processors than coarse grained methods. 

In order to satisfy the SLA requirements of user 
applications, the status of the multiple sites and 
processors must be monitored and the performance data 
should be recorded. However, in a multi processor 
system, the collection of system performance data, the 
coordinated optimization of power consumption and SLA 
requirements will add on a large amount of computation 
and communication overhead. Thus, efficient system-
wide and per-component monitoring and discovering 
technologies must be developed. Moreover, estimating 
power consumption is critical for OS process scheduling 
and for software/hardware developers. However, 
obtaining processor and system power consumption is 
non-trivial and using real platform simulators is time 
consuming and prone to error.  

However, in a real multi processor system such as a 
data center, asking the users to fully specify their SLA 
requirements quantitively is an unreasonable burden. For 
example, user only need to specify a power consumption 
level such as low, middle, or high when executing jobs 
rather than the numerical values. Therefore, how to 
evaluate the qualitative and quantitative effects is a key 
factor that impacts the coordinated optimization of power 
consumption and SLA requirements heavily [19, 20]. 
However, global energy consumption mode is different in 
different systems with specific performance-oriented 
applications. Moreover, energy consumption mode is also 
different for different platforms with different 
performance constraints and SLA requirements and SLA 
satisfactions. It is an open problem to reduce energy 
consumption, while still meeting performance demands, 
system loads and reliability. 
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