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Abstract—The performance of the phonotactic system for 
language recognition depends on the quality of the phone 
recognizers. To improve the performance of the recognizers, 
this paper investigates the use of new acoustic features and 
discriminative training techniques for phone recognizers. 
The commonly used features are static ceptral coefficients 
appended with their first and second order deltas. This 
configuration may be not optimal for phone recognition in 
phonotactic language recognition systems. In this paper, a 
time-frequency cepstral (TFC) feature is proposed based on 
our previous work in acoustic language recognition systems. 
The feature is extracted as follows: first a temporal discrete 
cosine transform (DCT) is carried out on the cepstrum 
matrix, and then select the transformed elements in a 
specific area using the variance maximization criterion. 
Different parameters are tested to obtain the optimal 
configuration. Also, we adopt the feature minimum phone 
error (fMPE) method for discriminative training of phone 
models to obtain better phone recognition results for further 
improvement. The effectiveness of the two techniques is 
demonstrated on the NIST Language Recognition 
Evaluation (LRE) 2007database, including the 30 second, 10 
second and 3 second closed-set test conditions. 
 
Index Terms—phonotactic language recognition, phone 
recognizer, time-frequency cepstrum (TFC), feature 
minimum phone error (fMPE) 
 

I.  INTRODUCTION 

Language recognition is to determine the language 
identity of a given speech segment. There are two types 
of commonly used systems for language recognition: 
acoustic systems and phonotactic systems. The acoustic 
systems use Gaussian Mixture Models (GMM) [1] or 
support vector machines (SVM) [2] to model the long 
term spectral characteristics of speech, also referred to as 
the spectral systems. While the phonotactic systems use 
N-gram language model [3], binary tree [4] or SVM [5] 
to model the language dependent lexical constraints of 
token sequences or lattices decoded from speech. For 
utilizing the intermediate results of recognizers (or 

tokenizers), they are also referred to as the token-based 
systems. Many state-of-the-art systems include both 
techniques to achieve optimal performance. 

This paper will focus on the phonotactic system called 
parallel phone recognizers followed by vector space 
modeling (PPRVSM) [5]. In this system, multiple 
language dependent phone recognizers are used to map 
speech segments spoken in any language to phone 
sequences or lattices [6]. Usually, the mapping is 
performed without any phonotactic constraints. Phone 
sequences or lattices are then used to estimate phonetic 
N-gram statistics which will be modeled by SVM 
classifiers. Generally, the performance of the PPRVSM 
system depends on the performance and consistency of 
the front-end phone recognizers. Better phone recognition 
leads to better N-gram estimates, which in turn leads to 
better language recognition results. Several methods have 
been proposed for the phone recognizers, such as using 
the Artificial Neural Network-Hidden Markov Model 
(ANN/HMM) architecture instead of GMM/HMM to 
improve the performance of phone recognizers [7], 
substituting the context-dependent (CD) HMM phone 
models for the context-independent (CI) ones to remove 
the context variability and using model adaption to 
remove the channel variability [8]. Also, there are other 
ways to improve the phone recognizers. 

Usually, the Mel-frequency cepstral coefficients 
(MFCC) and perceptual linear prediction (PLP) features 
are used for phone recognition [5, 6]. To utilize the long 
temporal information of time-varying spectral features 
and reduce the effect of channel convolution distortions, 
the first and second order deltas are calculated and 
appended to the basic ones. However, this configuration 
may be not optimal for phone recognition. Firstly, the 
deltas can be obtained by taking high-pass linear filtering 
of the basic ones. According to the information theory, it 
may be redundant. Secondly, the first and second order 
deltas may bring correlation into the concatenated feature, 
which will depress the performance of the commonly 
used diagonal GMM. Therefore, the simple concatenation 
may not be used to select the most informative elements. 
In our previous work, we have presented a time-
frequency cepstrum (TFC) feature for the GMM-based 
acoustic system [9], which is obtained by performing a 
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temporal discrete cosine transform (DCT) on the 
cepstrum matrix. Experimental results have shown that it 
outperforms the widely used shifted delta cesptrum (SDC) 
feature [9]. In this paper, we will extend this work for 
phone recognition in the PPRVSM system. The 
discriminative training method is also used for further 
improvement. 

This paper is organized as follows. Section 2 gives a 
brief description of the PPRVSM system: the phonotactic 
feature extraction and vector space modeling (VSM). The 
TFC feature extraction and discriminative training 
algorithm are presented in section 3 and 4 respectively. 
The experimental results on the NIST LRE 2007 
evaluation database will be shown in section 5 followed 
by a conclusion in section 6. 

II.  THE PPRVSM SYSTEM 

A.  Phonotactic Feature Extraction 
In the PPRVSM language recognition, several parallel 

phone recognizers (PPR) are used to decode the speech 
into phone sequences or lattices for following analysis. 
We developed a Mandarin phone recognizer using the 
GMM/HMM architecture and trained on the 
conversational telephone data including about 30 hours of 
speech. There are 64 phone models for the phone 
recognizer. Each phone model is a tied-state left-to-right 
CD HMM with 32 Gaussians per state. Compared with 
CI phone models, the CD models have the advantage that 
it can handle the context variability [8]. 

Typically, the phonetic N-gram probabilities can be 
estimated on either phone sequences or lattices. Using 
phone lattices often produces better language recognition 
results than sequences [6]. In this paper, lattices 
generated from the phone recognizers are used for 
phonotactic feature extraction. A phone lattice is a rich 
and compact representation of multiple hypotheses with 
acoustic likelihoods, from which the expected counts of 
phonetic N-grams are estimated. The expected counts of 
phonetic N-grams can be understood as an extension of 
standard counts. Given a hypothesized phone sequence: 

1 1... ...+= i i nS s s s s , the phonetic N-grams are created by 
grouping N phones at a time to form, such as 1... + −i i Ns s . 
The count of the N-gram 1... + −i i Ns s  is the number of 
occurrence of 1... + −i i Ns s  in the sequence S . To extend to 
the lattice L , the expected counts are calculated over all 
possible hypotheses in the lattice [6]: 
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where, ( | )p S L  is the probability of the sequence S  in 
the lattice L , ( )isα  is the forward probability of the 
starting node in the N-gram 1... + −i i Ns s , 1( )+ −i Nsβ  is the 
backward probability of the ending node, ( )jsξ  is the 

posterior probability of the edge js . The probability of 
the N-gram 1... + −i i Ns s  in the lattice is then computed as 
follows: 
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B.  Vector Space Modeling (VSM) 
Recently, VSM has become a popular technique in 

phonotactic language recognition systems [5]. In the 
VSM, each speech segment is represented by a super-
vector and then modeled using SVM. 

The key point of VSM is the sequence kernel 
construction. We adopt the term frequency log-likelihood 
ratio (TFLLR) kernel that has been proven to be useful 
for phonetic speaker recognition [10]. The TFLLR kernel 
is constructed by scaling the phonetic N-gram 
probabilities that are estimated on a given phone lattice. 
In general, the kernel function between two lattices can 
be represented as follows: 

1 2 -1 1 -1 2
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The denominator -1( ... | )+i i Np s s all  is the probability of 

1... + −i i Ns s  in all the phone lattices in the training set. This 
insures that the kernel function is not dominated by N-
grams with large probabilities. The inner product in Eq. 
(1) indicates that if the same N-grams are present in the 
two lattices, then there will a high degree of similarity 
between them two, and vice versa. 

The back-end of VSM is the SVM training and scoring. 
The training is carried out with a “one-versus-rest” 
strategy. The samples in the target language are collected 
as the positive set and the remaining in other classes as 
the negative one, then carry out training between them 
two.  

Given the vector 1 -1{ ( | ),..., ( ... | )}+=
r

n n i i NX p s p s sL L  
and kernel function ( , )lK X X , the SVM scoring function 
is: 

 ( ) ( , )= +∑ l l l
l

f X t K X X dα . (2) 

A decision is based on the output of Eq. (2) compared to 
a predefined threshold. The lX  are support vectors 
obtained under the Mercer condition. 

Compared with low-order N-grams, high-order ones 
are usually more discriminative for language recognition. 
But there is a problem that the number of N-grams grows 
exponentially as the order N increases, which results in a 
high dimensional phonotactic feature vector. It is a 
challenge for SVM training. However, researchers have 
illustrated that not all the N-grams are necessary in 
building the VSM [11]. So it is important to pick out the 
most discriminative phonetic N-grams for language 
recognition. A selection method proposed in our previous 
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work is adopted in this paper [12]. The approach can be 
decomposed into two stages: selection and construction. 
The selection is the process of picking out the most 
discriminative low-order N-grams using the maximum 
mutual information criterion. While the construction is 
designed to create high-order N-grams based on the 
selected low-order ones and the phone set. 

III.  TFC FEATURE EXTRACTION 

The TFC feature is initially proposed in the GMM-
based acoustic system for language recognition [9]. The 
extraction is performed as follows: several successive 
frames of basic features within a context width are 
extracted first to form a cepstrum matrix. Then a DCT is 
implemented on the cepstrum matrix in the temporal 
direction to remove the correlation. Finally, the elements 
in the upper-left triangular area are selected by scanning 
in a zigzag order. 

There are two benefits by extracting features in such a 
way. Firstly, the procedure of TFC feature extraction is 
equivalent to performing a two dimensional (2D) DCT on 
the spectrum-time matrix. The 2D DCT approach can be 
interpreted as a compression of the information by a DCT 
truncation. The truncation of the higher order vectors 
helps to reduce the variability caused by small scale 
acoustic events. Also, compared with the SDC feature, 
the elements can be selected with a greater variability for 
the TFC feature. Rather than simply appending the delta 
elements to the basic ones. 

In the GMM-based acoustic systems, the normalized 
variances (normalized by the maximum elements) of the 
cepstrum matrix after a temporal DCT is nearly a triangle, 
so we can perform a zigzag scan to select elements in the 
upper-left area to obtain the TFC feature. But for phone 
recognition, the optimal configuration will not be 
different from that of the GMM system. Usually, the 
context width is about 20 frames in the GMM system 
while it becomes 9 for phone recognition, which is much 
smaller. Then the variances pattern will become much 
narrower accordingly. To give a simple illustration, we 
plot the normalized variance of each element in the 
cepstrum matrix after a temporal DCT in Fig. 1. In this 
figure, the matrix is created using successive 9 frames of 
20-dimensional MFCC basic feature vector and the 
variance was computed on the data corpus used for 
training phone models. Fig. 1 shows that there are 
obviously other possible configurations besides the 
triangle adopted in the GMM system. Maybe a rectangle 
will be better for phone recognition. 

IV.  DISCRIMINATIVE TRAINING OF THE PHONE MODELS 

In acoustic language recognition, Maximum Mutual 
Information (MMI) has been proposed in the GMM 
system and great improvements can be obtained 
compared with the Maximum Likelihood (ML) training 
[13]. In phonotactic systems, the discriminative training 
has also been adopted in the language modeling such as 
using SVM [5]. Few researchers pay attention to the 

discriminative training of phone models, which will result 
in better phone sequences or lattices. 
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Figure 1.  The normalized variances of each element in the cepstrum 

matrix after a horizontal DCT. 

Discriminative training of acoustic models has been 
widely used in speech recognition to improve the 
recognition accuracy, such as MMI, Minimum 
Classification Error (MCE), Minimum Phone Error (MPE) 
[14] and fMPE [15]. The techniques are all introduced for 
discriminative training of HMM parameters with their 
corresponding objective function. In application, all 
techniques are performed on acoustic models except 
fMPE, which applies to the acoustic features. This makes 
possible things that are impossible with other 
discriminative training techniques which are done 
directly on acoustic models, such as building a new 
system using the new features. In this paper, we will 
adopt the fMPE technique for discriminative training of 
phone models used in phonotactic language recognition. 

fMPE is a previously introduced form of 
discriminative training using the same objective function 
as MPE, in which offsets to the features are obtained by 
training a projection from a high-dimension feature space 
based on posteriors of Gaussians [15]. fMPE is performed 
by transforming the acoustic feature with a kernel-like 
method. Let tx  be the original features and ty  be the 
transformed features. The formula is represented in the 
following: 

 = +t t ty x hM .  

where, M  is the transform matrix that needs to be 
estimated by optimizing the MPE objective function and 

th  is the expanded high dimensional feature derived 

based on posteriors of Gaussians. The calculation of th  
and M  can be found in [15]. 

For fMPE training, we first need to generate lattices by 
decoding the training data with a weak language model 
[16]. The lattices are then used to produce the MPE 
statistics. Also a GMM is needed to obtain Gaussian 
posteriors. In this paper, we use 1000 Gaussians to 
calculate the offset features within a context width of 5. 
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In our experiments, we often run 3-4 iterations to obtain 
an optimal result. 

V.  EXPERIMENTS 

A.  Experimental Setup 
The experiments are carried out on the NIST 2007 

Language Recognition Evaluation (LRE) test set under 
the closed condition. There are 7530 utterances in total, 
spanning the 3, 10 and 30 second conditions. The task is 
to recognize 14 target languages: Arabic, Bengali, 
Chinese, English, Farsi, German, Hindustani, Japanese, 
Korean, Russian, Spanish, Tamil, Thai and Vietnamese. 
The training data we use for VSM includes Callfriend, 
the evaluation and development data provided by NIST in 
the previous LRE. As the speech is relatively long, the 
voice activity detection is used to segment each utterance 
into segments with about 30 seconds of speech in length. 

The configuration of the Mandarin phone recognizer is 
given in section 2.1. For acoustic feature extraction, 
standard 12 MFCC coefficients with c0 are extracted 
every 10 ms over a 25 ms hamming window. These 
features are augmented by their first and second order 
deltas, resulting in a 39 dimension feature vector. Also, 
cepstral mean subtraction and variance normalization are 
both applied to remove the channel variability. 

For the phonotactic feature selection, the top 20% of 
the low-order N-grams are selected based on the mutual 
information value, which has been defined according to 
our previous work [12]. The SVM training requires pre-
computing all of the inner products between the data 
points. This approach is good for feature expansion to 
high dimension when the number of data points is not too 
large. 

B.  Experimental Results 
We demonstrate the effectiveness of our approaches 

under 3, 10 and 30 second conditions. Both detection cost 
function (DCF, Cavg*100) and equal error rate (EER) are 
utilized to summarize the results. 

TABLE I.  COMPARISON OF TFC WITH DIFFERENT RECTANGULAR 
AREA 

EER 
Cavg*100 30 second 10 second 3 second 

MFCC 39 2.95 
2.68 

9.25 
8.88 

20.73 
20.44 

TFC 13× 2+13 3.09 
2.83 

9.67 
9.38 

21.14 
20.53 

TFC 13× 3+13 2.60 
2.43 

8.61 
8.22 

20.10 
19.73 

TFC 13× 4+13 2.54 
2.45 

8.58 
8.34 

20.74 
20.10 

 
The first experiment is to find the optimal 

configuration of the reserved area. In order to give fair 
comparison, we fix the context width to 9. In this work, 
we adopt the rectangular shape according to Fig. 1 and 
test three TFC feature configurations where static cepstral 
coefficients are concatenated with the elements of a 
cepstrum matrix obtained by a temporal DCT. Settings 
referred to as TFC N×O defines a TFC feature where a 

temporal DCT of order O is performed on a context 
window of 9 frames successive N-dimension MFCCs (C0 
to CN-1). The language recognition results are given in 
Table I. From this table, we can see that if we fix the 
dimension to 39, the performance is a little worse than the 
MFCC feature. However, when we increase the order of 
the temporal DCT (the width of the rectangular), then we 
will get the best performance using 52 dimensions 
(39+13 static parameters). Both the EER and Cavg*100 
are lower than those of the MFCC feature under the three 
test conditions, with a relative decrease of 3%-7% in 
general. The improvements attained are comparable with 
those in the GMM system [9], which demonstrates that 
the proposed TFC feature is effective for the diagonal 
GMM classifiers employed in both the GMM and 
PPRVSM system. 

Our second experiment is to show the effectiveness of 
the fMPE approach. The language recognition results of 
the PPRVSM system using fMPE trained phone 
recognizer are summarized in Table II and III. The 
original MFCC feature and the propose TFC feature are 
both used for experiments. We can see that fMPE training 
will produce better language recognition results than the 
maximum likelihood training method for both MFCC and 
TFC under the three test conditions. Although only slight 
improvements are obtained, it indicates that fMPE 
training will produce better phone recognizers, which in 
turn leads to better language recognition results. However, 
the improvements attained using fMPE instead of ML 
(Table II) is not as significant as using TFC instead of 
MFCC (Table I). This is because the fMPE is 
implemented by just adding offsets to the original 
features to increase the discriminative ability of phone 
models, the amount of information will not increase. But 
the TFC feature is a novel one extracted in a completely 
different way from the MFCC feature, by which more 
information can be utilized for phone recognition. As 
more useful information are extracted to improve the 
phone recognition results, then the fMPE approach will 
not be as useful for the TFC feature as for the MFCC 
feature, which can be seen from Table II and III. 

TABLE II.  COMPARISON OF DIFFERENT TRAINING METHODS 
FOR PHONE MODELS (MFCC 39) 

EER 
Cavg*100 30 second 10 second 3 second 

ML 2.95 
2.68 

9.25 
8.88 

20.73 
20.44 

fMPE 2.69 
2.45 

8.92 
8.45 

20.36 
20.29 

 

TABLE III.  COMPARISON OF DIFFERENT TRAINING METHODS 
FOR PHONE MODELS (TFC 52) 

EER 
Cavg*100 30 second 10 second 3 second 

ML 2.60 
2.43 

8.61 
8.22 

20.10 
19.73 

fMPE 2.45 
2.35 

8.24 
8.07 

20.56 
19.77 

 
Finally, we compare the improved Mandarin phone 

recognizer with others, which are provided by the Faculty 
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of Information Technology of the Brno University of 
Technology [7]. They are all ANN/HMM hybrid systems 
and trained on the Czech, Hungarian and Russian 
separately. Table IV summarizes the language 
recognition results using different phone recognizers in 
the front-end. As expected, the results show that the 
original and improved Mandarin phone recognizers are 
all better than others under all test conditions. We also 
conduct experiments of fusing multiple phone 
recognizers. We adopt the “linear discriminant analysis 
(LDA) + Gaussian” method. First we combine the Czech, 
Hungarian and Russian, and then add Mandarin to the 
system for fusion. The improvements shown in Table IV 
indicate that the three Mandarin phone recognizers are 
complementary with others. It is because that the Czech, 
Hungarian and Russian phone recognizers use the 
ANN/HMM architecture while the Mandarin phone 
recognizer adopts the GMM/HMM architecture. We 
further improve the language recognition performance by 
fusing all systems together, as shown in the last row of 
Table IV. 

TABLE IV.  COMPARISON AND FUSION OF MULTIPLE PHONE 
RECOGNIZERS 

EER 
Cavg*100 30 second 10 second 3 second

Mandarin 
(MFCC-39) 

2.95 
2.68 

9.25 
8.88 

20.73 
20.44 

Mandarin 
(TFC-52) 

2.60 
2.43 

8.61 
8.22 

20.10 
19.73 

Mandarin-fMPE 
 (TFC-52-fMPE) 

2.45 
2.35 

8.24 
8.07 

20.56 
19.77 

Czech (CZ) 4.59 
4.25 

11.60 
11.08 

23.27 
23.64 

Hungarian (HU) 3.54 
3.32 

9.96 
10.00 

22.17 
22.18 

Russian (RU) 4.30 
4.04 

11.68 
10.78 

22.62 
21.73 

CZ, HU&RU 2.59 
2.29 

7.41 
7.63 

19.07 
17.09 

CZ, HU, RU& MFCC- 39 1.64 
1.45 

5.58 
5.45 

16.03 
15.81 

CZ, HU, RU&TFC-52 1.46 
1.37 

5.26 
5.21 

15.73 
15.16 

CZ, HU, RU&TFC-52-
fMPE 

1.41 
1.30 

5.27 
5.28 

14.96 
15.21 

All 1.34 
1.20 

5.24 
5.14 

15.22 
15.08 

 

VI.  CONCLUSIONS 

We have presented two methods to improve the 
performance of the PPRVSM language recognition 
system. First, we proposed the TFC features for phone 
recognition, an alternative to MFCC that, in our advice, 
has more perceptual grounds, wider flexibility, and give 
better results than MFCC. Then, we adopt fMPE to 
further improve the quality of the HMM based phone 
recognizers. Results show that the baseline system 
benefits from these techniques. Applied together, the 
system using Mandarin phone recognizer gets a 
significant improvement in EER, with relative 
improvements of 16.95% for the 30 second test condition, 
10.92% for the 10 second test condition and 3.04% for 

the 3 second test condition. Finally, the experiment for 
comparison and fusion of multiple phone recognizers 
indicates that the improved recognizer is comparable and 
complementary with other recognizers. The final EER of 
the fused PPRVSM system achieves 1.34%, 5.24% and 
15.22% for the 30 second, 10 second and 3 second test set 
respectively. 

As the results are obtained using the 52-dimension 
TFC feature, which is higher than MFCC. Then the 
computation will increase accordingly. For further 
research, a proper feature selection method should be 
developed to reduce the dimension to 39. And the 
selected 39-dimension feature has the same amount of 
information as the 52-dimension TFC feature for phone 
recognition. 

ACKNOWLEDGMENT 

This work is supported by National Natural Science 
Foundation of P. R. China and Microsoft Research Asia 
(60776800), National Natural Science Foundation of P. R. 
China and Research Grants Council (60931160443), 
National High Technology Research and Development 
Program of China (863 Program) (2008AA02Z414, 
2008AA040201). 

REFERENCES 
[1] P. A. Torres-Carrasquillo, E. Singer, M. A. Kohler, R. J. 

Greene, D. A. Reynolds, and J. R. Deller, “Approaches to 
language identification using Gaussian mixture models and 
shifted delta cepstral features,” In Proc. ICSLP’02, Denver, 
Colorado, USA, 2002, pp. 33–36. 

[2] W. M. Campbell, J. P. Campbell, D. A. Reynolds, E. 
Singer, and P. A. Torres-Carrasquillo, “Support vector 
machines for speaker and language recognition,” Computer, 
Speech and Language, vol. 20, pp. 210–229, 2006. 

[3] M. A. Zissman, “Comparison of four approaches to 
automatic language identification of telephone speech,” 
IEEE Trans. Speech and Audio Processing, vol. 4, pp. 31–
44, 1996. 

[4] J. Navratil, “Recent advances in phonotactic language 
recognition using binary decision trees,” In Proc.ICSLP’06, 
Pittsburgh, USA, 2006, pp. 421-424. 

[5] H. Li, B. Ma, and C. H. Lee, “A vector space modeeling 
approach to spoken language identification,” IEEE Trans. 
Audio, Speech and Language Processing, vol. 15, pp. 271–
284, 2007. 

[6] J. L. Gauvain, A. Messaoudi, and H. Schwenk, “Language 
recognition using phone lattices,” In Proc. ICSLP’04, Jeju 
Island, Korea, 2004, pp. 1283–1286. 

[7] P. Matejka, P. Shwarz, J. Cernocky, and P. Chytil, 
“Phonotactic language identification using high quality 
phoneme recognition,” In Proc. Interspeech’05, Lisbon, 
Portugal, 2005, pp. 2237-2240. 

[8] M. F. BenZeghiba, J. Gauvain, and L. Lamel, “Context-
dependent phone models and models adaptation for 
phonotactic language recognition,” In Proc. Interspeech’08, 
Brisbane, Australia, 2008, pp. 313-316. 

[9] W.-Q. Zhang, L. He, Y. Deng, J. Liu, and M. T. Johnson, 
“Time-frequency cepstral features and heteroscedastic 
linear discriminant analysis for language recognition”. 
IEEE Trans. on Audio, Speech, and Language Processing, 
in press. 

182 JOURNAL OF COMPUTERS, VOL. 6, NO. 2, FEBRUARY 2011

© 2011 ACADEMY PUBLISHER



[10] W. M. Campbell, J. P. Campbell, D. A. Reynolds, D. A. 
Jones, and T. R. Leek, “Phonetic speaker recognition with 
support vector machines,” Advances in Neural Information 
Processing System 16, Sebastian Thrun, Lawrence Saul, 
and Bernhard Scholkopf, Eds. MIT Press, Cambrige, MA, 
2004. 

[11] F. S. Richardson, and W. M. Campbell, “Language 
recognition with discriminative keyword selection,” In 
Proc. ICASSP’08, Las Vegas, Nevada, USA, 2008, pp. 
4145-4148. 

[12] Y. Deng, W. Q. Zhang, and J. Liu, “Language recognition 
based on discriminative vector space model,” Journal of 
Nanjing University of Science and Technology, vol. 33, pp. 
138-144, 2009. 

[13] L. Burget, P. Matejka, and J. Cernocky, “Discriminative 
training techniques for acoustic language identification,” In 
Proc. ICASSP’06, Toulouse, France, pp. 209-212, 2006. 

[14] D. Povey, “Discriminative training for large vocabulary 
speech recognition,” [Ph.D thesis]. Cambridge University, 
Cambridge, UK, 2004. 

[15] D. Povey, B. Kingsbury, L. Mangu, G. Saon, H. Soltau, 
and G. Zweig, “fMPE: Discriminatively trained features 
for speech recognition,” In Proc. ICASSP’05, Philadelphia, 
PA, USA, pp. 961-964, 2005. 

[16] R. Schluter, B. Muller, F. Wessel, and H. Ney, 
“Interdependence of language model and discriminative 
training,” In Proc. ASRU Workshop, Keystone, Colorado, 
USA, pp. 119–122, 1999. 

 
 
Yan Deng was born in Hunan, China, in 1982. She received the 
B.S. degree in communication engineering from National 
University of Defense Technology, Changsha, China, in 2005.  

She is currently a Ph.D. candidate in the Department of 
Electronic Engineering, Tsinghua University, Beijing, China. 
Her research focuses upon language recognition and speaker 
recognition. 
 
 

Wei-Qiang Zhang was born in Hebei, China, in 1979. He 
received the B.S. degree in applied physics from University of 
Petroleum, Shangdong, China, in 2002, the M.S. degree in 
communication and information systems from Beijing Institute 
of Technology, Beijing, China, in 2005, and the Ph.D. degree in 
information and communication engineering from Tsinghua 
University, Beijing, in 2009. 

He is currently a Research Assistant at the Department of 
Electronic Engineering, Tsinghua University. His research 
interests are in the area of speech and signal processing, 
primarily in parameter estimation, higher order statistics, time–
frequency analysis, speaker recognition, and language 
recognition. 
 
 
Yan-Min Qian was born in Zhejiang, China, in 1984. He 
received his B.S degree in the Department of Electronic and 
Information Engineering from Huazhong University of Science 
and Technology, China, in 2007. 

He is currently a Ph.D. candidate in the Department of 
Electronic Engineering, Tsinghua University, China. His 
research focuses upon fast decoding, robust speech recognition 
and large vocabulary speech recognition. 
 
 
Jia Liu was born in Fujian, China, in 1954. He received the B.S., 
M.S., and Ph.D. degrees in communication and electronic 
systems from Tsinghua University, Beijing, China, in 1983, 
1986, and 1990, respectively. 

He worked at the Remote Sensing Satellite Ground Station, 
Chinese Academy of Sciences, after the Ph.D. degree and 
worked as a Royal Society Visiting Scientist at the Cambridge 
University Engineering Department, Cambridge, U.K., from 
1992 to 1994. He is now a Professor in the Department of 
Electronic Engineering, Tsinghua University. His research 
fields include speech recognition, speaker recognition, language 
recognition, expressive speech synthesis, speech coding, and 
spoken language understanding. 
 

 

JOURNAL OF COMPUTERS, VOL. 6, NO. 2, FEBRUARY 2011 183

© 2011 ACADEMY PUBLISHER


