
Incremental Mining of Across-streams Sequential
Patterns in Multiple Data Streams

Shih-Yang Yang

Department of Media Art, Kang-Ning Junior College of Medical Care and Management, Taipei, Taiwan 114, R.O.C.
Email：shihyang@knjc.edu.tw

Ching-Ming Chao

Department of Computer Science and Information Management, Soochow University, Taipei, Taiwan 100, R.O.C.
Email：chao@csim.scu.edu.tw

Po-Zung Chen and Chu-Hao Sun

Department of Computer Science and Information Engineering Tamkang University, Tamsui, Taiwan 25137, R.O.C.
Email：pozung@mail.tku.edu.tw, 894190320@s94.tku.edu.tw

Abstract—Sequential pattern mining is the mining of data
sequences for frequent sequential patterns with time se-
quence, which has a wide application. Data streams are
streams of data that arrive at high speed. Due to the limita-
tion of memory capacity and the need of real-time mining,
the results of mining need to be updated in real time. Mul-
tiple data streams are the simultaneous arrival of a plurality
of data streams, for which a much larger amount of data
needs to be processed. Due to the inapplicability of tradi-
tional sequential pattern mining techniques, sequential pat-
tern mining in multiple data streams has become an impor-
tant research issue. Previous research can only handle a
single item at a time and hence is incapable of coping with
the changing environment of multiple data streams. In this
paper, therefore, we propose the IAspam algorithm that not
only can handle a set of items at a time but also can incre-
mentally mine across-streams sequential patterns. In the
process, stream data are converted into bitmap representa-
tion for mining. Experimental results show that the IAspam
algorithm is effective in execution time when processing
large amounts of stream data.

Index Terms— Multiple data streams, Data stream mining,
Sequential pattern mining, Incremental mining

I. INTRODUCTION

In the era of knowledge economy, the creation, com-
munication and application of knowledge are the driving
force behind the growth of industry. As a result, know-
ledge has become one of indispensable requirements to
success. Therefore, how to acquire valuable knowledge is
very important. Data mining is to discover useful know-
ledge from a great amount of data. Sequential pattern
mining is to find out sequential patterns that frequently
happen with time or specific sequence. For example, in
terms of web pages access, the access patterns of web
surfers can be explored to predict the next possibly ac-
cessed web page for advance access to expedite the web
access.

There are many user behaviors in our daily life that can
generate stream data such as the signal data of mobile

communication, stock transaction data, web pages brows-
ing records, etc. These stream data have the following
characteristics [1]: (1) unlimited data input, (2) limited
memory capacity, (3) one-time processing of input data,
(4) fast data arrival, (5) inability of system to halt data
inflow. As the characteristics of data streams are different
from those of traditional databases, database mining algo-
rithms are inapplicable in the data stream environment.
Data streams can be classified into single data stream and
multiple data streams. Sequential pattern mining in mul-
tiple data streams is an important research issue.

With the change of environment in multiple data
streams, data will not only grow larger and larger but also
get more and more complicated. Existing algorithms can
only handle a single item at a time and hence are incapa-
ble of coping with the changing environment of multiple
data streams. Besides, the sequential patterns mined may
cross different data streams but are regarded as existing in
a single data stream. To solve these problems, in this pa-
per we propose the IAspam (Incremental Across-streams
Sequential Pattern Mining) algorithm to cope with more
complicated multiple data streams environment. IAspam
not only can handle a set of items at a time but also can
incrementally mine across-streams sequential patterns.

In the process of mining sequential patterns in multiple
data streams, the efficiency in calculating the support and
searching for frequent sequential patterns must be taken
into account. To improve efficiency, we use a bitmap
representation, in which each item is converted into one
bit, to reduce execution time.

The remainder of this paper is organized as follows.
Section 2 reviews related work. Section 3 presents the
ASPAMDAS method, which covers data sampling and
the IAspam algorithm. Section 4 evaluates and compares
the performance of the IAspam algorithm. Section 5 con-
cludes this paper.

II. RELATED WORK

JOURNAL OF COMPUTERS, VOL. 6, NO. 3, MARCH 2011 449

© 2011 ACADEMY PUBLISHER
doi:10.4304/jcp.6.3.449-457

Due to the advent of data stream environment, tradi-
tional data mining algorithms are not applicable. Conse-
quently, many researches were conducted on modifying
algorithms to be applicable to data stream environment,
e.g. mining frequent itemsets, sequential patterns, max-
imal sequential patterns, and closed sequential patterns in
data stream environment. On the other hand, there are
also many researches on the types and characteristics of
stream data. The MSDD (Multi-Stream Dependency De-
tection) algorithm proposed by Oates and Cohen [2] aims
to find out the dependency rules among stream data in a
multiple data streams framework. Whereas, Golab and
Ozsu [3] explore the characteristics, models, and query
semantics of data stream as well as explain the applica-
tion of data stream in real life. After the presentation of
data stream framework, there are many researches on
mining sequential patterns in data stream environment.

In data stream environment, incremental mining retains
previous mining results. However, if not updated for a
long time, previous mining results might become incor-
rect, for which, many studies put forward decay mechan-
isms for data stream mining to prevent data from becom-
ing obsolete and save memory space. Chang and Lee [4]
proposed a decay mechanism for data stream environ-
ment, using (1) to decay the mining results not updated
for a long time to ensure correct mining results. The “d”
in the equation stands for “decay rate”, “b” for “decay-
base”, and “h” for “decay-base-life”.

 1)＜d≦ b 1,≧h 1,＞(b b = d -(1/h) (1)

The MILE algorithm proposed by Chen et al. [5] is
based on the prefix-projection concept of PrefixSpan. It is
used for handling multiple data streams in a time period
and mining sequential patterns in time sequence data
stream environment. It identifies the prefix subsequence
and suffix subsequence in stream data to reduce the gen-
eration of surplus candidate sequences and combine the
sequential patterns with the same prefix. The main pur-
pose is to avoid repeated data searching and speed up the
mining of new sequential patterns. However, as MILE is
a one-time fashioned algorithm that cannot retain pre-
vious mining results, it will take more time in re-mining.
IncSPAM mentioned in the previous subsection is a se-
quential pattern mining algorithm for single data stream
environment. It adopts a sliding window to sample stream
data and incrementally mines sequential patterns. As se-
quential patterns will be outdated if not updated for a
long time, it uses the weight to decay the support. This
concept is based on the decay mechanism proposed in
[6], which uses (1) to decay the support of sequential
patterns.

Later the SPEED (Sequential Patterns Efficient Extrac-
tion in Data Streams) algorithm was proposed by Raissi
et al. [7] for mining maximal sequential patterns in data
stream. It uses a new data structure to maintain frequent
sequential patterns and a fast pruning strategy to allow
users to locate at any time the maximal sequential pat-
terns in arbitrary time intervals. The SSM algorithm pro-
posed by Ezeife and Monwar [8] differs from those men-
tioned above. It uses a D-list structure to effectively store

and maintain the support of all items in data stream envi-
ronment. Meanwhile it continuously builds a PLWAP
tree to effectively mine in batches sequential patterns in
data stream, after which an FSP-tree is used to incremen-
tally maintain the mining results. Also, there are some
algorithms that use graphs for mining sequential patterns.
The GraSeq algorithm proposed by Li and Chen [9]
adopts a directed weighted graph structure to store the
synopsis of sequences and only needs to scan the data
stream once. It also makes use of subsequence matching
to reduce the handling time of longer sequences and
adopts the concept of valid node to improve the correct-
ness of mining results.

The behavior patterns of mobile user in mobile com-
munication environment are also a kind of sequential
patterns. Lee et al. [10] proposed the T-Map-Mine algo-
rithm for mining the behavior patterns of mobile user. It
mines mobile sequential patterns from mobile user's sig-
nal data within each time interval at each location. A mo-
bile sequential pattern includes a sequential pattern and a
moving path. T-Map-Mine uses T-Map-Tree to store se-
quential patterns and adds the moving locations and cus-
tomer data to T-Map-Tree one by one to increase the
support of locations and sequential patterns. The mining
results are the sequential patterns with frequent moving
paths found in T-Map-Tree. In the mining process, T-
Map-Mine must continuously search and insert nodes.
Besides, the tail node of each branch of T-Map-Tree is
connected to a RST (Requested Services Tree) to store
sequential patterns. Therefore, in processing large amount
of data, more time is needed for the construction and tra-
versal of the tree.

III. THE ASPAMDAS METHOD

In multiple date streams environment, data will grow
larger in size and become more complicated with the
change of real-world environment. However, existing
algorithms can only handle a single item at a time and are
hence incapable of coping with the changing environment
of multiple data streams. Based on commercial considera-
tion, mobile operators may need to find out the associa-
tion among streams produced at different locations to
provide their customers with better services. In this paper,
therefore, we propose the ASPAMDAS (Across-streams
Sequential Pattern Mining in Multiple Data Streams) me-
thod to solve these problems. ASPAMDAS mainly con-
sists of two stages: data sampling and incremental min-
ing. In the stage of data sampling, we adopt the sliding
window model to sample stream data. The size of the
sampled data will be the window size. In the stage of in-
cremental mining, we convert customer transaction data
in the sliding window into a bitmap to find across-streams
sequential patterns hereby to improve mining efficiency.
After that, new and old across-streams sequential patterns
are either updated or eliminated to produce precise min-
ing results. Figure 1 shows the overall process of the
ASPAMDAS method.

450 JOURNAL OF COMPUTERS, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

A. Data Sampling
In data stream environment, due to the increasing need

of real-time knowledge and the limitation of data streams,
the newer the data is, the more important it becomes. Ac-
cordingly, we use a sliding window to sample new stream
data and dump the old ones that have been processed. As
shown in Figure 2, the sliding window only maintains the
newest N pieces of transaction data. N stands for the win-
dow size. After the transaction data within the window is
processed, the window will move forward one time point
to sample the newest stream data to process.

Figure 1. Overall process of ASPAMDAS

Figure 2. Sliding window in data stream environment

Figure 3 shows an example of multiple data streams.
S1, S2, and S3 represent three data streams. Data from
three data streams will be received at each time point. Wi
stands for the ith window. Each data stream can be re-
garded as a location of customer transaction; whereas the

stream data at each time point can be viewed as a piece of
customer transaction data. These customer transaction
data ordered by their arrival sequence become the trans-
action sequence data. The window size is 3, which means
each time the sliding window samples transaction data of
the latest 3 time points. For example, the customer trans-
action data sampled at the first time point are C1:(a,c),
C3:(b,c,d), and C4:(b,c). The sliding window will move
in the direction of time. After the transaction data in W1
are processed, the sliding window will move forward one
time point to process the transaction data in W2. In this
way, stream data will be mined incrementally.

Figure 3. Example of multiple data streams

B. Incremental Mining
As described in previous subsection, a sliding window

is used to sample stream data for mining. But due to the
characteristics of data stream and the limitation of memo-
ry capacity, not all the mining results will be completely
stored. Therefore, the concept of incremental mining is
introduced to prevent the problem of imprecise mining
results. As new stream data are produced continuously,
the mining results will be continuously updated with the
mining of new stream data. Below are possible situations
of sequential pattern updating:
1. New data bring in new sequential patterns, which

are frequent sequential patterns.
2. After updated, frequent sequential patterns remain

frequent sequential patterns.
3. Frequent sequential patterns may become infre-

quent sequential patterns.
4. Infrequent sequential pattern may turn into frequent

sequential patterns.
Situation 1: A frequent sequential pattern mined in cur-

rent sliding window does not appear in previous mining
results. This sequential pattern is a new frequent sequen-
tial pattern.

Situation 2: A frequent sequential pattern mined in cur-
rent sliding window already exists in previous mining
results. After updating its support, this sequential pattern
remains a frequent sequential pattern.

Situation 3: A previously mined frequent sequential
pattern does not appear in later sliding windows. When

JOURNAL OF COMPUTERS, VOL. 6, NO. 3, MARCH 2011 451

© 2011 ACADEMY PUBLISHER

its support decays to less than the minimum support, this
sequential pattern will become an infrequent sequential
pattern.

Situation 4: An infrequent sequential pattern may turn
into a frequent sequential pattern in current sliding win-
dow if in previous mining results each of its subse-
quences is a frequent sequential pattern and does not have
any supersequence.

Definition 1 (support): Let α be a sequential pattern.
The support of α is the ratio of the number of transactions
containing α to the number of all transactions.

Definition 2 (frequent sequential pattern): Let α be a
sequential pattern. Then α is a frequent sequential pattern
if and only if the support of α is greater than or equal to
the minimum support.

Definition 3 (frequent across-streams sequential
pattern): Let α be a sequential pattern, β be a stream se-
quence, and the sequence of streams containing the sub-
sequences of α be a subsequence of β. Then α is a fre-
quent across-streams sequential pattern if and only if β is
a frequent stream sequence.

Figure 4 shows the IAspam algorithm whose parameter
definitions are as follows:
 SW' stands for the data in current sliding window

and SW stands for the data in previous sliding
windows.

 min_sup stands for minimum support.
 S stands for stream number, I for itemset, CID for

customer identification, and SD for stream data.
 k-item represents the item named k.
 CP stands for candidate sequence.
 CS stands for customer sequence table.
 supsw(p) stands for the support of sequential pattern

p in SW and supsw’(p) stands for the support of
sequential pattern p in SW.

 L-tree stands for lexicographical sequence tree.
 FASP represents frequent across-streams sequential

pattern and StP represents stream sequence.
 SupSD(p) represents the support of sequential

pattern p in SD.
 Sup(FASP) represents the support of sequential

pattern FASP in L-tree.

Algorithm: IAspam
Input: SW’, SW, min_sup, CID, S, I, k-item, CS, L-tree

Output: FASP, StP
1. For each transaction data of SW’ do

 store into CS as <S, I>;
2. For each transaction sequence of CS do

 convert into bit-vector and store into bitmap matrix;
3. For each 1-item do

 add 1-item and supSD(1-item) into L-tree;
 If supSD(1-item) ≧ min_sup then

 generate CP with I-step and S-step and map to bitmap matrix;
4. For each CP do

 If supsw’(CP) ≧ min_sup then
 If CP exists in L-tree then update supsw(CP);

 else add FASP and StP into L-tree;
5. For each FASP in L-tree do

 If sup(FASP) not updated then
 decay sup(FASP);

 If sup(FASP) < min_sup then delete FASP;
6. return;

Figure 4. IAspam algorithm

The IAspam algorithm consists of three parts. The first
part is the conversion into bitmap representation (Step 1-
2). Customer transaction data will be converted into a
bitmap matrix. The second part is the mining of across-
streams sequential patterns in new data (Step 3). I-step
and S-step are conducted on the 1-item to generate candi-
date sequences, which will be mapped to the bitmap ma-
trix. The third part is the integration of new and old se-
quential patterns (Step 4-5). The newly mined patterns
will be compared with previous patterns to update se-
quential patterns and decay the support of the sequential
patterns not updated. Below is the detailed explanation of
the steps of the IAspam algorithm.

Step 1: Store customer transaction data in current slid-
ing window into the customer sequence table, in which
data are ordered by customer identification. Data format
is <S, I>.

Step 2: Convert each transaction sequence of the cus-
tomer sequence table into a bitmap vector of the customer
bitmap matrix. Judge if the itemset at each time point
contains k-item. If yes, store bit 1 into the column of that
time point of k-item; otherwise, store bit 0.

Step 3: Count the support of each 1-item in each
stream and store each 1-item and its supports into L-tree.
Judge if every support of a 1-item is greater than or equal
to the minimum support. If yes, conduct I-step and S-step
to generate candidate sequences and map them to a bit-
map matrix. In the mapping process, the candidate item-
sets generated by I-step will be used to search for the ‘1’
bits that are at the same time point and in the same stream
but not in the same item, and count the support. Whereas,
the candidate sequences generated by S-step will be used
to search, in different items and at different time points,
for the ‘1’ bits whose prefix subsequences are at the same
time point and in the same stream and the ‘1’ bits whose
suffix subsequences are at the same time point and in the
same stream, and count the support.

Step 4: Judge if the support of each candidate sequence
in SW' is greater than or equal to the minimum support. If
yes, check to see if the frequent sequential pattern exists
in the lexicographical tree. If yes, update the support of
this sequential pattern. Otherwise, insert a frequent
across-streams sequential pattern (FASP) and a stream
sequence (StP) into the lexicographical tree.

Step 5: Judge if the support of each FASP in the lex-
icographical tree has been updated. If not, decay the sup-
port of FASP and judge if the decayed support is less than
the minimum support. If yes, delete FASP to get rid of
the FASP that has not been updated for a long time.

Step 6: Output FASP and StP.
The steps of sequence extension are to conduct I-step

before S-step. I-step is to insert a new item into an item-
set. For example, after going through I-step, <(a,b)> and
<(c)> will become <(a,b,c)>, which can be expressed as
<(a,b)> ◇I <(c)> = <(a,b,c)>. S-step is to append a new
itemset to an itemset. For instance, after undergoing S-
step, <(a,b)> and <(c)> will turn into <(a,b)(c)>, which
can be expressed as <(a,b)> ◇S <(c)> = <(a,b)(c)>. Ac-
cording to the Apriori property, the supersequences of an
infrequent sequence cannot be frequent. Consequently, it

452 JOURNAL OF COMPUTERS, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

is not necessary to conduct I-step and S-step on infre-
quent sequences and hence no surplus candidate se-
quences will be generated.

 Each leaf node of a lexicographical tree records a
frequent across-streams sequential pattern plus its support
and stream sequence. The purpose of constructing a lex-
icographical tree is to store frequent across-streams se-
quential patterns in order to insert new across-streams
sequential patterns or to combine or update new and old
across-streams sequential patterns. The nodes of a lexico-
graphical tree have a lexicographical order. The order of
constructing a lexicographical tree is from top to bottom
and from left to right. According to the characteristics of
lexicographical order, the possible lexicographical orders
of sequences are as below: [8]:
 If s’ = s ◇ p, then s ＜ s’; e.g. <(a,b)> ＜

<(a,b)(b)>.
 If s = α ◇I p, s’ = α ◇I p’, and p ＜ p’, then s ＜

s’; e.g. <(a,b,c)> ＜ <(a,b,d)>.
 If s = α ◇S p, s’ = α �S p’, and p ＜ p’, then s ＜

s’; e.g. <(a,b)(c)> ＜ <(a,b)(d)>.
 If s = α �I p and s’ = α �S p’, then s ＜ s’

regardless the order of p and p’; e.g. <(a,b,c)> ＜
<(a,b)(a)>.

After the construction of the lexicographical tree, the
across-streams sequential patterns in the tree will be up-
dated with the production of new mining results. The
across-streams sequential patterns that have not been up-
dated for a long time may become obsolete. In maintain-
ing the lexicographical tree, it is therefore necessary to
decay their supports to delete those sequential patterns
that have not been updated for a long time. The decay
equations are as follows:

 pdweight = , 10 ≤≤ d (2)

 uwp −= (3)

 supsup_ ×= weightw (4)

In (2), d stands for the decay rate that is defined by the
user to control the speed of decaying sequential patterns.
In (3), p is the decay period of a sequential pattern, w is
the number of times of sliding window movement, and u
is the number of times of updating a sequential pattern in
the lexicographical tree. The decay period of a sequential
pattern is obtained by deducting the number of times of
updating the sequential pattern from the number of times
of sliding window movement. The longer a sequential
pattern has not been updated, the bigger its p value be-
comes, which means its weight will become lower accor-
dingly. In (4), w_sup stands for the weighted support a
sequential pattern, which is obtained by multiplying the
support of the sequential pattern by its weight. An across-
streams sequential pattern will be deleted when its
weighted support is less than the minimum support.

We will use an example to illustrate the IAspam algo-
rithm. Table I is the CID-ordered customer sequence ta-
ble of the data sampled for the first execution of IAspam

(W1). In a customer sequence table, the transaction data
of each customer transaction sequence are sequenced
according to the order of their arrival time. Because the
size of the sliding window is set to 3, customer transac-
tion data at 3 time points in each data stream are sampled.
Each customer transaction data is represented as <Si, α>,
in which Si is a stream number and α is an itemset. <S1,
(a,c)> means that itemset (a,c) comes from stream S1.
The empty sets in the first and third columns whose CID
is 2 mean that there is no transaction at these 2 time
points for customer #2.

TABLE I.
 CUSTOMER SEQUENCE TABLE OF W1

CID Customer transaction sequence

1 <S1, (a,c)> <S3, (b,d)> <S2, (c,d)>

2 <∅ > <S2, (c,d)> <∅ >

3 <S2, (b,c,d)> <S1, (a,c,d)> <S3, (b,c,d)>

4 <S3, (b,c)> <∅ > <S1, (a,b,c)>

After the data of W1 is mined, the sliding window will
move forward one time point to sample data for the
second execution of IAspam (W2). As shown in Table II,
three pieces of new customer transaction data, <S2,
(a,c,d)>, <S1, (c,d)>, and <S3, (a,d)>, are appended re-
spectively to the customer transaction sequences whose
CIDs are 1, 3 and 4. These three pieces of customer
transaction data are the new stream data in W2. The cus-
tomer transaction sequence whose CID is 2 does not have
any new transaction data, which means this customer did
not engage in any transaction at that time point.

TABLE II.
CUSTOMER SEQUENCE TABLE OF W2

CID Customer transaction sequence

1 <S3, (b,d)> <S2, (c,d)> <S2, (a,c,d)>

2 <S2, (c,d)> <∅ > <∅ >

3 <S1, (a,c,d)> <S3, (b,c,d)> <S1, (c,d)>

4 <∅ > <S1, (a,b,c)> <S3, (a,d)>

Figure 5 is the bitmap matrix converted from the cus-
tomer sequence table of W1, in which a, b, c, and d
represent items and CID=1 represents customer #1. For
each customer, there is a bit list for each item and these
bit lists are converted from the transaction sequence of
this customer. The bit list (1,0,0) for item a means that
item a appears in the transaction data at the first time

JOURNAL OF COMPUTERS, VOL. 6, NO. 3, MARCH 2011 453

© 2011 ACADEMY PUBLISHER

point and does not appear in the transaction data at the
second and third time points. The stream sequence
<S1,S3,S2> means that the transaction data at the first,
second, and third time points come respectively from
streams S1, S3, and S2.

Figure 5. Bitmap matrix of W1

After the customer sequence table is converted into a
bitmap matrix, the support of each 1-item will be counted
to generate candidate sequences. Figure 6 shows the sup-
port of each 1-item in each stream. Suppose the minimum
support is set to 2. The supports of c-item in S1, S2, and
S3 are 3, 3, and 2 respectively, all of which are greater
than or equal to the minimum support. Therefore, c-item
is a frequent item in each of these three streams.

Figure 6. Support of 1-item

Based on the 1-item in Figure 6, sequence extension
will go through I-step and S-step to generate candidate
sequences, which will be mapped to the bitmap matrix.
As shown in Figure 7, different extension steps use dif-
ferent ways of mapping, which are described below.
 I-step: The candidate itemset <(a,c)> extended

using I-step will be mapped to the bitmap matrix
and its support will be counted. As shown in Figure
8, a-item and c-item have bit 1 (the 1 in bold type)
at the same time point for customers #1, #3, and #4
and all of them appear in S1. Therefore the support
of <(a,c)> is 3. In Figure 6, as a-item is infrequent
in S2 and S3, it will remain infrequent after I-step.
Accordingly, it needs not to be processed.

 S-step: After going through S-step, <(a,c)> and
<(b,d)> will become <(a,c)(b,d)>, which will be
mapped to the bitmap matrix. Due to the time
sequence of a sequential pattern, <(b,d)> must be
mapped to a time point after that of <(a,c)>. As

shown in Figure 7, bit 1 (the underlined 1) appears
at the first time point of a-item and c-item as well
as the second time point of b-item and d-item for
customer #1. Also, bit 1 (the underlined 1) appears
at the second time point of a-item and c-item as
well as the third time point of b-item and d-item for
customer #3. In the meantime, <(a,c)> and <(b,d)>
show up respectively in S1 and S3. Therefore, the
support of <(a,c)(b,d)> is 2 and the stream
sequence is <(S1)(S3)>.

Figure 7. Mapping candidate sequences to bitmap matrix

Suppose the minimum support is set to 2. Figure 8 and
Table III show separately the lexicographical tree and
result of the first execution of IAspam. The across-
streams sequential patterns in the lexicographical tree
include <(a)(b)>, <(a)(d)>, <(c)(b)>, <(c)(d)>, and
<(a,c)(b,d)>. The stream sequence of all of these across-
streams sequential patterns is <(S1)(S3)>, which means
that their moving path goes from stream S1 to stream S3.
As <(a,c)(b,d)> is the supersequence of all the other
across-streams sequential patterns, it will be the only fre-
quent across-streams sequential pattern.

 ∅

Figure 8. Lexicographical tree of the first execution

TABLE III.
 RESULT OF THE FIRST EXECUTION

CID=1
<S1,S3

,S2>

CID=2
<∅ ,S

2,∅ >

CID=3
<S2,S1

,S3>

CID=4
<S3,
∅ ,S1

>

a b c d

1 0 0

0 0 0

0 1 0

0 0 1

0 1 0

0 0 0

1 0 1

1 0 1

1 0 1

0 1 0

1 1 1

1 0 1

0 1 1

0 1 0

1 1 1

0 0 0

CID=1
<S1,S3,S

2>

CID=2
<∅ ,S2,

∅ >

CID=3
<S2,S1,S

3>

CID=4
<S3,∅ ,

S1>

a b c d

1 0 0

0 0 0

0 1 0

0 0 1

0 1 0

0 0 0

1 0 1

1 0 1

1 0 1

0 1 0

1 1 1

1 0 1

0 1 1

0 1 0

1 1 1

0 0 0

<a> <c> <d>
[S1:3,S2:0,S3:0] [S1:1,S2:1,S3:3] [S1:3,S2:3,S3:2] [S1:1,S2:3,S3:2]

454 JOURNAL OF COMPUTERS, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

Frequent across-streams sequen-
tial pattern Stream sequence

<(a,c)(b,d)> <(S1)(S3)>

Figure 9 and Table IV show separately the lexico-
graphical tree and result of the second execution of IAs-
pam. In Figure 9, the support within a red square is an
updated support, which indicates the sequential pattern
remains frequent in W2 and its support is updated from 3
to 2. The support within a red circle is a weighted sup-
port, which is decayed from 2 to 1.8 under the condition
that the decay rate is set to 0.9. Accordingly, the sequen-
tial pattern will be deleted because its support is less than
the minimum support, and the link will be represented as
a dotted line.

 ∅

 Figure 9. Lexicographical tree of the second execution

TABLE IV.
 RESULT OF THE SECOND EXECUTION

Frequent across-streams
sequential pattern

Stream sequence

<(a,c)(d)> <(S1)(S3)>

IV. PERFORMANCE EVALUATION

A. Experimental Environment and Data
Table V shows the experimental environment. In Net-

Beans IDE 6.1 compilation environment, Java JDK 6.0
programming language is used to write programs. A Pen-
tium D 2.8 GHz processor and 1 GB memory are used.
Transaction data generated by the synthetic data genera-
tor developed by IBM Almaden Research Center are used
as experimental data. Table VI shows the parameters of
experimental data. For instance, the expression S6T100I3
stands for a multiple data streams environment in which
there are 6 data streams, 100 time points, and averagely 3
items per transaction.

TABLE V.
EXPERIMENTAL ENVIRONMENT

Equipment Specification

Processor Pentium D 2.8 GHz

Memory 1 GB

Hard Disk 160 GB

Operating System WINDOWS XP

Programming Language Java JDK 6.0

TABLE VI.
 PARAMETERS OF EXPERIMENTAL DATA

Parameter Parameter Description

S Number of data streams

T Number of time points

I Average number of items per transaction

C Number of customers

D Number of item varieties

B. Performance Comparison
Both IAspam and T-Map-Mine are used for mining se-

quential patterns of moving paths in data stream envi-
ronment. IAspam uses a bitmap representation for mining
frequent across-streams sequential patterns; whereas T-
Map-Mine uses a T-Map-Tree structure for mining beha-
vior sequence patterns. In the mining process, T-Map-
Mine needs to repeatedly search T-Map-Tree to insert
new nodes and increase the support, and hence may take
a great amount of time in constructing and maintaining T-
Map-Tree. On the contrary, IAspam maps candidate se-
quences to a bitmap matrix based on the stream, which
can save a lot of execution time while searching for
across-streams sequential patterns. We compare the ex-
ecution and memory usage of these two algorithms.

(1) Execution Time
Figure 10 shows the comparison of execution time be-

tween IAspam and T-Map-Mine in the S5T100C100I1
multiple data streams environment. The vertical axis is
execution time in second and the horizontal axis is the
minimum support in percentage. To be able to compare
with T-Map-Mine, the average number of items per
transaction is set to 1. The execution time of IAspam and
T-Map-Mine are compared under various minimum sup-
ports. As seen in Figure 10, the execution time of IAspam
is less than that of T-Map-Mine under various minimum
supports. This is because T-Map-Mine must repeatedly
search T-Map-Tree and RST for each customer data as
well as insert new nodes and increase the support, which
will take more time in the mining process.

0

2

4

6

8

0.01 0.02 0.03 0.04 0.05 0.06

min_sup (%)

T
im

e
(s

)

IAspam

T-Map-Mine

JOURNAL OF COMPUTERS, VOL. 6, NO. 3, MARCH 2011 455

© 2011 ACADEMY PUBLISHER

Figure 10. Comparison of execution time

(2) Memory Usage
Figure 11 shows the comparison of memory usage be-

tween IAspam and T-Map-Mine in the same environment
as that for the comparison of execution time. The vertical
axis is the maximum usage of memory in kilobyte (KB).
As seen in Figure 11, the memory usage of IAspam is
about the same as that of T-Map-Mine under various min-
imum supports. The memory usage of IAspam will be
affected by the number of item varieties and the number
of customers. The branching of T-Map-Tree of T-Map-
Mine will depend on the complexity of customer transac-
tion data. The more chaotic the data is, the bigger the T-
Map-Tree becomes.

0

200

400

600

800

1000

1200

0.01 0.02 0.03 0.04 0.05 0.06

min_sup (%)

M
em

or
y

us
ag

e
(K

B
)

IAspam

T-Map-Mine

Figure 11. Comparison of memory usage

V. CONCLUSION

The primary difference between the IAspam algorithm
proposed in this paper and existing algorithms for mining
sequential patterns in multiple data streams is that IAs-
pam is for mining across-streams sequential patterns,
which are a new type of sequential patterns. To avoid
inaccurate mining results caused by the re-mining of data,
IAspam uses a sliding window to sample stream data and
incrementally mines across-streams sequential patterns to
maintain the newest mining results. To solve the ineffi-
ciency problem caused by mining a massive amount of
data, IAspam uses a bitmap representation to search for
across-streams sequential patterns and count their sup-
ports. As sequential patterns may cross different streams,
IAspam searches for sequential patterns based on the
stream, which enables the identification of not only
across-streams sequential patterns but also stream se-
quences. Experimental results show that the IAspam al-
gorithm is effective in execution time when processing
large amounts of stream data.

ACKNOWLEDGMENT

The authors would like to express their appreciation
for the financial support from the National Science Coun-

cil of Republic of China under Project No. NSC 98-2221-
E-031-003.

REFERENCES

[1] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Wi-
dom. Models and Issues in Data Stream Systems. The
21st ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems. 2002 June 1-16; Madi-
son, Wisconsin, USA.

[2] T. Oates and P. R. Cohen. Searching for Structure in
Multiple Streams of Data. The 13th International Confe-
rence on Machine Learning. 1996 July 346-354; Bari, It-
aly.

[3] L. Golab and M. T. Ozsu. Issues in Data Stream Man-
agement. ACM SIGMOD Record. 2003 June Volume 32
Issue 2: 5-14.

[4] J. Chang and W. Lee. Decaying Obsolete Information in
Finding Recent Frequent Itemsets over Data Stream.
IEICE Transaction on Information and Systems, June,
2004; No. 6, Vol. E87-D.

[5] G. Chen, X. Wu, and X. Zhu. Sequential Pattern Mining
in Multiple Streams. The 5th IEEE International Confe-
rence on Data Mining, Washington. 2005 Nobember 27-
30; USA.

[6] J. H. Chang and W. S. Lee. Finding Recent Frequent
Itemsets Adaptively over Online Data Streams. The 9th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining; 2003 August 487-492;
Washington, USA.

[7] C. Raissi, P. Poncelet, and M. Teisseire. SPEED: Mining
Maximal Sequential Patterns over Data Streams. The 3rd
IEEE International Conference on Intelligent Systems.
2006 September 546-552; London, UK.

[8] C. I. Ezeife and M. Monwar. SSM：A Frequent Sequen-
tial Data Stream Patterns Miner. The IEEE Symposium
on Computational Intelligence and Data Mining, Honolu-
lu. 2007 March 120-126; USA.

[9] H. Li and H. Chen. GraSeq: A Novel Approximate Min-
ing Approach of Sequential Patterns over Data Stream.
The 3rd International conference on Advanced Data
Mining and Applications. 2007 May 401-411; Harbin,
China.

[10] S.-C. Lee, E. Lee, W. Choi, and U. M. Kim. Extracting
Temporal Behavior Patterns of Mobile User. The 4th In-
ternational Conference on Networked Computing and
Advanced Information Management. 2008 September
455-462; Gyeongju, Korea.

Shih-Yang Yang received his Ph.D. degree in Computer
Science and Information Engineering from Tamkang Universi-
ty, Taiwan, in January 2008. Since January 2008, he is an Asso-
ciate Professor with the Department of Media Art at Kang-
Ning Junior College of Medical Care and Management (Taipei,
Taiwan). His research interests include parallel & distributed
systems, web technology, and multimedia.

Ching-Ming Chao received his B.S. degree in Computer

Science from Soochow University, Taipei, Taiwan in 1982 and
his Ph.D. degree in Computer Science from The University of
Iowa, Iowa City, Iowa, U.S.A. in 1990. From 1990 to 1992, he
was an assistant professor in the Department of Computing
Sciences at the University of Scranton, Scranton, Pennsylvania,
U.S.A. He joined the faculty of the Department of Computer
and Information Science at Soochow University in 1992 as an

456 JOURNAL OF COMPUTERS, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

associate professor. From 1992 to 1996, he served as the de-
partment chair. Since 2003, he has been a professor in Depart-
ment of Computer Science and Information Management at
Soochow University. During the past few years, he has pub-
lished more than 90 refereed journal and conference papers. His
research interests include data mining, data warehousing, data-
base, and web technology.

Po-Zung Chen received his Ph.D. degree in Computer

Science from the University of Iowa in December 1989. From
November 1989 to May 1990, he was a visiting Assistant Pro-
fessor at Michigan Technological University (Houghton, Mich-
igan). Since August 1990, he is an Associate Professor with the

Department of Computer Science and Information Engineering
at Tamkang University (Taipei, Taiwan). His research interests
include object-oriented distributed programming, parallel &
distributed systems, and simulation & modeling.

Chu-Hao Sun is currently a candidate of Ph.D. student in
department of Computer Science and Information Engineering
in Tamkang University (Taipei, Taiwan). He received his B.E.
and M.E. degree from the same university in 1995 and 1998.
His research interests include database management system,
parallel processing, web technology, and data mining.

JOURNAL OF COMPUTERS, VOL. 6, NO. 3, MARCH 2011 457

© 2011 ACADEMY PUBLISHER

