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Abstract—Sequential pattern mining is the mining of data 
sequences for frequent sequential patterns with time se-
quence, which has a wide application. Data streams are 
streams of data that arrive at high speed. Due to the limita-
tion of memory capacity and the need of real-time mining, 
the results of mining need to be updated in real time. Mul-
tiple data streams are the simultaneous arrival of a plurality 
of data streams, for which a much larger amount of data 
needs to be processed. Due to the inapplicability of tradi-
tional sequential pattern mining techniques, sequential pat-
tern mining in multiple data streams has become an impor-
tant research issue. Previous research can only handle a 
single item at a time and hence is incapable of coping with 
the changing environment of multiple data streams. In this 
paper, therefore, we propose the IAspam algorithm that not 
only can handle a set of items at a time but also can incre-
mentally mine across-streams sequential patterns. In the 
process, stream data are converted into bitmap representa-
tion for mining. Experimental results show that the IAspam 
algorithm is effective in execution time when processing 
large amounts of stream data. 
 
Index Terms— Multiple data streams, Data stream mining, 
Sequential pattern mining, Incremental mining 
 

I.  INTRODUCTION 

In the era of knowledge economy, the creation, com-
munication and application of knowledge are the driving 
force behind the growth of industry. As a result, know-
ledge has become one of indispensable requirements to 
success. Therefore, how to acquire valuable knowledge is 
very important. Data mining is to discover useful know-
ledge from a great amount of data. Sequential pattern 
mining is to find out sequential patterns that frequently 
happen with time or specific sequence. For example, in 
terms of web pages access, the access patterns of web 
surfers can be explored to predict the next possibly ac-
cessed web page for advance access to expedite the web 
access. 

There are many user behaviors in our daily life that can 
generate stream data such as the signal data of mobile 

communication, stock transaction data, web pages brows-
ing records, etc. These stream data have the following 
characteristics [1]: (1) unlimited data input, (2) limited 
memory capacity, (3) one-time processing of input data, 
(4) fast data arrival, (5) inability of system to halt data 
inflow. As the characteristics of data streams are different 
from those of traditional databases, database mining algo-
rithms are inapplicable in the data stream environment. 
Data streams can be classified into single data stream and 
multiple data streams. Sequential pattern mining in mul-
tiple data streams is an important research issue. 

With the change of environment in multiple data 
streams, data will not only grow larger and larger but also 
get more and more complicated. Existing algorithms can 
only handle a single item at a time and hence are incapa-
ble of coping with the changing environment of multiple 
data streams. Besides, the sequential patterns mined may 
cross different data streams but are regarded as existing in 
a single data stream. To solve these problems, in this pa-
per we propose the IAspam (Incremental Across-streams 
Sequential Pattern Mining) algorithm to cope with more 
complicated multiple data streams environment. IAspam 
not only can handle a set of items at a time but also can 
incrementally mine across-streams sequential patterns. 

In the process of mining sequential patterns in multiple 
data streams, the efficiency in calculating the support and 
searching for frequent sequential patterns must be taken 
into account. To improve efficiency, we use a bitmap 
representation, in which each item is converted into one 
bit, to reduce execution time. 

The remainder of this paper is organized as follows. 
Section 2 reviews related work. Section 3 presents the 
ASPAMDAS method, which covers data sampling and 
the IAspam algorithm. Section 4 evaluates and compares 
the performance of the IAspam algorithm. Section 5 con-
cludes this paper.  

II. RELATED WORK 
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Due to the advent of data stream environment, tradi-
tional data mining algorithms are not applicable. Conse-
quently, many researches were conducted on modifying 
algorithms to be applicable to data stream environment, 
e.g. mining frequent itemsets, sequential patterns, max-
imal sequential patterns, and closed sequential patterns in 
data stream environment. On the other hand, there are 
also many researches on the types and characteristics of 
stream data. The MSDD (Multi-Stream Dependency De-
tection) algorithm proposed by Oates and Cohen [2] aims 
to find out the dependency rules among stream data in a 
multiple data streams framework. Whereas, Golab and 
Ozsu [3] explore the characteristics, models, and query 
semantics of data stream as well as explain the applica-
tion of data stream in real life. After the presentation of 
data stream framework, there are many researches on 
mining sequential patterns in data stream environment. 

In data stream environment, incremental mining retains 
previous mining results. However, if not updated for a 
long time, previous mining results might become incor-
rect, for which, many studies put forward decay mechan-
isms for data stream mining to prevent data from becom-
ing obsolete and save memory space. Chang and Lee [4] 
proposed a decay mechanism for data stream environ-
ment, using (1) to decay the mining results not updated 
for a long time to ensure correct mining results. The “d” 
in the equation stands for “decay rate”, “b” for “decay-
base”, and “h” for “decay-base-life”. 

 1)＜d≦ b 1,≧h 1,＞(b b = d  -(1/h)  (1) 

The MILE algorithm proposed by Chen et al. [5] is 
based on the prefix-projection concept of PrefixSpan. It is 
used for handling multiple data streams in a time period 
and mining sequential patterns in time sequence data 
stream environment. It identifies the prefix subsequence 
and suffix subsequence in stream data to reduce the gen-
eration of surplus candidate sequences and combine the 
sequential patterns with the same prefix. The main pur-
pose is to avoid repeated data searching and speed up the 
mining of new sequential patterns. However, as MILE is 
a one-time fashioned algorithm that cannot retain pre-
vious mining results, it will take more time in re-mining. 
IncSPAM mentioned in the previous subsection is a se-
quential pattern mining algorithm for single data stream 
environment. It adopts a sliding window to sample stream 
data and incrementally mines sequential patterns. As se-
quential patterns will be outdated if not updated for a 
long time, it uses the weight to decay the support. This 
concept is based on the decay mechanism proposed in 
[6], which uses (1) to decay the support of sequential 
patterns. 

Later the SPEED (Sequential Patterns Efficient Extrac-
tion in Data Streams) algorithm was proposed by Raissi 
et al. [7] for mining maximal sequential patterns in data 
stream. It uses a new data structure to maintain frequent 
sequential patterns and a fast pruning strategy to allow 
users to locate at any time the maximal sequential pat-
terns in arbitrary time intervals. The SSM algorithm pro-
posed by Ezeife and Monwar [8] differs from those men-
tioned above. It uses a D-list structure to effectively store 

and maintain the support of all items in data stream envi-
ronment. Meanwhile it continuously builds a PLWAP 
tree to effectively mine in batches sequential patterns in 
data stream, after which an FSP-tree is used to incremen-
tally maintain the mining results. Also, there are some 
algorithms that use graphs for mining sequential patterns. 
The GraSeq algorithm proposed by Li and Chen [9] 
adopts a directed weighted graph structure to store the 
synopsis of sequences and only needs to scan the data 
stream once. It also makes use of subsequence matching 
to reduce the handling time of longer sequences and 
adopts the concept of valid node to improve the correct-
ness of mining results. 

The behavior patterns of mobile user in mobile com-
munication environment are also a kind of sequential 
patterns. Lee et al. [10] proposed the T-Map-Mine algo-
rithm for mining the behavior patterns of mobile user. It 
mines mobile sequential patterns from mobile user's sig-
nal data within each time interval at each location. A mo-
bile sequential pattern includes a sequential pattern and a 
moving path. T-Map-Mine uses T-Map-Tree to store se-
quential patterns and adds the moving locations and cus-
tomer data to T-Map-Tree one by one to increase the 
support of locations and sequential patterns. The mining 
results are the sequential patterns with frequent moving 
paths found in T-Map-Tree. In the mining process, T-
Map-Mine must continuously search and insert nodes. 
Besides, the tail node of each branch of T-Map-Tree is 
connected to a RST (Requested Services Tree) to store 
sequential patterns. Therefore, in processing large amount 
of data, more time is needed for the construction and tra-
versal of the tree. 

III. THE ASPAMDAS METHOD 

In multiple date streams environment, data will grow 
larger in size and become more complicated with the 
change of real-world environment. However, existing 
algorithms can only handle a single item at a time and are 
hence incapable of coping with the changing environment 
of multiple data streams. Based on commercial considera-
tion, mobile operators may need to find out the associa-
tion among streams produced at different locations to 
provide their customers with better services. In this paper, 
therefore, we propose the ASPAMDAS (Across-streams 
Sequential Pattern Mining in Multiple Data Streams) me-
thod to solve these problems. ASPAMDAS mainly con-
sists of two stages: data sampling and incremental min-
ing.  In the stage of data sampling, we adopt the sliding 
window model to sample stream data. The size of the 
sampled data will be the window size. In the stage of in-
cremental mining, we convert customer transaction data 
in the sliding window into a bitmap to find across-streams 
sequential patterns hereby to improve mining efficiency. 
After that, new and old across-streams sequential patterns 
are either updated or eliminated to produce precise min-
ing results. Figure 1 shows the overall process of the 
ASPAMDAS method. 
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A.  Data Sampling 
In data stream environment, due to the increasing need 

of real-time knowledge and the limitation of data streams, 
the newer the data is, the more important it becomes. Ac-
cordingly, we use a sliding window to sample new stream 
data and dump the old ones that have been processed. As 
shown in Figure 2, the sliding window only maintains the 
newest N pieces of transaction data. N stands for the win-
dow size. After the transaction data within the window is 
processed, the window will move forward one time point 
to sample the newest stream data to process. 

 

Figure 1.  Overall process of ASPAMDAS 

Figure 2.  Sliding window in data stream environment 

Figure 3 shows an example of multiple data streams. 
S1, S2, and S3 represent three data streams. Data from 
three data streams will be received at each time point. Wi 
stands for the ith window. Each data stream can be re-
garded as a location of customer transaction; whereas the 

stream data at each time point can be viewed as a piece of 
customer transaction data. These customer transaction 
data ordered by their arrival sequence become the trans-
action sequence data. The window size is 3, which means 
each time the sliding window samples transaction data of 
the latest 3 time points. For example, the customer trans-
action data sampled at the first time point are C1:(a,c), 
C3:(b,c,d), and C4:(b,c). The sliding window will move 
in the direction of time. After the transaction data in W1 
are processed, the sliding window will move forward one 
time point to process the transaction data in W2. In this 
way, stream data will be mined incrementally. 

 

Figure 3.  Example of multiple data streams 

B.  Incremental Mining 
As described in previous subsection, a sliding window 

is used to sample stream data for mining. But due to the 
characteristics of data stream and the limitation of memo-
ry capacity, not all the mining results will be completely 
stored. Therefore, the concept of incremental mining is 
introduced to prevent the problem of imprecise mining 
results. As new stream data are produced continuously, 
the mining results will be continuously updated with the 
mining of new stream data. Below are possible situations 
of sequential pattern updating: 
1. New data bring in new sequential patterns, which 

are frequent sequential patterns. 
2. After updated, frequent sequential patterns remain 

frequent sequential patterns. 
3. Frequent sequential patterns may become infre-

quent sequential patterns. 
4. Infrequent sequential pattern may turn into frequent 

sequential patterns. 
Situation 1: A frequent sequential pattern mined in cur-

rent sliding window does not appear in previous mining 
results. This sequential pattern is a new frequent sequen-
tial pattern. 

Situation 2: A frequent sequential pattern mined in cur-
rent sliding window already exists in previous mining 
results. After updating its support, this sequential pattern 
remains a frequent sequential pattern. 

Situation 3: A previously mined frequent sequential 
pattern does not appear in later sliding windows. When 
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its support decays to less than the minimum support, this 
sequential pattern will become an infrequent sequential 
pattern. 

Situation 4: An infrequent sequential pattern may turn 
into a frequent sequential pattern in current sliding win-
dow if in previous mining results each of its subse-
quences is a frequent sequential pattern and does not have 
any supersequence. 

Definition 1 (support): Let α be a sequential pattern. 
The support of α is the ratio of the number of transactions 
containing α to the number of all transactions. 

Definition 2 (frequent sequential pattern): Let α be a 
sequential pattern. Then α is a frequent sequential pattern 
if and only if the support of α is greater than or equal to 
the minimum support. 

Definition 3 (frequent across-streams sequential 
pattern): Let α be a sequential pattern, β be a stream se-
quence, and the sequence of streams containing the sub-
sequences of α be a subsequence of β. Then α is a fre-
quent across-streams sequential pattern if and only if β is 
a frequent stream sequence. 

Figure 4 shows the IAspam algorithm whose parameter 
definitions are as follows: 
 SW' stands for the data in current sliding window 

and SW stands for the data in previous sliding 
windows. 

 min_sup stands for minimum support. 
 S stands for stream number, I for itemset, CID for 

customer identification, and SD for stream data. 
 k-item represents the item named k. 
 CP stands for candidate sequence. 
 CS stands for customer sequence table. 
 supsw(p) stands for the support of sequential pattern 

p in SW and supsw’(p) stands for the support of 
sequential pattern p in SW. 

 L-tree stands for lexicographical sequence tree. 
 FASP represents frequent across-streams sequential 

pattern and StP represents stream sequence. 
 SupSD(p) represents the support of sequential 

pattern p in SD. 
 Sup(FASP) represents the support of sequential 

pattern FASP in L-tree. 
 

Algorithm: IAspam 
Input: SW’, SW, min_sup, CID, S, I, k-item, CS, L-tree 

Output: FASP, StP 
1. For each transaction data of SW’ do 

     store into CS as <S, I>; 
2. For each transaction sequence of CS do 

     convert into bit-vector and store into bitmap matrix; 
3. For each 1-item do 

 add 1-item and supSD(1-item) into L-tree; 
 If supSD(1-item) ≧ min_sup then 

 generate CP with I-step and S-step and map to bitmap matrix; 
4. For each CP do 

     If supsw’(CP) ≧ min_sup then 
       If CP exists in L-tree then update supsw(CP); 

       else add FASP and StP into L-tree; 
5. For each FASP in L-tree do 

     If sup(FASP) not updated then 
       decay sup(FASP); 

       If sup(FASP) < min_sup then delete FASP; 
6. return; 

Figure 4.  IAspam algorithm 

The IAspam algorithm consists of three parts. The first 
part is the conversion into bitmap representation (Step 1-
2). Customer transaction data will be converted into a 
bitmap matrix. The second part is the mining of across-
streams sequential patterns in new data (Step 3). I-step 
and S-step are conducted on the 1-item to generate candi-
date sequences, which will be mapped to the bitmap ma-
trix. The third part is the integration of new and old se-
quential patterns (Step 4-5). The newly mined patterns 
will be compared with previous patterns to update se-
quential patterns and decay the support of the sequential 
patterns not updated. Below is the detailed explanation of 
the steps of the IAspam algorithm. 

Step 1: Store customer transaction data in current slid-
ing window into the customer sequence table, in which 
data are ordered by customer identification. Data format 
is <S, I>. 

Step 2: Convert each transaction sequence of the cus-
tomer sequence table into a bitmap vector of the customer 
bitmap matrix. Judge if the itemset at each time point 
contains k-item. If yes, store bit 1 into the column of that 
time point of k-item; otherwise, store bit 0. 

Step 3: Count the support of each 1-item in each 
stream and store each 1-item and its supports into L-tree. 
Judge if every support of a 1-item is greater than or equal 
to the minimum support. If yes, conduct I-step and S-step 
to generate candidate sequences and map them to a bit-
map matrix. In the mapping process, the candidate item-
sets generated by I-step will be used to search for the ‘1’ 
bits that are at the same time point and in the same stream 
but not in the same item, and count the support. Whereas, 
the candidate sequences generated by S-step will be used 
to search, in different items and at different time points, 
for the ‘1’ bits whose prefix subsequences are at the same 
time point and in the same stream and the ‘1’ bits whose 
suffix subsequences are at the same time point and in the 
same stream, and count the support. 

Step 4: Judge if the support of each candidate sequence 
in SW' is greater than or equal to the minimum support. If 
yes, check to see if the frequent sequential pattern exists 
in the lexicographical tree. If yes, update the support of 
this sequential pattern. Otherwise, insert a frequent 
across-streams sequential pattern (FASP) and a stream 
sequence (StP) into the lexicographical tree. 

Step 5: Judge if the support of each FASP in the lex-
icographical tree has been updated. If not, decay the sup-
port of FASP and judge if the decayed support is less than 
the minimum support. If yes, delete FASP to get rid of 
the FASP that has not been updated for a long time. 

Step 6: Output FASP and StP. 
The steps of sequence extension are to conduct I-step 

before S-step. I-step is to insert a new item into an item-
set. For example, after going through I-step, <(a,b)> and 
<(c)> will become <(a,b,c)>, which can be expressed as 
<(a,b)> ◇I <(c)> = <(a,b,c)>. S-step is to append a new 
itemset to an itemset. For instance, after undergoing S-
step, <(a,b)> and <(c)> will turn into <(a,b)(c)>, which 
can be expressed as <(a,b)> ◇S <(c)> = <(a,b)(c)>. Ac-
cording to the Apriori property, the supersequences of an 
infrequent sequence cannot be frequent. Consequently, it 
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is not necessary to conduct I-step and S-step on infre-
quent sequences and hence no surplus candidate se-
quences will be generated. 

   Each leaf node of a lexicographical tree records a 
frequent across-streams sequential pattern plus its support 
and stream sequence. The purpose of constructing a lex-
icographical tree is to store frequent across-streams se-
quential patterns in order to insert new across-streams 
sequential patterns or to combine or update new and old 
across-streams sequential patterns. The nodes of a lexico-
graphical tree have a lexicographical order. The order of 
constructing a lexicographical tree is from top to bottom 
and from left to right. According to the characteristics of 
lexicographical order, the possible lexicographical orders 
of sequences are as below: [8]: 
 If s’ = s ◇ p, then s ＜  s’; e.g. <(a,b)> ＜ 

<(a,b)(b)>. 
 If s = α ◇I p, s’ = α ◇I p’, and p ＜ p’, then s ＜ 

s’; e.g. <(a,b,c)> ＜ <(a,b,d)>. 
 If s = α ◇S p, s’ = α �S p’, and p ＜ p’, then s ＜ 

s’; e.g. <(a,b)(c)> ＜ <(a,b)(d)>. 
 If s = α �I p and s’ = α �S p’, then s ＜  s’ 

regardless the order of p and p’; e.g. <(a,b,c)> ＜ 
<(a,b)(a)>. 

After the construction of the lexicographical tree, the 
across-streams sequential patterns in the tree will be up-
dated with the production of new mining results. The 
across-streams sequential patterns that have not been up-
dated for a long time may become obsolete. In maintain-
ing the lexicographical tree, it is therefore necessary to 
decay their supports to delete those sequential patterns 
that have not been updated for a long time. The decay 
equations are as follows: 

 pdweight = , 10 ≤≤ d  (2) 

 uwp −=   (3) 

 supsup_ ×= weightw  (4) 

In (2), d stands for the decay rate that is defined by the 
user to control the speed of decaying sequential patterns. 
In (3), p is the decay period of a sequential pattern, w is 
the number of times of sliding window movement, and u 
is the number of times of updating a sequential pattern in 
the lexicographical tree. The decay period of a sequential 
pattern is obtained by deducting the number of times of 
updating the sequential pattern from the number of times 
of sliding window movement. The longer a sequential 
pattern has not been updated, the bigger its p value be-
comes, which means its weight will become lower accor-
dingly. In (4), w_sup stands for the weighted support a 
sequential pattern, which is obtained by multiplying the 
support of the sequential pattern by its weight. An across-
streams sequential pattern will be deleted when its 
weighted support is less than the minimum support. 

We will use an example to illustrate the IAspam algo-
rithm. Table I is the CID-ordered customer sequence ta-
ble of the data sampled for the first execution of IAspam 

(W1). In a customer sequence table, the transaction data 
of each customer transaction sequence are sequenced 
according to the order of their arrival time. Because the 
size of the sliding window is set to 3, customer transac-
tion data at 3 time points in each data stream are sampled. 
Each customer transaction data is represented as <Si, α>, 
in which Si is a stream number and α is an itemset. <S1, 
(a,c)> means that itemset (a,c) comes from stream S1. 
The empty sets in the first and third columns whose CID 
is 2 mean that there is no transaction at these 2 time 
points for customer #2. 

TABLE I.   
 CUSTOMER SEQUENCE TABLE OF W1 

CID Customer transaction sequence 

1 <S1, (a,c)>     <S3, (b,d)>   <S2, (c,d)> 

2 <∅ >          <S2, (c,d)>    <∅ > 

3  <S2, (b,c,d)>   <S1, (a,c,d)>  <S3, (b,c,d)> 

4  <S3, (b,c)>    <∅ >         <S1, (a,b,c)> 

 

After the data of W1 is mined, the sliding window will 
move forward one time point to sample data for the 
second execution of IAspam (W2). As shown in Table II, 
three pieces of new customer transaction data, <S2, 
(a,c,d)>, <S1, (c,d)>, and <S3, (a,d)>, are appended re-
spectively to the customer transaction sequences whose 
CIDs are 1, 3 and 4. These three pieces of customer 
transaction data are the new stream data in W2. The cus-
tomer transaction sequence whose CID is 2 does not have 
any new transaction data, which means this customer did 
not engage in any transaction at that time point. 

TABLE II.   
CUSTOMER SEQUENCE TABLE OF W2 

CID Customer transaction sequence 

1 <S3, (b,d)>    <S2, (c,d)>   <S2, (a,c,d)> 

2 <S2, (c,d)>   <∅ >         <∅ > 

3 <S1, (a,c,d)>  <S3, (b,c,d)>  <S1, (c,d)> 

4 <∅ >        <S1, (a,b,c)>  <S3, (a,d)> 

 

Figure 5 is the bitmap matrix converted from the cus-
tomer sequence table of W1, in which a, b, c, and d 
represent items and CID=1 represents customer #1. For 
each customer, there is a bit list for each item and these 
bit lists are converted from the transaction sequence of 
this customer. The bit list (1,0,0) for item a means that 
item a appears in the transaction data at the first time 
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point and does not appear in the transaction data at the 
second and third time points. The stream sequence 
<S1,S3,S2> means that the transaction data at the first, 
second, and third time points come respectively from 
streams S1, S3, and S2. 

Figure 5.  Bitmap matrix of W1 

After the customer sequence table is converted into a 
bitmap matrix, the support of each 1-item will be counted 
to generate candidate sequences. Figure 6 shows the sup-
port of each 1-item in each stream. Suppose the minimum 
support is set to 2. The supports of c-item in S1, S2, and 
S3 are 3, 3, and 2 respectively, all of which are greater 
than or equal to the minimum support. Therefore, c-item 
is a frequent item in each of these three streams. 

 

 

Figure 6.  Support of 1-item 

Based on the 1-item in Figure 6, sequence extension 
will go through I-step and S-step to generate candidate 
sequences, which will be mapped to the bitmap matrix. 
As shown in Figure 7, different extension steps use dif-
ferent ways of mapping, which are described below. 
 I-step: The candidate itemset <(a,c)> extended 

using I-step will be mapped to the bitmap matrix 
and its support will be counted. As shown in Figure 
8, a-item and c-item have bit 1 (the 1 in bold type) 
at the same time point for customers #1, #3, and #4 
and all of them appear in S1. Therefore the support 
of <(a,c)> is 3. In Figure 6, as a-item is infrequent 
in S2 and S3, it will remain infrequent after I-step. 
Accordingly, it needs not to be processed. 

 S-step: After going through S-step, <(a,c)> and 
<(b,d)> will become <(a,c)(b,d)>, which will be 
mapped to the bitmap matrix. Due to the time 
sequence of a sequential pattern, <(b,d)> must be 
mapped to a time point after that of <(a,c)>. As 

shown in Figure 7, bit 1 (the underlined 1) appears 
at the first time point of a-item and c-item as well 
as the second time point of b-item and d-item for 
customer #1. Also, bit 1 (the underlined 1) appears 
at the second time point of a-item and c-item as 
well as the third time point of b-item and d-item for 
customer #3. In the meantime, <(a,c)> and <(b,d)> 
show up respectively in S1 and S3. Therefore, the 
support of <(a,c)(b,d)> is 2 and the stream 
sequence is <(S1)(S3)>. 

Figure 7. Mapping candidate sequences to bitmap matrix 

Suppose the minimum support is set to 2. Figure 8 and 
Table III show separately the lexicographical tree and 
result of the first execution of IAspam. The across-
streams sequential patterns in the lexicographical tree 
include <(a)(b)>, <(a)(d)>, <(c)(b)>, <(c)(d)>, and 
<(a,c)(b,d)>. The stream sequence of all of these across-
streams sequential patterns is <(S1)(S3)>, which means 
that their moving path goes from stream S1 to stream S3. 
As <(a,c)(b,d)> is the supersequence of all the other 
across-streams sequential patterns, it will be the only fre-
quent across-streams sequential pattern. 

 ∅

Figure 8. Lexicographical tree of the first execution  

TABLE III.   
 RESULT OF THE FIRST EXECUTION 

CID=1 
<S1,S3

,S2> 
 

CID=2 
<∅ ,S

2,∅ > 
 

CID=3 
<S2,S1

,S3> 
 

CID=4 
<S3,
∅ ,S1

> 

a                   b                    c                     d 

1   0   0 

0   0   0 

0   1   0 

0   0   1 

0   1   0 

0   0   0 

1   0   1 

1   0   1 

1   0   1 

0   1   0 

1   1   1 

1   0   1 

0   1   1 

0   1   0 

1   1   1 
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Frequent across-streams sequen-
tial pattern Stream sequence 

<(a,c)(b,d)> <(S1)(S3)> 

Figure 9 and Table IV show separately the lexico-
graphical tree and result of the second execution of IAs-
pam. In Figure 9, the support within a red square is an 
updated support, which indicates the sequential pattern 
remains frequent in W2 and its support is updated from 3 
to 2. The support within a red circle is a weighted sup-
port, which is decayed from 2 to 1.8 under the condition 
that the decay rate is set to 0.9. Accordingly, the sequen-
tial pattern will be deleted because its support is less than 
the minimum support, and the link will be represented as 
a dotted line. 

 ∅

 Figure 9. Lexicographical tree of the second execution 

TABLE IV.   
 RESULT OF THE SECOND EXECUTION 

Frequent across-streams  
sequential pattern 

Stream sequence 

<(a,c)(d)> <(S1)(S3)> 

IV.  PERFORMANCE EVALUATION 

A.  Experimental Environment and Data 
Table V shows the experimental environment. In Net-

Beans IDE 6.1 compilation environment, Java JDK 6.0 
programming language is used to write programs. A Pen-
tium D 2.8 GHz processor and 1 GB memory are used. 
Transaction data generated by the synthetic data genera-
tor developed by IBM Almaden Research Center are used 
as experimental data. Table VI shows the parameters of 
experimental data. For instance, the expression S6T100I3 
stands for a multiple data streams environment in which 
there are 6 data streams, 100 time points, and averagely 3 
items per transaction. 

TABLE V.   
EXPERIMENTAL ENVIRONMENT 

Equipment Specification 

Processor Pentium D 2.8 GHz 

Memory 1 GB 

Hard Disk 160 GB 

Operating System WINDOWS XP 

Programming Language Java JDK 6.0 

TABLE VI.   
 PARAMETERS OF EXPERIMENTAL DATA 

Parameter Parameter Description 

S Number of data streams 

T Number of time points 

I Average number of items per transaction 

C Number of customers 

D Number of item varieties 

 

B.  Performance Comparison 
Both IAspam and T-Map-Mine are used for mining se-

quential patterns of moving paths in data stream envi-
ronment. IAspam uses a bitmap representation for mining 
frequent across-streams sequential patterns; whereas T-
Map-Mine uses a T-Map-Tree structure for mining beha-
vior sequence patterns. In the mining process, T-Map-
Mine needs to repeatedly search T-Map-Tree to insert 
new nodes and increase the support, and hence may take 
a great amount of time in constructing and maintaining T-
Map-Tree. On the contrary, IAspam maps candidate se-
quences to a bitmap matrix based on the stream, which 
can save a lot of execution time while searching for 
across-streams sequential patterns. We compare the ex-
ecution and memory usage of these two algorithms. 

(1)  Execution Time 
Figure 10 shows the comparison of execution time be-

tween IAspam and T-Map-Mine in the S5T100C100I1 
multiple data streams environment. The vertical axis is 
execution time in second and the horizontal axis is the 
minimum support in percentage. To be able to compare 
with T-Map-Mine, the average number of items per 
transaction is set to 1. The execution time of IAspam and 
T-Map-Mine are compared under various minimum sup-
ports. As seen in Figure 10, the execution time of IAspam 
is less than that of T-Map-Mine under various minimum 
supports. This is because T-Map-Mine must repeatedly 
search T-Map-Tree and RST for each customer data as 
well as insert new nodes and increase the support, which 
will take more time in the mining process. 
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Figure 10. Comparison of execution time 

(2)  Memory Usage 
Figure 11 shows the comparison of memory usage be-

tween IAspam and T-Map-Mine in the same environment 
as that for the comparison of execution time. The vertical 
axis is the maximum usage of memory in kilobyte (KB). 
As seen in Figure 11, the memory usage of IAspam is 
about the same as that of T-Map-Mine under various min-
imum supports. The memory usage of IAspam will be 
affected by the number of item varieties and the number 
of customers. The branching of T-Map-Tree of T-Map-
Mine will depend on the complexity of customer transac-
tion data. The more chaotic the data is, the bigger the T-
Map-Tree becomes. 
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Figure 11. Comparison of memory usage 

V.  CONCLUSION 

The primary difference between the IAspam algorithm 
proposed in this paper and existing algorithms for mining 
sequential patterns in multiple data streams is that IAs-
pam is for mining across-streams sequential patterns, 
which are a new type of sequential patterns. To avoid 
inaccurate mining results caused by the re-mining of data, 
IAspam uses a sliding window to sample stream data and 
incrementally mines across-streams sequential patterns to 
maintain the newest mining results. To solve the ineffi-
ciency problem caused by mining a massive amount of 
data, IAspam uses a bitmap representation to search for 
across-streams sequential patterns and count their sup-
ports. As sequential patterns may cross different streams, 
IAspam searches for sequential patterns based on the 
stream, which enables the identification of not only 
across-streams sequential patterns but also stream se-
quences. Experimental results show that the IAspam al-
gorithm is effective in execution time when processing 
large amounts of stream data. 
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