
Lifecycle-based Swarm Optimization Method for
Constrained Optimization

Hai Shen1,2,3, Yunlong Zhu1, Li Jin4 and Haifeng Guo5

1Key Laboratory of Industrial Informatics, Shenyang Institute of Automation,
Chinese Academy of Sciences, Shenyang 110016, China

2Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
3College of Physics Science and Technology, Shenyang Normal University, Shenyang 110034, China

4Shenyang Agricultural University, Shenyang 110866, China
5Shenyang Ligong University, Shenyang 110159, China

Email: {shenhai, ylzhu, jinli, guohf}@sia.cn

Abstract—Each biologic must go through a process from
birth, growth, reproduction until death, this process known
as life cycle. This paper borrows the biologic life cycle
theory to propose a Lifecycle-based Swarm Optimization
(LSO) algorithm. Based on some features of life cycle, LSO
designs six optimization operators: chemotactic, assimilation,
transposition, crossover, selection and mutation. In this
paper, the capability of the LSO to address constrained
optimization problem was investigated. Firstly, the proposed
method was test on some well-known and widely used
benchmark problems. When compared with PSO, we can
see that LSO can obtain the better solution and lower
standard deviation than PSO on many different types of
constrained optimization problems. Finally, LSO was also
used for seeking the optimal route for vehicle route problem
in logistics system. The result of LSO is the best when
comparing with PSO and GA. The results of above two
types of experiments, which include not only the ordinary
benchmark problem but also the practical problems in
engineering, demonstrate that LSO is a competitive and
effective approach for solving constrained problems.

Index Terms—life cycle, lifecycle-based swarm optimization,
constrained optimization, penalty function

I. INTRODUCTION

In the past few decades, nature-inspired computation
has attracted more and more attentions. Nature has
become a fertile source of concepts, principles and
mechanisms for designing artificial computation systems
to tackle complex computational problems. The bio-
inspired optimization techniques possessing abundant
research results include Artificial Neural Networks
(ANN), Evolutionary Computation (EC), Swarm
Intelligence (SI) and Artificial Immune Algorithm (AIA)
and so on. Therein, EC includes Genetic Algorithm (GA),
Evolutionary Programming (EP), Evolutionary Strategy
(ES) and Genetic Programming (GP); and SI includes
Particle Swarm Optimization (PSO), Ant Colony
Optimization (ACO), Bacterial Foraging Optimization
Algorithm (BFOA) and Artificial Bee Colony (ABC). All

 bio-inspired optimization techniques have bionic features,
such as the ability of highly fault tolerance, self-
reproduction, cross-reproduction, and evolution, adaptive,
self-learning and other essential features. Because this
type of algorithms needn’t accurate mathematical models
and gradient information, moreover the search range is
often the global. Therefore, this type of algorithms have a
widely range of applications, especially suitable for
processing complex and nonlinear problems, which can
not be solved by traditional methods easily. At present, as
a kind of highly efficient methods, the bio-inspired
optimization algorithms have been widely applied to real
various optimization problem of real world [1-6].

All living organisms have life cycle, either the
commonest ants, butterflies, goldfish around us, or the
uncommon Antarctic penguins, arctic bear; either
ferocious beast or the meek of poultry. Although different
organisms have different life-cycle lengths, but they all
undergo the process from birth to death. With this process,
even though an organism died, but the species will not
perish. Through reproduction, species can continue from
generation to generation. Four stages including birth,
growth, reproduction, and death comprise the biologic
life cycle [7]. Borrowing the biology life cycle theory,
this paper presents a Lifecycle-based Swarm
Optimization (LSO) technique. LSO algorithm is a
population-based optimization method and employ six
optimize operators according to features of life cycle
theory.

In order to evaluate the performance of LSO, extensive
studies based on a set of constrained benchmark functions
has been carried out in this paper. Because many bio-
inspired algorithms have been solved for real-world
engineering optimization problems involving constraints
and have obtained the better solution [8-11], such as
structure optimization, mechanical design, VLSI design,
economics, and allocation and location problems. So in
this paper, LSO was also tested on practical vehicle route
problems. For comparison purposes, we also
implemented PSO and GA. Experimental results show
that LSO has same superior search performance for
constrained problems compared with other algorithms.

The rest of this paper is organized as follows. Section 2
introduces the life cycle theory. Section 3 describes the

Manuscript received October 8, 2010; revised November 1, 2010;
accepted November 1, 2010.

Corresponding author: Hai Shen, email: shenhai@sia.cn

JOURNAL OF COMPUTERS, VOL. 6, NO. 5, MAY 2011 913

© 2011 ACADEMY PUBLISHER
doi:10.4304/jcp.6.5.913-922

proposed Lifecycle-based Swarm Optimization (LSO)
technique. Sections 4 present the experimental results and
discussion. In the next section, LSO was tested on the
capacity vehicle routing problem and the experimental
results were compared. The last section draws
conclusions and gives directions of future work.

II. LIFE CYCLE THEORY

The biology evolution of nature follows the "cycle
relay" pattern, which is a "life and death alternation"
cycle process. When an original life ends, a new life will
generate. This process repeated continuously made the
endless life on earth, and biologic evolution become more
and more perfecting. Life can continue just in this cycle
process. Nature’s biology (from diatoms, algal group,
lichens, and mosses, to the plants and animals), regardless
of the species, should follow the "life and death
alternation" cycle process [12]. In this pattern, the life
cycles of different biology may seem very different at
first glance. Some biologic life may be going through
several decades, and some biologic life perhaps lasted
only a very short time. In this pattern, the shape, the size
and the reproduction mode of different organisms are also
different, and life span is not the same. But they have
similar life cycle characteristics. All life cycles shown in
Fig. 1 are same in that they begin with birth and end with
death. They are born; they need grow up; they can
reproduce; they will death. "Life and death alternation"
cycle process is not a simple repeat, but rather an
incessant improvement, accumulation and perfection
process, and is an optimal way of achieving ultimate goal
of life.

Figure 1. Search strategy for foraging animal.

III. LIFECYCLE-BASED SWARM OPTIMIZATION
ALGORITHM

Population is the evolution unit and the specific
existence form of life, so the initialization of population
is represents the individuals’ birth stage [13].

Once an organism begins its life cycle, it immediately
faces survival needs. For this purpose, most biology
requires food, water, sunlight, minerals, and oxygen to
survive and grow. They get these resources in many
different ways. The behavior of get resources is called
foraging. In the process of foraging, the choice of

foraging strategy is essential. A better foraging strategy
makes forager get more resources in the shortest time,
then forager would has enough nutrition to survive or
breed the next generation. Conversely, if a forager selects
the failing strategy continuously, and don’t gain nutrition
resources, meanwhile its energy was also consumed, then
it will be eliminated gradually according to the natural
selection theory. Biologic foraging strategies are diverse.
In LSO, we defined three foraging operators: chemotactic
operator, assimilation operator and transposition operator.
At the same time, we employed the reproduction and
selection operator according to the reproduction and
death stage of life cycle. In addition to, we also added
mutation operator.

A. Chemotaxis Operator
Chaos exists widely in natural and social phenomena,

its behavior are complex and similar to the random, and
are a rather common phenomenon in nonlinear system
[14]. Chaos motion should traversal all states which were
not repeated in the way of its own "law" in a certain area.
Chaos process seems confusion, in fact, it is not
completely disorder, but exist subtle regularity inherent.
Chaotic motion has ergodicity, randomness and regularity
and the others features. Since 1970’s, a large number of
biologic model simulation explained that the chaos is
widespread exist in biologic systems.

Borrowing chaotic theory, chemotactic operator which
was employed by the optimal individual of population
will performs the chaos search strategy. The basic idea is
introducing logistic map to optimization variables using a
similar approach to carrier, and generate s set of chaotic
variables, which can shown chaotic state [15,16].
Simultaneously, enlarge the traversal range of chaotic
motion to the value range of the optimization variables.
Finally, the better solution than current would found
directly using chaos variable. The logistic map equation
is given by equation (1):

)1(1 iii xrxx −=+ (1)

where r (sometimes also denoted μ) is driving parameter,
sometimes known as the "biotic potential", and is a
positive constant between 0 and 4. Generally, r=4. xi
represent the current chaos variable, and xi+1 represent
the next time’s .

B. Assimilation Operator
Much biology lives together in relationships where one

depends upon the other. Individuals of population would
find a way to share the natural resources, allowing both to
survive. This interdependent relationship is known as
mutualism. For example, some sparrows living together
form a small group, when the member A know the best
foraging position, which was found by member B, it
would follow the foraging route of member B to foraging.

During each iteration, a number of individuals are
selected to performing assimilation operator. They gain
resource directly from the optimal individual in the way
of using a random step towards the optimal individual.

914 JOURNAL OF COMPUTERS, VOL. 6, NO. 5, MAY 2011

© 2011 ACADEMY PUBLISHER

)(11 ipii XXrXX −+=+ (2)

where r1∈Rn is a uniform random sequence in the range
(0,1). XP is the best individual of the current population.
Xi is the position of an individual who perform
assimilation operator and Xi+1 is the next position of this
individual.

C. Transposition Operator
Biology has strong survival instincts, which would

indicate organism foraging method. This is an individual
behavior, which don’t reference to other individuals
foraging information. Some animals are “cruise” or
“ambush” searchers [17]. For the cruise approach to
searching, the some forager moves continuously through
the environment constantly searching for prey. For the
ambush approach to searching, some forager sits and
waits for prey to cross into strike range. In fact, the search
strategies of some forager are in between the cruise and
ambush, that is “salutatory” search. Fig. 2 gives the
illustration of these strategies. To find better living
conditions, survival instincts lead animals to migrate to a
better habitat. Some animals migrate only short distances.
Some animals are continually migrating great distances.

Figure 2. Search strategy for foraging animal.

During each iteration, the rest individuals will perform
transposition operator in a way of randomly migration
within their own energy scope.

∆⋅=)(ipi XXub (3)

ii ublb −= (4)
 iii lblbubr +−=)(2ϕ (5)

ϕ+=+ ii XX 1 (6)

where φ is the migration distance of Xi; r2 ∈ Rn is a
normal distributed random number with mean 0 and
standard deviation 1; ubi and lbi is the search space
boundary of the ith individual; Δ is the range of the
global search space.

C. Crossover Operator
Crossover operator means exchange of a pair of

parent’s genes in accordance with a certain probability,
and generates the new individual. In biologic life cycle,
reproduction is an important feature. After individual
mature, it will reproduction, whether sexual reproduction

or asexual reproduction. Reproduction makes the
continuation of species.

In LSO, the crossover operator selects single-point
crossover method. One crossover point is selected, string
from beginning of individual to the crossover point is
copied from one parent, and the rest is copied from the
second parent.

D. Selection Operator
The reasons of biology death are varied. Some biology

is illness or eaten by other predators or lack of nutrition
resources for a long time and so on. But no matter what
manner of biologic death, in general, those who survive is
to adapt the living environment, which are eliminated are
not suited to the biologic environment, which is Darwin's
“the survival of the fittest” theory. In this algorithm,
when some offspring were produced, the size of the
population will increase. Overmuch individual and the
limited resources will inevitably result in the struggle for
existence. Then the survival chance is bigger for some
biology which has stronger vitality, whereas it is smaller
for the biologic with weak vitality.

According to “the survival of the fittest” theory, and
for ensuring a fixed population size, LSO take a certain
method which can make some individuals were retained
and others were eliminated. In this algorithm, the
selection operator performs elitist selection strategy. A
number of individuals with the best fitness values are
chosen to pass to the next generation.

E. Mutation Operator
Mutations are changes in a genomic sequence. It is an

accident in the development of the life, and is the result
of adaptation to the environment. Mutations that change
protein sequences are neutral or harmful for an organism,
and also have a positive effect. When it is useful for a
species or single organism, it would make them have
more chances of survival, moreover it can continue in the
future generations, and we can say that the evolution of
species occurred. So mutation is important for the
evolution, no mutation, and no evolution. A mutation
may occur in any time in life cycle of an organism, and is
common, random, low frequency and non-directional.

In LSO, the mutation operator performs dimension-
mutation strategy. One dimension of an individual
selected according to the probability will re-location in
search space.

 lblbubrandxij +−=))(1((7)

where ub and lb is the lower and upper boundary of
search space. In the N-dimension search space, the xij is
the position of the jth dimension of the ith individual; the
value j is between in [1, N].

Because the mutation may occur at any time for an
organism, so it always co-exists with other operators in
LSO. That is when population has completed any stage
(foraging or reproduction or death), population should
carry out mutation operation according to the probability.
Mutation operator makes this algorithm possess the
capacity of random search in local scope, speed up the

JOURNAL OF COMPUTERS, VOL. 6, NO. 5, MAY 2011 915

© 2011 ACADEMY PUBLISHER

convergence to the optimal solution when the solution is
closer to the optimal solution. It also can maintain
population diversity for prevention premature
convergence.

F. The Pseudo-code of LSO
Lifecycle-based Swarm Optimization is a population-

based search technique, evaluation the fitness function,
and establishes an iterative process through
implementation six operators proposed above. Every
population was composed by a certain number of
individuals. In each iteration, firstly, an individual need
choice foraging strategy and execute corresponding
foraging operator based on own fitness value and
foraging probability generated randomly, then followed
by the mutation operation. The second stage is crossover

operation, followed by the mutation operation. The third
stage is selection operation and followed by the mutation
operation. Finally, generate the next population which
can represent the new solutions. In the optimization
process, the optimization operation is random, but the
characteristics shown us are not entirely random search. It
can effectively utilize the historical information to
speculate the next solutions, which has the possible of
closer to optimum. Such process was repeated from
generation to generation, and finally converges to the
individual which was the most adaptable to environments,
obtained the optimal solution. The Pseudo-code of the
algorithm is shown in Table I.

TABLE I.
PSEUDO CODE OF LIFECYCLE-BASED SWARM OPTIMIZATION ALGORITHM

 Parameters Setting: Population size: S; dimensionality of search space: N; maximum iterations: Tmax; the lower and upper
limits of the global search space: Blo, Bup; driving parameter of chaos search: r=4; crossover
probability: Pc; mutation probability: Pm.

 Born Stage: (1) Initialize the population with a normal distributed according to the U and Ө.

 (2) Compute the fitness values of all individuals.

 Growth Stage: (1) The best individual of population executes the chemotaxis operator via the chaos searching using
the equation (1).

 (2) A number of individuals selected via will perform assimilation operator using the equation (2).

 (3) The rest individuals would execute the transposition operator using the equations (3) to (6).

(4) Execute dimension-mutation operation to Swarm using equation (7) based on the mutation
probability.

 Reproduction Stage: (1) Randomly select a pair of individuals to implement single-point crossover operation. All
individuals generated by crossover operation comprised the offspring-population, which is called
SubSwarm.

 (2) Execute dimension-mutation operation to SubSwarm based on the mutation probability.

 (3) Compute the fitness values of the SubSwarm, and perform elitist selection operation.

 Death Stage: (1) Sort all individuals of Swarm and SubSwarm in order of ascending fitness.
 (2) The S individuals with the lower fitness were selected and others with higher fitness die.

 (3) Execute dimension-mutation operation to Swarm based on the mutation probability.

IV. EXPERIMENTS AND RESULTS

A. Parameters setting
To fully evaluate the performance of the LSO

algorithm without a biased, we employed 13 benchmark
functions [18]. These functions were tested widely in
evolutionary computation domain to show the quality
solution and the convergence rate. Problems g02, g03,
g08 and g12 are maximization problems. They were
transformed into minimization problems using –f(x).
Problems g03, g05, g11 and g13 include one or several
equality constraints. All of these equality constraints were
converted into inequality constraints, 0)(≤−δxf ,
δ=0.000001. For each problem, Table Ⅱ shows the
following parameters:
l n: the number of variables.
l f : the type of objective function.

l ρ: the ratio between the feasible region and the

whole search space.
l LI: the number of linear inequalities.
l NI: the number of nonlinear inequalities.
l NE: the number of nonlinear equations.
l a: the number of active constraints at the optimum.

In these benchmark functions, g04 is the moderately
constrained problems; g06 and g08 are highly
constrained problems with low dimensionality; g09 are
highly constrained problems with moderated
dimensionality; g01, g02, g03, and g07 are highly
constrained problems with high dimensionality; g02
has very large feasible regions; g05 and g13 have very
small feasible regions; g12 has even disjoint feasible
regions; g10 has large search space with a very small
feasible region. Moreover, the global optimal solution

916 JOURNAL OF COMPUTERS, VOL. 6, NO. 5, MAY 2011

© 2011 ACADEMY PUBLISHER

of function g01, g02, g04, g06, g07, and g09 lies on
the boundaries of the feasible region.

B. Parameters setting
We compared the optimization performance of LSO

with the standard PSO. Experimental results are
summarized in Table III. Each algorithm was tested with
all numerical benchmarks and each experiment was
repeated 30 times. In every run, the max iterations Tmax
=3000. With the purpose of making the comparison fairly,
the initialization populations for all the considered
algorithms were generated using the same population.
The same population size S=50.

In LSO, the probability using for decision the
individual’s foraging strategy Pf=0.1; the number of
chaos variables Sc=100; crossover probability Pc=0.7;
mutation probability Pm=0.02; the selection operation is
roulette wheel method. The PSO algorithm we used in
this paper is the standard algorithm. In PSO, the
acceleration factors c1=1, and c2=1.49; and a decaying
inertia weight w starting at 0.9 and ending at 0.4 was used.
For every problem, the most common approach adopted
to deal with constrained search spaces is the use of
penalty functions [19]. In this paper, the penalty
coefficient is a great value.

TABLE II.
CHARACTERISTICS OF THE TEST FUNCTIONS

TF n Type of f ρ LI NI NE a

g01 13 quadratic 0.000235% 9 0 0 6

g02 20 nonlinear 99.996503% 1 1 0 1

g03 10 polynomial 0.000000% 0 0 1 1

g04 5 quadratic 26.962511% 0 6 0 2

g05 4 cubic 0.000000% 2 0 3 3

g06 2 cubic 0.006679% 0 2 0 2

g07 10 quadratic 0.000103% 3 5 0 2

g08 2 nonlinear 0.859082% 0 2 0 0

g09 7 polynomial 0.524450% 0 4 0 2

g10 8 linear 0.000522% 3 3 0 3

g11 2 quadratic 0.000000% 0 0 1 1

g12 3 quadratic 4.775265% 0 1 0 0

g13 5 nonlinear 0.000000% 0 0 3 3

TABLE III.
BEST VALUES OF LSO AND PSO

Problem Optimal value LSO PSO

g01 -15 -14.822 -15

g02 0.803619 0.79982 0.77738

g03 1 0.608 0

g04 -30665.539 -30643 -30665

g05 5126.4981 5128.6 5131.1

g06 -6961.81388 -6961.8 -6961.8

g07 24.3062091 25.849 24.885

g08 0.095825 0.095825 0.095825

g09 680.630057 680.63 680.63

g10 7049.25 7085.9 7172.3

g11 0.75 0.75009 1

g12 1 0.48473 0.48473

g13 0.0539498 0.045187 0.031081

TABLE IV.
WORST VALUES OF LSO AND PSO

Problem Optimal
value

LSO PSO

g01 -15 -14.594 -9

g02 0.803619 0.73567 0.27602

g03 1 0.12609 0

g04 -30665.539 -30503 -30186

g05 5126.4981 -------- --------

g06 -6961.81388 -6960.6 --------

g07 24.3062091 43.869 1638

g08 0.095825 0.095825 0.095825

g09 680.630057 681.76 680.72

g10 7049.25 8726.2 --------

g11 0.75 0.99877 1

g12 1 -------- --------

g13 0.0539498 -------- --------

(-------: infeasible solution)

TABLE V.
MEAN VALUES OF LSO AND PSO

Problem Optimal value LSO PSO

g01 -15 -14. 706 -11.067

g02 0.803619 0. 77112 0.52251

g03 1 0.10723 0

g04 -30665.539 -30571 -30656

g05 5126.4981 5467 13461

g06 -6961.81388 -6961. 5 -4096.5

g07 24.3062091 33. 203 205. 47

g08 0.095825 0. 095825 0. 095825

g09 680.630057 680.87 680.66

g10 7049.25 7721. 6 41034

g11 0.75 0. 89687 1

g12 1 40000 6.4e+005

g13 0.0539498 8e+005 7.6e+005

TABLE VI.
STANDARD DEVIATION VALUES OF LSO AND PSO

Problem LSO PSO

JOURNAL OF COMPUTERS, VOL. 6, NO. 5, MAY 2011 917

© 2011 ACADEMY PUBLISHER

g01 0.066098 2.0998

g02 0.019706 0.11555

g03 0.17369 0

g04 76.481 67.795

g05 3248. 2 12437

g06 0.26245 15694

g07 4.7188 310.21

g08 5.16E-17 2.49E-17

g09 0.2187 0.023907

g10 475.34 1.18E+05

g11 0.090638 0

g12 1.98e+05 4.85e+05

g13 4.041e+005 4.314e+005

V. DISCUSSION OF RESULTS

This paper compared LSO against PSO. The best
results obtained in 30 runs by each approach are shown in
Table III. The worst results are presented in Table IV, the
mean values provided are compared in Table V and the
standard deviations are listed in Table VI. Moreover, the
optimal solutions known so far are also presented in
Table III, Table IV and Table V.

In Table III, an objective function value with bold
typeface indicates that the corresponding solution is
exactly equal to the best known solution. LSO can find
the exact global optimum in four functions (g04, g06, g08,
g09 and g11) and close to the global optimum in eight
functions (g01, g02, g03, g04, g05, g07, g12 and g13).
PSO find the exact global optimum in five functions (g01,
g04, g06, g08 and g9) and close to the global optimum in
seven functions (g02, g03, g05, g07, g11, g12 and g13).
Judging from the best solutions obtained by them, the
performance of PSO is better than LSO.

From table IV we can see LSO performs better than
the PSO. Firstly, LSO can’t seek the feasible solutions in
30 runs on three functions (g05, g12 and g13) and PSO
can’t seek it on 5 functions (g5, g6, g10, g12 and g13).
Moreover it is worth noticing that all of the “worst” result
obtained by LSO is even also the approximately global
optimum solution in most of the problems. Both LSO and
PSO can find the close to the global optimum solution in
function g01, g02, g03, g04, g08, g09 and g011.
Especially in functions g06 and g10, the solutions found
by LSO are feasible and also near to the global optimum,
but solutions found by PSO are infeasible.

Table V and VI presents the mean solution and
standard deviation in 30 independent runs. In these two
tables, the value with bold typeface all indicates the better
solution and lower standard deviation of two methods.
With the exception of g04, g09 and g13, in all the other
problems LSO reached the exact or close to global
optimum and better than PSO. On most of problems, LSO
presented a lower standard deviation. Fig.3~ Fig.7 are the
convergence curve of LSO and PSO in some functions.

The values of each point in curves are the mean best
values in 30 independent runs.

For function g01 and g11 which is shown in Fig. 3 and
Fig. 4, in less than 100 iterations, both LSO and PSO
have the fast convergence rate. Convergence curves of
them decline rapidly and converge to local optimum
solution, which was obtained by LSO and is better than
PSO’s. From 100 iterations to end, the curve of PSO is
still a straight line. It can’t find a better solution and
deeply fall into the local optimum solution. However,
LSO is different due to its ability of diversity, which can
make LSO jump out of local optimal solution. For
function g01 shown in Fig. 3, from 100th to 1000th
iterations, the curve of LSO can continues to decline even
though the speed is slow. In the end, LSO obtain the
approximately global optimum solution. For function g11
shown in Fig 4, at the 100th iteration, both LSO and PSO
have found near to the global optimal solutions 0.8976
and 1, respectively. The value obtained by LSO is better
than PSO’s, and this situation continued until the end.

0 100 200 300 400 500 600 700 800 900 1000
-16
-15
-14
-13
-12
-11
-10

-9
-8
-7
-6

X: 100
Y: -12.66

X: 100
Y: -10.5

X: 962
Y: -14.55

Generation

M
ea

n
Be

st
Fi

tn
es

s

X: 962
Y: -10.67

LSO
PSO

Figure 3. Details of convergence curve in the first 1000 iterations on

function g01.

0 100 200 300 400 500 600 700 800 9001000
0.85

0.875
0.9

0.925
0.95

0.975
1

1.025
1.05

1.075
1.1

1.125
1.15

X: 100
Y: 0.8976

X: 100
Y: 1

X: 900
Y: 1

X: 900
Y: 0.8969

Generation

M
ea

n
Be

st
Fi

tn
es

s

LSO
PSO

Figure 4. Details of convergence curve in the first 1000 iterations on

function g11.

Good examples are g06 and g07, where LSO showed a
more robust behavior than PSO. LSO has a better
optimization performance and good stability compared to
PSO. LSO can reach the exact or near to the global
optimum and obtain the lower standard deviation, but
PSO can’t. Fig. 5 and Fig. 6 is the convergence curve of
LSO and PSO in functions g06 and g07, respectively. We
can see from these two figures, at the beginning of
iteration, LSO has the faster convergence speed and rapid

918 JOURNAL OF COMPUTERS, VOL. 6, NO. 5, MAY 2011

© 2011 ACADEMY PUBLISHER

converge to a local solution. With the increasing in the
number of iterations, solution found by LSO is gradually
close to the global optimum. Compared with LSO, at the
beginning of iteration, PSO has the very slow
convergence speed and converge to a local solution until
about the 400th iterations. At the end of iterations, PSO
still don’t find the exact or approximately optimal
solution. Moreover, the bigger standard deviation
demonstrates that the PSO has a strong instability.

0 100 200 300 400 500 600 700 800 9001000
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1
x 10

4

X: 100
Y: -5957 X: 988

Y: -6940

X: 436
Y: -1199

Generation

M
ea

n
Be

st
Fi

tn
es

s

X: 988
Y: -1231

LSO
PSO

Figure 5. Details of convergence curve in the first 1000 iterations on

function g06.

For function g06, the global optimal solution is -6961.8.
At the 100th iterations, the solution -5957 found by LSO
is begun to approach it. However, at the 436th iterations,
the solution -1199 found by PSO is still very far away
from it. At about 988th iteration, the solution -6940 found
by LSO is better than obtained in the early and is close to
optimal solution. But the value -1231 found by PSO is
still a worst solution.

0 250 500 750 1000 1250 1500
0

100

200

300

400

500

600

700

800

900
1000

X: 1400
Y: 32.68

X: 100
Y: 50.72

X: 1400
Y: 442.4

X: 401
Y: 470.7

Generation

M
ea

n
Be

st
Fi

tn
es

s

LSO
PSO

Figure 6. Details of convergence curve in the first 1500 iterations on

function g07.

Similarly, for function g07, the process of seeking
optimum and the quality of the final solution of LSO and
PSO is the same with function g06. Even if the true
optimal solutions not found by these two algorithms, we
still can observe that LSO also obtained a better “worst”
result than PSO. On functions g12, LSO has sought the
feasible solution but PSO hasn’t.

A remarkable example is g05, g10 and g12, where
LSO and PSO were not able to reach the global optimum
and showed a considerably high variability of results
from run to run. This may be due to the fact that function

g10 has a large search spaces (based on the intervals of
the decision variables) with a very small feasible region;
function g05 have small feasible regions and its type of
combined constrained is cubic and function g12 has even
disjoint feasible regions. On functions g05 and g10, LSO
has sought the close to optimal solutions but PSO can’t.
As described in Fig. 7, before the 1785th iteration, LSO
converge rapidly and find a close to optimal solution
5561, but the value 1.49e+4 found by PSO is far away
from the optimum. From the 1785th iteration to end, the
solution of PSO still can’t obtain great improve.

0 500 1000 1500 2000 2500 3000
0.05

1.05

2.05

3.05

4.05

5
x 10

4

X: 1785
Y: 5561

Generation

M
ea

n
Be

st
Fi

tn
es

s

X: 1785
Y: 1.49e+004

LSO
PSO

Figure 7. Details of convergence curve on function g05.

Only for function g04, g09 and g13, PSO perform
better than LSO. Function g04 is a moderately
constrained problems; g09 is a highly constrained
problems with moderated dimensionality. For these two
functions, LSO and PSO all find the close to optimal
solution, which was found by LSO slightly worst than
PSO’s. We can see from Fig. 8, on function g09, LSO has
the same fast convergence speed as PSO in the early
evolution, but gradually the convergence speed of LSO is
slower than PSO, and obtained a relative poor value in
the end. Function g13 has small feasible regions, and its
type of combined constrained is nonlinear. On this
function, the best mean values of two methods are all
very worst.

0 100 200 300 400 500 600 700 800 900 1000
680

685

690

695

700

X: 549
Y: 681.1

Generation

M
ea

n
Be

st
Fi

tn
es

s

X: 948
Y: 681.4

LSO
PSO

Figure 8. Details of convergence curve in the first 1000 iterations on

function g09.

VI. LSO IN SOLVING VEHICLE ROUTING PROBLEM

In order to verify the efficiency of our approach to
settle practical problem and testing the goodness of LSO

JOURNAL OF COMPUTERS, VOL. 6, NO. 5, MAY 2011 919

© 2011 ACADEMY PUBLISHER

as compared with other existing methodologies, the
Vehicle Routing Problem (VRP) benchmark instance was
selected as the testing case. VRP is a very complex
combinatorial optimization problem and the commonest
problem in logistics distribution system. Its purpose is to
design the least costly (distance, time) routes for a fleet of
capacities vehicles to serve geographically scattered
customers. Because complexity of the actual problem, so
there are many restrictions in VRP such as the capacity
for each vehicle, total traveling distance allowed for each
vehicle, time window to visit the specific customers, and
so forth. VRP has been proved to be an NP-complete
problem [20, 21].

A. Problem despcrition of VRP
The VRP is described as follows: The problem with

one center storehouse and some customers is considered.
Some vehicles are available to carry the cargo for all the
customers. The main objective function is to minimize
the transport cost. Generally the transport cost is
simplified as the routing length. Assume that the depot is
node 0(i=0), and L(i=1,2,…,L) customers are to be served
by K(k=1,2,…,K) vehicles, the demand of customer i is gi,
the capacity of vehicle q, the distance of traveling from
customer i to customer j is cij. Then the objective function
is shown as below:

 ∑∑ ∑
= = =

K

k

L

i

L

j
ijkij xc

1 0 0
mizemin (8)

Subject to:

 kqyg ki
L
i i ∀≤∑ = ,1

 (9)

 kLiyK
k ki ∀==∑ = ;,,1,11 L (10)

 kLiyxL
i kjijk ∀==∑ = ;,,1,0 L (11)

 kLiyxL
j kiijk ∀==∑ = ;,,1,0 L (12)

where xijk is a binary variable indicating whether vehicle
k arrives at node j from node i, if vehicle k arrives at
node j from node i, then xijk=1, otherwise, xijk =0. yki is a
binary variable indicating whether the node i is served by
vehicle k, if the node i is served by vehicle k, then yki =1,
otherwise, yki=0. The objective function in (8) aims to
minimize the total distance. Constraint set (9) regulates
that the load of each vehicle should not exceed its
capacity. Constraint set (10) represents each customer
demand must be satisfied and only fulfilled by one
vehicle. Constraint sets (11) and (12) ensure that there
has only one vehicle which arrival and departure from a
customer.

B. Experiment and resuslts
The computation data was cited from [22]. It was

shown as follows: a distribution center delivers products
to eight customers by two vehicles; each customer’s
demand and the distance matrix were listed in Table IV,
in which the value 0 indicates the distribution center. The
load capacity and the speed of vehicles are 8t and 50km/h,
respectively. The demand of this problem is arrange the

vehicle requested route reasonable, and make the total
costs minimum, which is the shortest transportation
distance.

TABLE VII.
CUSTOMER’S DISTANCE AND DEMAND

C 0 1 2 3 4 5 6 7 8

0 0 4 6 7.5 9 20 10 16 8

1 4 0 6.5 4 10 5 7.5 11 10

2 6 6.5 0 7.5 10 10 7.5 7.5 7.5

3 7.5 4 7·5 0 10 5 9 9 15

4 9 10 10 10 0 10 7.5 7.5 10

5 20 5 10 5 10 0 7 9 7.5

6 10 7.5 7.5 9 7.5 7 0 7 10

7 16 11 7.5 9 7.5 9 7 0 10

8 8 10 7.5 15 10 7.5 10 10 0

Demand 1 2 1 2 1 4 2 2

For this instance, this paper adopts the real number

encoding [23]. In this paper, the LSO was compared with
two well-known algorithms: PSO and GA. In experiment,
the individual numbers, S=60; the max iterations Tmax
=1000, each experiment was repeated 30 times. The rest
parameters setting of LSO and PSO are same as the
section IV. The crossover probability and mutation
probability of GA is 0.7 and 0.5, respectively. Table VIII
shows the comparison results of three algorithms. In this
table, an objective function value with bold typeface
indicates that the corresponding solution is exactly equal
to the best known solution. The “Worst” and the “Best”
represents the maximum and the minimize value obtained
by these methods, respectively. The success ration means
the number of seeking the exactly optimal solution in 30
runs.

TABLE VIII.
THE EXPERIMENTAL RESULTS OF THREE ALGORITHMS

 LSO PSO GA

Worst 69 74.5 74

Best 67.5 67.5 67.5

Mean Best 67.95 71.1 70.117

Std 0.6991 1.6421 1.4953

Success ratio 20 11 9

It is shown in this Table that all of the methods have

even sought the optimal route distance 67.5 and the route
schedules is 0→4→7→6→0 and 0→l→3→5→8→2→0.
However in the 30 runs, the max solution found by LSO
is 69, which is also close to the optimal solution, and is
much lower than the max solution found by PSO and GA.
Moreover, for LSO solutions, 20 runs out of 30 the
solutions are exactly same as the best-known solution and
the remainders are only slightly larger than the best-

920 JOURNAL OF COMPUTERS, VOL. 6, NO. 5, MAY 2011

© 2011 ACADEMY PUBLISHER

known solutions. But the contrary results were obtained
by PSO and GA, there are a few successes run in 30 runs.
In term of computational effort as shown in Fig. 9, LSO
is faster than other algorithms.

0 100 200 300 400 500 600 700 800 900 1000

67.5

70

72.5

75

77.5

Generation

M
ea

n
Be

st
Fi

tn
es

s

GA
PSO
LSO

Figure 9. Convergence curve of LSO, PSO and GA.

VII. CONCLUSIONS

Based on biological life cycle theory, this paper
proposed a Lifecycle-based Swarm Optimization
algorithm. In this algorithm, six operators were employed:
chemotactic, assimilation, transposition, crossover,
selection and mutation. An individual in the population
gradually grow though performing either chemotactic
operator, or assimilation operator or transposition
operator. Population generates offspring via crossover
operation. Some individuals will die using selection
operation. Additionally, biological mutation may occur at
any time, this method employ mutation operator. The
approach was tested using 13 widely used benchmark
problems, which include various constrained problems,
and a small-scale vehicle routing problem. On 13
benchmark functions, the results obtained showed a very
substantial potential of LSO based on quality of results.
LSO can seek the feasible optima solution of almost all
test cases, but PSO can’t, and on some problems, LSO’s
performance remarkably outperforms other algorithms.
Meanwhile, the standard deviations also reveal the strong
robustness of LSO. Since the performance of LSO on test
function g05, g012 and g13 is not satisfied, a more
profound study in improving LSO though tuning
parameters or other method is absolutely necessary in
future work. Another direction of future work is to apply
this method to the large-scale vehicle routing problem or
other areas.

ACKNOWLEDGMENT

This project is supported by the National 863 plans
projects of China (Grant No. 2008AA04A105), and the
Doctoral start fund of Liaoning province of China (Grant
No. 09L3170301).

REFERENCES

[1] Y. Yuan, Z. He and M. Chen, “Virtual mimo-based cross-
layer design for wireless sensor networks”, IEEE

Transactions on Vehicular Technology, vol. 55, no. 3, pp.
856-864, May 2006.

[2] S. C. M. Cohen and L. N. de Castro, “Data clustering with
particle swarms”, In the Proceedings of IEEE Congress on
Evolutionary Computation, Vancouver BC, pp.1792-1798,
2006.

[3] A. V. Donati, R. Montemanni and N. Casagrande et al.
“Time dependent vehicle routing problem with a multi ant
colony system”, European Journal of Operational
Research, vol.185, no.3, pp.1174–1191, March 2008.

[4] F. Campelo, F. G. Guimaraes and H. Igarashi, “A clonal
selection algorithm for optimization in electromagnetics”,
IEEE Transactions on Magnetics, vol. 41, no. 5, pp.1736-
1739, May 2005.

[5] C. F. Juang, “A hybrid of genetic algorithm and particle
swarm optimization for recurrent network design”, IEEE
Transactions on Systems Man and Cybernetics Part B
Cybernetics, vol. 34, no. 2, pp.997-1006, April 2004.

[6] J. J. Davis, Training product unit neural networks with
genetic algorithms”, IEEE Expert: Intelligent Systems and
Their Applications, vol. 8, no. 5, pp.26-33, October 1993.

[7] D. A. Roff. The evolution of life histories: theory and
analysis. Chapman and Hall, New York, 1992.

[8] S. Koziel and Z. Michalewicz, “Evolutionary algorithms,
homomorphous mappings, and constrained parameter
optimization”, Evolutionary Computation, vol. 7, pp. 19-44,
Spring 1999.

[9] K. Deb, “An efficient constraint handling method for
genetic algorithms”, Computer methods in applied
mechanics and engineering, vol. 186, pp.311-338, June
2000.

[10] C. A. C Coello, “Constraint-handling using an evolutionary
multiobjective optimization technique”, Civil engineering
and environmental systems, vol. 17, pp. 319-346, October
2000.

[11] Z. Michalewiz and M. Schoenauer, “Evolutionary
algorithms for constrained parameter optimization
problems”, Evolutionary Computation, vol. 4, pp. 1-32,
spring 1996.

[12] S. C. Stearns. The evolution of life histories. Oxford
University Press, UK, 1992.

[13] J. H. Vandermeer and D. E. Goldberg. Population ecology:
first principles. Princeton University Press, Woodstock,
2003.

[14] S. M. Berman. Mathematical statistics: an introduction
based on the normal distribution. PA: Intext Educational
Publishers, Scranton, 1971.

[15] E. N. Lorenz, “Deterministic non-periodic flow”, Journal
of the Atmospheric Sciences, vol. 20, pp.130–141, 1963.

[16] P. F. Verhulst, “Recherches mathématiques sur la loi
d'accroissement de la population”, Nouv. mém. de
l'Academie Royale des Sci. et Belles-Lettres de Bruxelles,
vol. 18, pp.1-41, 1845.

[17] K. M. Passino. Biomimicry for optimization, control, and
automation. Springer-Verlag, London, UK, 2005.

[18] T. P. Runarsson and X. Yao, “Stochastic ranking for
constrained evolutionary optimization,” IEEE Transactions
Evolutionary Computation, vol. 4, pp. 284–294, September
2000.

[19] J. T. Richardson, M. R. Palmer and G. Liepins, et.al, ,
“Some guidelines for genetic algorithms with penalty
functions,” In the Proceedings of the 3rd International
Conference on Genetic Algorithms, SanMateo, CA, pp.
191–197, June 1989.

[20] G. B. Dantzig and J. H. Ramser, “The Truck Dispatching
Problem”, Management Science, vol. 6, no.1, pp. 80-91,
October 1959.

JOURNAL OF COMPUTERS, VOL. 6, NO. 5, MAY 2011 921

© 2011 ACADEMY PUBLISHER

[21] M. Haimovich, R. Kan and L. Stougie, Analysis of
heuristics for vehicle routing problems. In Vehicle routing:
methods and studies, North-Holland, 1988.

[22] L. P. Zhang and Y. T. Cai, “Improved Genetic Algorithm
for Vehicle Routing Problem”, Systems Engineering-
Theory & Practice, vol. 22, no. 8, pp. 79-84, August 2002.

[23] J. Li, B. L. Xie and Y. H. Guo, “Genetic algorithm for
vehicle scheduling problem with non-full load”, System
Engineering Theory Methodology Applications, vol. 20, no.
3, pp. 235-239, September 2000.

Hai Shen was born in China in 1976. She has received the
B.Sc. and M. Eng. Degrees in computer applications
technology,Shenyang University of Technology, Shenyang,
China, in 1998 and 2005, respectively. She is currently working
toward the Ph.D. degree with the Shenyang Institute of
Automation, Chinese Academy of Sciences, China. Now, she is
an Associate Professor with the College of Physics Science and
Technology, Shenyang Normal University, China. Her main
research interests are in advanced computational intelligence
with a focus on: nature inspired hybrid intelligent systems,
swarm intelligence, evolutionary computation, distributed
artificial intelligence, multi-agent systems and other heuristics
swarm intelligence.

Yunlong Zhu is the director of the Key Lab. of Advanced

Manufacturing Technology, Shenyang Institute of Automation
of the Chinese Academy of Sciences. He received his Ph.D. in
2005 from the Chinese Academy of Sciences, China. He has
research interests in various aspects of Enterprise Information
Management but he has ongoing interests in Artifical
Intelligence, Machine Learning, and related areas. Prof Zhu’s
research has led to a dozen professional a publication in these
areas includes the biography here.

Li Jin was born in China in 1976. She has received the B.Sc.

and M.Eng. Degrees in computer applications technology from
Shenyang Agricultural University, Shenyang, China, in 1998
and 2003, respectively. In 2010, she completes the Ph.D paper
and obtains the Ph.D degree in the Shenyang Institute of
Automation, Chinese Academy of Sciences, China. Now, she is
a lecturer in Shenyang Agricultural University, China. Her main
research interests are in modeling and simulation of logistics
systems, logistics scheduling optimization, supply chain
modeling and optimization, inventory control system, etc.

922 JOURNAL OF COMPUTERS, VOL. 6, NO. 5, MAY 2011

© 2011 ACADEMY PUBLISHER

