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Abstract—Each biologic must go through a process from 
birth, growth, reproduction until death, this process known 
as life cycle. This paper borrows the biologic life cycle 
theory to propose a Lifecycle-based Swarm Optimization 
(LSO) algorithm. Based on some features of life cycle, LSO 
designs six optimization operators: chemotactic, assimilation, 
transposition, crossover, selection and mutation. In this 
paper, the capability of the LSO to address constrained 
optimization problem was investigated. Firstly, the proposed 
method was test on some well-known and widely used 
benchmark problems. When compared with PSO, we can 
see that LSO can obtain the better solution and lower 
standard deviation than PSO on many different types of 
constrained optimization problems. Finally, LSO was also 
used for seeking the optimal route for vehicle route problem 
in logistics system. The result of LSO is the best when 
comparing with PSO and GA. The results of above two 
types of experiments, which include not only the ordinary 
benchmark problem but also the practical problems in 
engineering, demonstrate that LSO is a competitive and 
effective approach for solving constrained problems.  
 
Index Terms—life cycle, lifecycle-based swarm optimization, 
constrained optimization, penalty function 
 

I.  INTRODUCTION 

In the past few decades, nature-inspired computation 
has attracted more and more attentions. Nature has 
become a fertile source of concepts, principles and 
mechanisms for designing artificial computation systems 
to tackle complex computational problems. The bio-
inspired optimization techniques possessing abundant 
research results include Artificial Neural Networks 
(ANN), Evolutionary Computation (EC), Swarm 
Intelligence (SI) and Artificial Immune Algorithm (AIA) 
and so on. Therein, EC includes Genetic Algorithm (GA), 
Evolutionary Programming (EP), Evolutionary Strategy 
(ES) and Genetic Programming (GP); and SI includes 
Particle Swarm Optimization (PSO), Ant Colony 
Optimization (ACO), Bacterial Foraging Optimization 
Algorithm (BFOA) and Artificial Bee Colony (ABC). All 

 bio-inspired optimization techniques have bionic features, 
such as the ability of highly fault tolerance, self-
reproduction, cross-reproduction, and evolution, adaptive, 
self-learning and other essential features. Because this 
type of algorithms needn’t accurate mathematical models 
and gradient information, moreover the search range is 
often the global. Therefore, this type of algorithms have a 
widely range of applications, especially suitable for 
processing complex and nonlinear problems, which can 
not be solved by traditional methods easily. At present, as 
a kind of highly efficient methods, the bio-inspired 
optimization algorithms have been widely applied to real 
various optimization problem of real world [1-6]. 

All living organisms have life cycle, either the 
commonest ants, butterflies, goldfish around us, or the 
uncommon Antarctic penguins, arctic bear; either 
ferocious beast or the meek of poultry. Although different 
organisms have different life-cycle lengths, but they all 
undergo the process from birth to death. With this process, 
even though an organism died, but the species will not 
perish. Through reproduction, species can continue from 
generation to generation. Four stages including birth, 
growth, reproduction, and death comprise the biologic 
life cycle [7]. Borrowing the biology life cycle theory, 
this paper presents a Lifecycle-based Swarm 
Optimization (LSO) technique. LSO algorithm is a 
population-based optimization method and employ six 
optimize operators according to features of life cycle 
theory.  

In order to evaluate the performance of LSO, extensive 
studies based on a set of constrained benchmark functions 
has been carried out in this paper. Because many bio-
inspired algorithms have been solved for real-world 
engineering optimization problems involving constraints 
and have obtained the better solution [8-11], such as 
structure optimization, mechanical design, VLSI design, 
economics, and allocation and location problems. So in 
this paper, LSO was also tested on practical vehicle route 
problems. For comparison purposes, we also 
implemented PSO and GA. Experimental results show 
that LSO has same superior search performance for 
constrained problems compared with other algorithms.  

The rest of this paper is organized as follows. Section 2 
introduces the life cycle theory. Section 3 describes the 
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proposed Lifecycle-based Swarm Optimization (LSO) 
technique. Sections 4 present the experimental results and 
discussion. In the next section, LSO was tested on the 
capacity vehicle routing problem and the experimental 
results were compared. The last section draws 
conclusions and gives directions of future work. 

II.  LIFE CYCLE THEORY 

The biology evolution of nature follows the "cycle 
relay" pattern, which is a "life and death alternation" 
cycle process. When an original life ends, a new life will 
generate. This process repeated continuously made the 
endless life on earth, and biologic evolution become more 
and more perfecting. Life can continue just in this cycle 
process. Nature’s biology (from diatoms, algal group, 
lichens, and mosses, to the plants and animals), regardless 
of the species, should follow the "life and death 
alternation" cycle process [12]. In this pattern, the life 
cycles of different biology may seem very different at 
first glance. Some biologic life may be going through 
several decades, and some biologic life perhaps lasted 
only a very short time. In this pattern, the shape, the size 
and the reproduction mode of different organisms are also 
different, and life span is not the same. But they have 
similar life cycle characteristics. All life cycles shown in 
Fig. 1 are same in that they begin with birth and end with 
death. They are born; they need grow up; they can 
reproduce; they will death. "Life and death alternation" 
cycle process is not a simple repeat, but rather an 
incessant improvement, accumulation and perfection 
process, and is an optimal way of achieving ultimate goal 
of life.  

 

 
Figure 1.  Search strategy for foraging animal. 

III.  LIFECYCLE-BASED SWARM OPTIMIZATION 
ALGORITHM 

Population is the evolution unit and the specific 
existence form of life, so the initialization of population 
is represents the individuals’ birth stage [13].  

Once an organism begins its life cycle, it immediately 
faces survival needs. For this purpose, most biology 
requires food, water, sunlight, minerals, and oxygen to 
survive and grow. They get these resources in many 
different ways. The behavior of get resources is called 
foraging. In the process of foraging, the choice of 

foraging strategy is essential. A better foraging strategy 
makes forager get more resources in the shortest time, 
then forager would has enough nutrition to survive or 
breed the next generation. Conversely, if a forager selects 
the failing strategy continuously, and don’t gain nutrition 
resources, meanwhile its energy was also consumed, then 
it will be eliminated gradually according to the natural 
selection theory. Biologic foraging strategies are diverse. 
In LSO, we defined three foraging operators: chemotactic 
operator, assimilation operator and transposition operator. 
At the same time, we employed the reproduction and 
selection operator according to the reproduction and 
death stage of life cycle. In addition to, we also added 
mutation operator. 

A. Chemotaxis Operator 
Chaos exists widely in natural and social phenomena, 

its behavior are complex and similar to the random, and 
are a rather common phenomenon in nonlinear system 
[14]. Chaos motion should traversal all states which were 
not repeated in the way of its own "law" in a certain area. 
Chaos process seems confusion, in fact, it is not 
completely disorder, but exist subtle regularity inherent. 
Chaotic motion has ergodicity, randomness and regularity 
and the others features. Since 1970’s, a large number of 
biologic model simulation explained that the chaos is 
widespread exist in biologic systems.  

Borrowing chaotic theory, chemotactic operator which 
was employed by the optimal individual of population 
will performs the chaos search strategy. The basic idea is 
introducing logistic map to optimization variables using a 
similar approach to carrier, and generate s set of chaotic 
variables, which can shown chaotic state [15,16]. 
Simultaneously, enlarge the traversal range of chaotic 
motion to the value range of the optimization variables. 
Finally, the better solution than current would found 
directly using chaos variable. The logistic map equation 
is given by equation (1):  

)1(1 iii xrxx −=+                          (1) 

where r (sometimes also denoted μ) is driving parameter, 
sometimes known as the "biotic potential", and is a 
positive constant between 0 and 4. Generally, r=4. xi 
represent the current chaos  variable, and xi+1 represent 
the next time’s . 

B. Assimilation Operator 
Much biology lives together in relationships where one 

depends upon the other. Individuals of population would 
find a way to share the natural resources, allowing both to 
survive. This interdependent relationship is known as 
mutualism. For example, some sparrows living together 
form a small group, when the member A know the best 
foraging position, which was found by member B, it 
would follow the foraging route of member B to foraging. 

During each iteration, a number of individuals are 
selected to performing assimilation operator. They gain 
resource directly from the optimal individual in the way 
of using a random step towards the optimal individual.  
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)(11 ipii XXrXX −+=+                            (2) 

where r1∈Rn is a uniform random sequence in the range 
(0,1). XP is the best individual of the current population. 
Xi is the position of an individual who perform 
assimilation operator and Xi+1 is the next position of this 
individual.  

C. Transposition Operator 
Biology has strong survival instincts, which would 

indicate organism foraging method. This is an individual 
behavior, which don’t reference to other individuals 
foraging information. Some animals are “cruise” or 
“ambush” searchers [17]. For the cruise approach to 
searching, the some forager moves continuously through 
the environment constantly searching for prey. For the 
ambush approach to searching, some forager sits and 
waits for prey to cross into strike range. In fact, the search 
strategies of some forager are in between the cruise and 
ambush, that is “salutatory” search. Fig. 2 gives the 
illustration of these strategies. To find better living 
conditions, survival instincts lead animals to migrate to a 
better habitat. Some animals migrate only short distances. 
Some animals are continually migrating great distances. 

 

 
Figure 2.  Search strategy for foraging animal. 

During each iteration, the rest individuals will perform 
transposition operator in a way of randomly migration 
within their own energy scope. 

∆⋅= )( ipi XXub                               (3) 

ii ublb −=                                          (4) 
                    iii lblbubr +−= )(2ϕ                            (5) 

ϕ+=+ ii XX 1                                      (6) 

where φ is the migration distance of Xi; r2 ∈ Rn is a 
normal distributed random number with mean 0 and 
standard deviation 1; ubi and lbi is the search space 
boundary of the ith individual; Δ is the range of the 
global search space. 

C. Crossover Operator  
Crossover operator means exchange of a pair of 

parent’s genes in accordance with a certain probability, 
and generates the new individual. In biologic life cycle, 
reproduction is an important feature. After individual 
mature, it will reproduction, whether sexual reproduction 

or asexual reproduction. Reproduction makes the 
continuation of species.  

In LSO, the crossover operator selects single-point 
crossover method. One crossover point is selected, string 
from beginning of individual to the crossover point is 
copied from one parent, and the rest is copied from the 
second parent. 

D. Selection Operator 
The reasons of biology death are varied. Some biology 

is illness or eaten by other predators or lack of nutrition 
resources for a long time and so on. But no matter what 
manner of biologic death, in general, those who survive is 
to adapt the living environment, which are eliminated are 
not suited to the biologic environment, which is Darwin's 
“the survival of the fittest” theory. In this algorithm, 
when some offspring were produced, the size of the 
population will increase. Overmuch individual and the 
limited resources will inevitably result in the struggle for 
existence. Then the survival chance is bigger for some 
biology which has stronger vitality, whereas it is smaller 
for the biologic with weak vitality. 

According to “the survival of the fittest” theory, and 
for ensuring a fixed population size, LSO take a certain 
method which can make some individuals were retained 
and others were eliminated. In this algorithm, the 
selection operator performs elitist selection strategy. A 
number of individuals with the best fitness values are 
chosen to pass to the next generation. 

E. Mutation Operator 
Mutations are changes in a genomic sequence. It is an 

accident in the development of the life, and is the result 
of adaptation to the environment. Mutations that change 
protein sequences are neutral or harmful for an organism, 
and also have a positive effect. When it is useful for a 
species or single organism, it would make them have 
more chances of survival, moreover it can continue in the 
future generations, and we can say that the evolution of 
species occurred. So mutation is important for the 
evolution, no mutation, and no evolution. A mutation 
may occur in any time in life cycle of an organism, and is 
common, random, low frequency and non-directional. 

In LSO, the mutation operator performs dimension-
mutation strategy. One dimension of an individual 
selected according to the probability will re-location in 
search space. 

                    lblbubrandxij +−= ))(1(                    (7) 

where ub and lb is the lower and upper boundary of 
search space. In the N-dimension search space, the xij is 
the position of the jth dimension of the ith individual; the 
value j is between in [1, N]. 

Because the mutation may occur at any time for an 
organism, so it always co-exists with other operators in 
LSO. That is when population has completed any stage 
(foraging or reproduction or death), population should 
carry out mutation operation according to the probability. 
Mutation operator makes this algorithm possess the 
capacity of random search in local scope, speed up the 
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convergence to the optimal solution when the solution is 
closer to the optimal solution. It also can maintain 
population diversity for prevention premature 
convergence. 

F. The Pseudo-code of LSO 
Lifecycle-based Swarm Optimization is a population-

based search technique, evaluation the fitness function, 
and establishes an iterative process through 
implementation six operators proposed above. Every 
population was composed by a certain number of 
individuals. In each iteration, firstly, an individual need 
choice foraging strategy and execute corresponding 
foraging operator based on own fitness value and 
foraging probability generated randomly, then followed 
by the mutation operation. The second stage is crossover 

operation, followed by the mutation operation. The third 
stage is selection operation and followed by the mutation 
operation. Finally, generate the next population which 
can represent the new solutions. In the optimization 
process, the optimization operation is random, but the 
characteristics shown us are not entirely random search. It 
can effectively utilize the historical information to 
speculate the next solutions, which has the possible of 
closer to optimum. Such process was repeated from 
generation to generation, and finally converges to the 
individual which was the most adaptable to environments, 
obtained the optimal solution. The Pseudo-code of the 
algorithm is shown in Table I. 

 

TABLE  I. 
PSEUDO CODE OF LIFECYCLE-BASED SWARM OPTIMIZATION ALGORITHM 

 Parameters Setting: Population size: S; dimensionality of search space: N; maximum iterations: Tmax; the lower and upper 
limits of the global search space: Blo, Bup; driving parameter of chaos search: r=4; crossover 
probability: Pc; mutation probability: Pm. 

 

 Born Stage: (1) Initialize the population with a normal distributed according to the U and Ө.  

  (2) Compute the fitness values of all individuals.  

 Growth Stage: (1) The best individual of population executes the chemotaxis operator via the chaos searching using 
the equation (1). 

 

  (2) A number of individuals selected via will perform assimilation operator using the equation (2).  

  (3) The rest individuals would execute the transposition operator using the equations (3) to (6).   

 
 

(4) Execute dimension-mutation operation to Swarm using equation (7) based on the mutation 
probability. 

 

 Reproduction Stage: (1) Randomly select a pair of individuals to implement single-point crossover operation. All 
individuals generated by crossover operation comprised the offspring-population, which is called 
SubSwarm.  

 

  (2) Execute dimension-mutation operation to SubSwarm  based on the mutation probability.  

  (3) Compute the fitness values of the  SubSwarm, and perform elitist selection operation.   

 Death Stage: (1) Sort all individuals of Swarm and SubSwarm in order of ascending fitness.  
  (2) The S individuals with the lower fitness were selected and others with higher fitness die.  

  (3) Execute dimension-mutation operation to Swarm based on the mutation probability.  

 

IV.  EXPERIMENTS AND RESULTS 

A. Parameters setting 
To fully evaluate the performance of the LSO 

algorithm without a biased, we employed 13 benchmark 
functions [18]. These functions were tested widely in 
evolutionary computation domain to show the quality 
solution and the convergence rate. Problems g02, g03, 
g08 and g12 are maximization problems. They were 
transformed into minimization problems using –f(x). 
Problems g03, g05, g11 and g13 include one or several 
equality constraints. All of these equality constraints were 
converted into inequality constraints, 0)( ≤−δxf , 
δ=0.000001. For each problem, Table Ⅱ shows the 
following parameters: 
l n: the number of variables. 
l f : the type of objective function. 

 
 
 
 
l ρ: the ratio between the feasible region and the      

whole search space.  
l LI: the number of linear inequalities.  
l NI: the number of nonlinear inequalities.  
l NE: the number of nonlinear equations.  
l a: the number of active constraints at the optimum.  

In these benchmark functions, g04 is the moderately 
constrained problems; g06 and g08 are highly 
constrained problems with low dimensionality; g09 are 
highly constrained problems with moderated 
dimensionality; g01, g02, g03, and g07 are highly 
constrained problems with high dimensionality; g02 
has very large feasible regions; g05 and g13 have very 
small feasible regions; g12 has even disjoint feasible 
regions; g10 has large search space with a very small 
feasible region. Moreover, the global optimal solution 
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of function g01, g02, g04, g06, g07, and g09 lies on 
the boundaries of the feasible region. 

B. Parameters setting 
We compared the optimization performance of LSO 

with the standard PSO. Experimental results are 
summarized in Table III. Each algorithm was tested with 
all numerical benchmarks and each experiment was 
repeated 30 times. In every run, the max iterations Tmax 
=3000. With the purpose of making the comparison fairly, 
the initialization populations for all the considered 
algorithms were generated using the same population. 
The same population size S=50.  

In LSO, the probability using for decision the 
individual’s foraging strategy Pf=0.1; the number of 
chaos variables Sc=100; crossover probability Pc=0.7; 
mutation probability Pm=0.02; the selection operation is 
roulette wheel method. The PSO algorithm we used in 
this paper is the standard algorithm. In PSO, the 
acceleration factors c1=1, and c2=1.49; and a decaying 
inertia weight w starting at 0.9 and ending at 0.4 was used. 
For every problem, the most common approach adopted 
to deal with constrained search spaces is the use of 
penalty functions [19]. In this paper, the penalty 
coefficient is a great value. 

TABLE II.   
CHARACTERISTICS OF THE TEST FUNCTIONS 

TF n Type of  f ρ LI NI NE a 

g01 13 quadratic 0.000235% 9 0 0 6 

g02 20 nonlinear 99.996503% 1 1 0 1 

g03 10 polynomial 0.000000% 0 0 1 1 

g04 5 quadratic 26.962511% 0 6 0 2 

g05 4 cubic 0.000000% 2 0 3 3 

g06 2 cubic 0.006679% 0 2 0 2 

g07 10 quadratic 0.000103% 3 5 0 2 

g08 2 nonlinear 0.859082% 0 2 0 0 

g09 7 polynomial 0.524450% 0 4 0 2 

g10 8 linear 0.000522% 3 3 0 3 

g11 2 quadratic 0.000000% 0 0 1 1 

g12 3 quadratic 4.775265% 0 1 0 0 

g13 5 nonlinear 0.000000% 0 0 3 3 

TABLE III.   
BEST VALUES OF LSO AND PSO 

Problem Optimal value LSO PSO 

g01 -15 -14.822 -15 

g02 0.803619 0.79982 0.77738 

g03 1 0.608 0 

g04 -30665.539 -30643 -30665 

g05 5126.4981 5128.6 5131.1 

g06 -6961.81388 -6961.8 -6961.8 

g07 24.3062091 25.849 24.885 

g08 0.095825 0.095825 0.095825 

g09 680.630057 680.63 680.63 

g10 7049.25 7085.9 7172.3 

g11 0.75 0.75009 1 

g12 1 0.48473 0.48473 

g13 0.0539498 0.045187 0.031081 

TABLE IV.   
WORST VALUES OF LSO AND PSO 

Problem Optimal 
value 

LSO PSO 

g01 -15 -14.594 -9 

g02 0.803619 0.73567 0.27602 

g03 1 0.12609 0 

g04 -30665.539 -30503 -30186 

g05 5126.4981 -------- -------- 

g06 -6961.81388 -6960.6 -------- 

g07 24.3062091 43.869 1638 

g08 0.095825 0.095825 0.095825 

g09 680.630057 681.76 680.72 

g10 7049.25 8726.2 -------- 

g11 0.75 0.99877 1 

g12 1 -------- -------- 

g13 0.0539498 -------- -------- 

(-------: infeasible  solution) 

TABLE V.   
MEAN VALUES OF LSO AND PSO 

Problem Optimal value LSO PSO 

g01 -15 -14. 706 -11.067 

g02 0.803619 0. 77112 0.52251 

g03 1 0.10723 0 

g04 -30665.539 -30571 -30656 

g05 5126.4981 5467 13461 

g06 -6961.81388 -6961. 5 -4096.5 

g07 24.3062091 33. 203 205. 47 

g08 0.095825 0. 095825 0. 095825 

g09 680.630057 680.87 680.66 

g10 7049.25 7721. 6 41034 

g11 0.75 0. 89687 1 

g12 1 40000 6.4e+005 

g13 0.0539498 8e+005 7.6e+005 

TABLE VI.   
STANDARD DEVIATION VALUES OF LSO AND PSO 

Problem LSO PSO 
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g01 0.066098 2.0998 

g02 0.019706 0.11555 

g03 0.17369 0 

g04 76.481 67.795 

g05 3248. 2 12437 

g06 0.26245 15694 

g07 4.7188 310.21 

g08 5.16E-17 2.49E-17 

g09 0.2187 0.023907 

g10 475.34 1.18E+05 

g11 0.090638 0 

g12 1.98e+05 4.85e+05 

g13 4.041e+005 4.314e+005 

V.  DISCUSSION OF RESULTS 

This paper compared LSO against PSO. The best 
results obtained in 30 runs by each approach are shown in 
Table III. The worst results are presented in Table IV, the 
mean values provided are compared in Table V and the 
standard deviations are listed in Table VI. Moreover, the 
optimal solutions known so far are also presented in 
Table III, Table IV and Table V. 

In Table III, an objective function value with bold 
typeface indicates that the corresponding solution is 
exactly equal to the best known solution. LSO can find 
the exact global optimum in four functions (g04, g06, g08, 
g09 and g11) and close to the global optimum in eight 
functions (g01, g02, g03, g04, g05, g07, g12 and g13). 
PSO find the exact global optimum in five functions (g01, 
g04, g06, g08 and g9) and close to the global optimum in 
seven functions (g02, g03, g05, g07, g11, g12 and g13). 
Judging from the best solutions obtained by them, the 
performance of PSO is better than LSO.  

From table IV we can see LSO performs better than 
the PSO. Firstly, LSO can’t seek the feasible solutions in 
30 runs on three functions (g05, g12 and g13) and PSO 
can’t seek it on 5 functions (g5, g6, g10, g12 and g13). 
Moreover it is worth noticing that all of the “worst” result 
obtained by LSO is even also the approximately global 
optimum solution in most of the problems. Both LSO and 
PSO can find the close to the global optimum solution in 
function g01, g02, g03, g04, g08, g09 and g011. 
Especially in functions g06 and g10, the solutions found 
by LSO are feasible and also near to the global optimum, 
but solutions found by PSO are infeasible.  

Table V and VI presents the mean solution and 
standard deviation in 30 independent runs. In these two 
tables, the value with bold typeface all indicates the better 
solution and lower standard deviation of two methods. 
With the exception of g04, g09 and g13, in all the other 
problems LSO reached the exact or close to global 
optimum and better than PSO. On most of problems, LSO 
presented a lower standard deviation. Fig.3~ Fig.7 are the 
convergence curve of LSO and PSO in some functions. 

The values of each point in curves are the mean best 
values in 30 independent runs.  

For function g01 and g11 which is shown in Fig. 3 and 
Fig. 4, in less than 100 iterations, both LSO and PSO 
have the fast convergence rate. Convergence curves of 
them decline rapidly and converge to local optimum 
solution, which was obtained by LSO and is better than 
PSO’s. From 100 iterations to end, the curve of PSO is 
still a straight line. It can’t find a better solution and 
deeply fall into the local optimum solution. However, 
LSO is different due to its ability of diversity, which can 
make LSO jump out of local optimal solution. For 
function g01 shown in Fig. 3, from 100th to 1000th 
iterations, the curve of LSO can continues to decline even 
though the speed is slow. In the end, LSO obtain the 
approximately global optimum solution. For function g11 
shown in Fig 4, at the 100th iteration, both LSO and PSO 
have found near to the global optimal solutions 0.8976 
and 1, respectively. The value obtained by LSO is better 
than PSO’s, and this situation continued until the end. 
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Figure 3.  Details of convergence curve in the first 1000 iterations on 

function g01. 
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Figure 4.  Details of convergence curve in the first 1000 iterations on 

function g11. 

Good examples are g06 and g07, where LSO showed a 
more robust behavior than PSO. LSO has a better 
optimization performance and good stability compared to 
PSO. LSO can reach the exact or near to the global 
optimum and obtain the lower standard deviation, but 
PSO can’t. Fig. 5 and Fig. 6 is the convergence curve of 
LSO and PSO in functions g06 and g07, respectively. We 
can see from these two figures, at the beginning of 
iteration, LSO has the faster convergence speed and rapid 
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converge to a local solution. With the increasing in the 
number of iterations, solution found by LSO is gradually 
close to the global optimum. Compared with LSO, at the 
beginning of iteration, PSO has the very slow 
convergence speed and converge to a local solution until 
about the 400th iterations. At the end of iterations, PSO 
still don’t find the exact or approximately optimal 
solution. Moreover, the bigger standard deviation 
demonstrates that the PSO has a strong instability.   
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Figure 5.  Details of convergence curve in the first 1000 iterations on 

function g06. 

For function g06, the global optimal solution is -6961.8. 
At the 100th iterations, the solution -5957 found by LSO 
is begun to approach it. However, at the 436th iterations, 
the solution -1199 found by PSO is still very far away 
from it. At about 988th iteration, the solution -6940 found 
by LSO is better than obtained in the early and is close to 
optimal solution. But the value -1231 found by PSO is 
still a worst solution.  
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Figure 6.  Details of convergence curve in the first 1500 iterations on 

function g07. 

Similarly, for function g07, the process of seeking 
optimum and the quality of the final solution of LSO and 
PSO is the same with function g06. Even if the true 
optimal solutions not found by these two algorithms, we 
still can observe that LSO also obtained a better “worst” 
result than PSO. On functions g12, LSO has sought the 
feasible solution but PSO hasn’t.  

A remarkable example is g05, g10 and g12, where 
LSO and PSO were not able to reach the global optimum 
and showed a considerably high variability of results 
from run to run. This may be due to the fact that function 

g10 has a large search spaces (based on the intervals of 
the decision variables) with a very small feasible region; 
function g05 have small feasible regions and its type of 
combined constrained is cubic and function g12 has even 
disjoint feasible regions. On functions g05 and g10, LSO 
has sought the close to optimal solutions but PSO can’t. 
As described in Fig. 7, before the 1785th iteration, LSO 
converge rapidly and find a close to optimal solution 
5561, but the value 1.49e+4 found by PSO is far away 
from the optimum. From the 1785th iteration to end, the 
solution of PSO still can’t obtain great improve.  
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Figure 7.  Details of convergence curve on function g05. 

Only for function g04, g09 and g13, PSO perform 
better than LSO. Function g04 is a moderately 
constrained problems; g09 is a highly constrained 
problems with moderated dimensionality. For these two 
functions, LSO and PSO all find the close to optimal 
solution, which was found by LSO slightly worst than 
PSO’s. We can see from Fig. 8, on function g09, LSO has 
the same fast convergence speed as PSO in the early 
evolution, but gradually the convergence speed of LSO is 
slower than PSO, and obtained a relative poor value in 
the end. Function g13 has small feasible regions, and its 
type of combined constrained is nonlinear. On this 
function, the best mean values of two methods are all 
very worst.  
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Figure 8.  Details of convergence curve in the first 1000 iterations on 

function g09. 

VI.  LSO IN SOLVING VEHICLE ROUTING PROBLEM 

In order to verify the efficiency of our approach to 
settle practical problem and testing the goodness of LSO 
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as compared with other existing methodologies, the 
Vehicle Routing Problem (VRP) benchmark instance was 
selected as the testing case. VRP is a very complex 
combinatorial optimization problem and the commonest 
problem in logistics distribution system. Its purpose is to 
design the least costly (distance, time) routes for a fleet of 
capacities vehicles to serve geographically scattered 
customers. Because complexity of the actual problem, so 
there are many restrictions in VRP such as the capacity 
for each vehicle, total traveling distance allowed for each 
vehicle, time window to visit the specific customers, and 
so forth. VRP has been proved to be an NP-complete 
problem [20, 21]. 

A. Problem  despcrition of VRP 
The VRP is described as follows: The problem with 

one center storehouse and some customers is considered. 
Some vehicles are available to carry the cargo for all the 
customers. The main objective function is to minimize 
the transport cost. Generally the transport cost is 
simplified as the routing length. Assume that the depot is 
node 0(i=0), and L(i=1,2,…,L) customers are to be served 
by K(k=1,2,…,K) vehicles, the demand of customer i is gi, 
the capacity of vehicle q, the distance of traveling from 
customer i to customer j is cij. Then the objective function 
is shown as below: 

                          ∑∑ ∑
= = =

K

k

L

i

L

j
ijkij xc

1 0 0
mizemin                 (8) 

Subject to: 

                  kqyg ki
L
i i ∀≤∑ = ,1

                                      (9) 

                  kLiyK
k ki ∀==∑ = ;,,1,11  L                  (10) 

                  kLiyxL
i kjijk ∀==∑ = ;,,1,0  L                (11) 

                 kLiyxL
j kiijk ∀==∑ = ;,,1,0  L                    (12) 

where xijk is a binary variable indicating whether vehicle 
k arrives at node  j from node i, if vehicle k arrives at 
node j from node i, then xijk=1, otherwise, xijk =0. yki is a 
binary variable indicating whether the node i is served by 
vehicle k, if the node i is served by vehicle k, then yki =1, 
otherwise, yki=0. The objective function in (8) aims to 
minimize the total distance. Constraint set (9) regulates 
that the load of each vehicle should not exceed its 
capacity. Constraint set (10) represents each customer 
demand must be satisfied and only fulfilled by one 
vehicle. Constraint sets (11) and (12) ensure that there 
has only one vehicle which arrival and departure from a 
customer. 

B. Experiment and resuslts 
The computation data was cited from [22]. It was 

shown as follows: a distribution center delivers products 
to eight customers by two vehicles; each customer’s 
demand and the distance matrix were listed in Table IV, 
in which the value 0 indicates the distribution center. The 
load capacity and the speed of vehicles are 8t and 50km/h, 
respectively. The demand of this problem is arrange the 

vehicle requested route reasonable, and make the total 
costs minimum, which is the shortest transportation 
distance.  

TABLE VII.   
CUSTOMER’S DISTANCE AND DEMAND 

C 0 1 2 3 4 5 6 7 8 

0 0 4 6 7.5 9 20 10 16 8 

1 4 0 6.5 4 10 5 7.5 11 10 

2 6 6.5 0 7.5 10 10 7.5 7.5 7.5 

3 7.5 4 7·5 0 10 5 9 9 15 

4 9 10 10 10 0 10 7.5 7.5 10 

5 20 5 10 5 10 0 7 9 7.5 

6 10 7.5 7.5 9 7.5 7 0 7 10 

7 16 11 7.5 9 7.5 9 7 0 10 

8 8 10 7.5 15 10 7.5 10 10 0 

Demand 1 2 1 2 1 4 2 2 

 
For this instance, this paper adopts the real number 

encoding [23]. In this paper, the LSO was compared with 
two well-known algorithms: PSO and GA. In experiment, 
the individual numbers, S=60; the max iterations Tmax 
=1000, each experiment was repeated 30 times. The rest 
parameters setting of LSO and PSO are same as the 
section IV. The crossover probability and mutation 
probability of GA is 0.7 and 0.5, respectively. Table VIII 
shows the comparison results of three algorithms. In this 
table, an objective function value with bold typeface 
indicates that the corresponding solution is exactly equal 
to the best known solution. The “Worst” and the “Best” 
represents the maximum and the minimize value obtained 
by these methods, respectively. The success ration means 
the number of seeking the exactly optimal solution in 30 
runs.  

TABLE VIII.   
THE EXPERIMENTAL RESULTS OF THREE ALGORITHMS 

 LSO PSO GA 

Worst 69 74.5 74 

Best 67.5 67.5 67.5 

Mean Best 67.95 71.1 70.117 

Std 0.6991 1.6421 1.4953 

Success ratio 20 11 9 

 
It is shown in this Table that all of the methods have 

even sought the optimal route distance 67.5 and the route 
schedules is 0→4→7→6→0 and 0→l→3→5→8→2→0. 
However in the 30 runs, the max solution found by LSO 
is 69, which is also close to the optimal solution, and is 
much lower than the max solution found by PSO and GA. 
Moreover, for LSO solutions, 20 runs out of 30 the 
solutions are exactly same as the best-known solution and 
the remainders are only slightly larger than the best-
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known solutions. But the contrary results were obtained 
by PSO and GA, there are a few successes run in 30 runs. 
In term of computational effort as shown in Fig. 9, LSO 
is faster than other algorithms. 
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Figure 9.  Convergence curve of LSO, PSO and GA. 

VII.  CONCLUSIONS 

Based on biological life cycle theory, this paper 
proposed a Lifecycle-based Swarm Optimization 
algorithm. In this algorithm, six operators were employed: 
chemotactic, assimilation, transposition, crossover, 
selection and mutation. An individual in the population 
gradually grow though performing either chemotactic 
operator, or assimilation operator or transposition 
operator. Population generates offspring via crossover 
operation. Some individuals will die using selection 
operation. Additionally, biological mutation may occur at 
any time, this method employ mutation operator. The 
approach was tested using 13 widely used benchmark 
problems, which include various constrained problems, 
and a small-scale vehicle routing problem. On 13 
benchmark functions, the results obtained showed a very 
substantial potential of LSO based on quality of results. 
LSO can seek the feasible optima solution of almost all 
test cases, but PSO can’t, and on some problems, LSO’s 
performance remarkably outperforms other algorithms. 
Meanwhile, the standard deviations also reveal the strong 
robustness of LSO. Since the performance of LSO on test 
function g05, g012 and g13 is not satisfied, a more 
profound study in improving LSO though tuning 
parameters or other method is absolutely necessary in 
future work. Another direction of future work is to apply 
this method to the large-scale vehicle routing problem or 
other areas.   
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