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Abstract—Speech emotion recognition is an important issue 
in the development of human-computer interactions. In this 
paper a series of novel robust features for speech emotion 
recognition is proposed. Those features, which derived from 
the Hilbert-Huang transform (HHT) and Teager energy 
operator (TEO), have the characteristics of multi-resolution, 
self-adaptability and high precision of distinguish ability. In 
the experiments, seven status of emotion were selected to be 
recognized and the highest 85% recognition rate was 
achieved within the classification accuracy of boredom 
reached up to 100%. The numerical results indicate that the 
proposed features are robust and the performance of speech 
emotion recognition is improved substantially. 

 
Index Terms—HHT, Signal trend, Teager energy operator, 
instantaneous frequency, speech emotion recognition 
 

I.  INTRODUCTION 

In the development of human-computer interactions, 
such a system must be able to create an affective 
interaction with users: it must have the ability to perceive, 
interpret, express and regulate emotions [1]. In this case, 
recognizing users’ emotional state is one of the main 
requirements for computers to successfully interact with 
humans. Most studies for the emotion recognition system 
were focused on facial expression and speech signal 
analysis. However, the human emotions can be expressed 
in ways of gestures and physiological signals such as 
electromyogram (EMG), electrooculogram (EOG) and 
electroencephalogram (EEG), because emotion status is 
inherently reflected in the activity of the nervous system 
[2].  

In the field of signal processing, extracting and 
eliminating the signal trend is an important part of signal 
processing. The existence of signal trend would result in 
great error with respect to the correlation analysis in time 
domain or power spectral analysis in frequency domain, 
and even lead to the completely loss of the authenticity of 
the low-frequency spectrum[3]. The speech signal is 
more stable after the removal of signal trend, so that it is 
more in line with the assumption that the speech signals 
are stationary in a short time. The current methods of 
eliminating the signal trend are average slope method, 
finite difference method, low-pass filtering method, the 
least-squares fitting methods and the wavelet method, etc. 

Nevertheless, these methods typically require a 
presumption that the signal trend is linear, or polynomial, 
or exponential, which is not feasible to deal with the 
signals possess complex and random changes. 

The traditional speech signal processing are based on 
the two basic assumptions: the human vocal system is 
linear, and the speech signals are stationary in a short 
time. In the modern signal processing, however, the 
nonlinear and non-stationary signals are used as the 
objects of signal analysis and processing. Consequently, 
traditional methods of dealing with non-stationary signals 
such as Short-time Fourier transform (SFT), 
Wigner-Ville Distribution (WVD) and Wavelet 
Transform are not appropriate under such cases because 
all of the approaches aforementioned are essentially 
based on the Fourier transform, which cannot free 
themselves from the limitations of Fourier analysis. 
Furthermore, the operation of framing is based on the 
assumption of short-term stable, which resulted in the 
disclosure of spectrum information; even windowing 
cannot be a good solution to this problem. 

In 1998, N.E.Huang from NASA proposed a new 
signal analysis method named Hilbert-Huang Transform 
(HHT) [4]. It is applied to analyze the nonlinear and 
non-stationary signals. The HHT method includes two 
steps [5]. The first step is preprocessing of the original 
data. In this step, original data will be transformed into n 
order Intrinsic Mode Function (IMF), which satisfying 
the requirements of the Hilbert Transform by the method 
of Empirical Mode Decomposition (EMD). EMD 
classifies the signals from high frequency to low 
frequency into a number of orders of IMF. The whole 
process reflects the multi-scale filtering courses. The 
convergence criteria of EMD guarantees that the residual 
term r୬ is monotone function, of which the cycle is 
greater than the signal record length. Therefore,  EMD 
method can be applied without any priori assumption, 
through the r୬ to easily identify and extract the signal 
trend. In the second step, Hilbert Transform method will 
be used on each order of IMF to calculate the 
instantaneous frequency. All those results can be 
employed to create an integrated time-frequency figure 
finally. Compared with the traditional processing of 
nonlinear and non-stationary signals, HHT has the 
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characteristics of multi-resolution, self-adaptability and 
high precision to distinguish. HHT is essentially to 
conduct a smooth treatment to a non-smooth signal, by 
the result to gradually decompose the different scale of 
fluctuation or the tendency existing in the signals so as to 
produce series of data alignment that are with various 
characteristic scales. HHT hasn’t any fixed prior-basis 
and its decomposition is totally based on the data itself. 
This can avoid the fake components which are produced 
during the FFT. The IMF is educed based on the time 
characteristic scale of series data. Different series data 
can produce different IMF. Each IMF can be regarded as 
an inherent modal of the signal. The instantaneous 
frequency, thereby, obtained by the HHT has clear 
physical meaning and can express the local characters of 
the signal. 

HHT method has been widely used since the inception 
because of its superiority in many areas such as the 
nonlinear systems analysis [6] [7], the marine 
environmental analysis [8], earthquake physics [9], 
bio-medical field [10], equipment fault diagnosis and 
vibration engineering [11] [12]. Although much research 
has been conducted on majority of aforementioned 
studies, there has been limited work implemented in the 
area of speech emotion recognition (SER). One recent 
study considered SER using the Hilbert marginal 
spectrum reported the best recognition rate of 90% 
obtained, which is 22 percentages higher than the Fourier 
Transform based feature MFCC [13].  

In this paper, the classification effect of the MFCC 
extracted from the speech signal after the removal of 
signal trend, which is called SMFCC, is verified firstly. 
Secondly, we focused on the aspect of HHT based 
instantaneous energy. With this approach, a novel feature 
called ECC and its improved features named TECC and 
EFCC were extracted. Finally, combination of the ECC, 
TECC and EFCC with the SMFCC were carried out. The 
proposed features were evaluated for the task of SER 
using HMM, and it is shown that the SMFCC, ECC, 
TECC and EFCC outperform the traditional short-term 
average energy, pitch and MFCC substantially. 

The paper is organized as follows. Section II describes 
the project outline and implementation of the intelligent 
emotional robot. Section III enunciates the HHT method. 
Next, Section IV provides the feature extraction 
approaches proposed in this paper. Section V presents the 
experimental results and analysis based on the features 
extracted in Section IV. Finally, Section VI gives some 
concluding remarks. 
 

II.  HHT METHOD 

A.  Empirical mode decomposition (EMD) [17] 
EMD is a signal analysis method which is based on 

the time scale characteristics of data themselves to 
perform signal decomposition without any presumed 
basic function. EMD is established on the basis of 
hypothesis of the following: 

(a) Time signal ( )x t has at least two extremum points: 
one is the maximum point and the other is the minimum 
point. 

(b) Time featured scale is decided by time apart of the 
continuous extremum points. 

(c) In case the ( )x t is without an extremum, but 
inflection points, its extremum is able to be obtained by 
one or more orders’ differentials, and finally to get the 
result of integration of sub-values. 

This method is derived from the assumption that any 
signal consists of a series of simple but different intrinsic 
modes of oscillation. Each linear or non-linear mode will 
have the same number of extreme and zero crossings, and 
there is only one extreme between successive zero 
crossings. Each mode should be independent of the 
others. In this way, each signal can be decomposed into a 
number of IMFs, and each IMF must satisfy the 
following definitions [18]: 

(a) In one column of data, the numbers pass through 
zero and extremum point must be equal, or with one 
number difference at most. 

(b) At any point, the average value of envelopes that 
determined at local maximum point and that of the local 
minimum must be zero. 

Among the two conditions mentioned above, the first 
one is similar to the narrow band requirement of the 
traditional stationary Gaussian Process while the second 
is a new limit condition raised up by Mr. Huang and et al, 
i.e. modified the traditional overhaul condition to local 
condition, so that to avoid harmful fluctuation of 
instantaneous parameter which is caused by asymmetric 
shape of signal wave. An IMF represents a simple 
oscillatory mode compared with a common simple 
harmonic function. By definition, any temporal signal

( )x t can be decomposed as follows: 
(1) Identify all of the local extrema and then connect 

all of the local maxima with a cubic spline line as the 
upper envelope. 

(2) Repeat step (1) for the local minima to produce the 
lower envelope. The upper and lower envelopes should 
cover all of the data between them. 

(3) The mean of the upper and lower envelope value is 
designated as 1m , and the difference between the signal

( )x t and 1m is the first component, 1h , i.e., 

 ( ) 1 1x t m h− =                (1) 

Ideally, if 1h  is an IMF, then 1h  is the first component 

of ( )x t . 

(4) If 1h  is not an IMF, then it is treated as the 
original signal, and steps (1) to (3) are repeated; then, 

1 11 11h m h− =                (2) 

where 11m  is the mean of the upper and lower envelope 

values of 1h . After repetitive sifting, i.e., up to k  times 

until 1kh  becomes an IMF, that is, 

990 JOURNAL OF COMPUTERS, VOL. 6, NO. 5, MAY 2011

© 2011 ACADEMY PUBLISHER



1( 1) 1 1k k kh m h− − =             (3) 
It is then designated as 

1 1kc h=                  (4) 

which is the first IMF component of the original data; 1c  
should contain the finest scale or the component of the 
signal that has the shortest period. 

(5) Separate 1c  from ( )x t  to obtain the residue 1r  
as 

( )1 1r x t c= −                (5) 

where 1r  is treated as the original data. By repeating the 

above steps, the second IMF component, 2r  of ( )x t , 
can be obtained. If the above procedures are repeated n  
times, then n  types of the IMFs of signal ( )x t  can be 
created by 

1 2 2

1n n n

r c r

r c r−

− = ⎫
⎪
⎬
⎪− = ⎭

               (6) 

The decomposition process is stopped when nr  
becomes a monotonic function from which no more IMFs 
can be extracted. By summing up Eqs. (5) and (6), the 
general form is 

1
( ) ( )  ( )

n

j n
j

x t c t r t
=

= +∑            (7) 

Residue nr  is the mean trend of ( )x t . The IMFs 

1 2, , ..., nc c c  include different frequency bands 
that range from high to low. The frequency components 
contained in each frequency band are different, and they 
change according to the variation of signal ( )x t , whereas 

nr  represents the central tendency of signal ( )x t . 
B.  Intrinsic mode function (IMF) [17] 

The Intrinsic Mode Function (IMF) is the signal that is 
satisfied with the following two conditions: 

1) In one column of data, the numbers pass through 
zero and extremum point must be equal, or with one 
number difference at most. 

2) At any point, the average value of envelopes that 
determined at local maximum point and that of the local 
minimum must be zero. 

Among the two conditions mentioned above, the first 
one is similar to the narrow band requirement of the 
traditional stationary Gaussian Process while the second 
is a new limit condition raised up by Mr. Huang and et al, 
i.e. modified the traditional overhaul condition to local 
condition, so that to avoid harmful fluctuation of 
instantaneous parameter which is caused by asymmetric 
shape of signal wave. To determine if ݄ଵሺݐሻ is IMF or 
not, is just to see whether ݄ଵሺݐሻ is satisfied with the two 
conditions mentioned above. If not, ݄ଵሺݐሻ is taken as 
 ሻ according to formula (8), as theݐሻ, calculate ݄ଵଵሺݐሺݔ
following formula: 

11 1 11( ) ( ) ( )h t h t m t= −                     (8)   
Repeat the above process by m times, until IMF is 

fully satisfied with the necessary conditions, then ݄ଵሺݐሻ 
is the first IMF, put it down as ܿଵሺݐሻ which expresses 
the highest frequency element among the signal data. 
Minus ܿଵሺݐሻ  from ݔሺݐሻ , a new data sequence ݎଵሺݐሻ 
without high frequency element is thus obtained.  

1 1 1( ) ( ) ( )r t x t c t= −                           (9) 
Taken ݎଵሺݐሻ as the repeated step (1) of the original data 
sequence, then a series of ݎଵሺݐሻ  and the final 
non-depositional order ݎ௡ሺݐሻ that named residual term 
representing ݔሺݐሻ mean value or tendency is achievable. 
Consequently, the original data sequence ݔሺݐሻ  may 
represent the sum of a group of IMF values plus a 
residual term as shown in the following formula: 
 

1
( ) ( ) ( )

n

nj
j

x t t tc r
=

= +∑                 (10) 

 
C.  Hilbert energy spectrum 

When all of the IMF of time signals ݔሺݐሻ  are 
collected, implement Hilbert transform to each IMF sub 
value as follow: 

 
1 ( )( ) X tY t p dt

t tπ
+∞

−∞

′
′=

′−∫                   (11) 

Take ܺሺݐሻ as the real part and ܻሺݐሻ as the imaginary 
part, thus construct the analytic signal ܼሺݐሻ： 

( )( ) ( ) ( ) ( ) j tZ t X t iY t a t e θ= + =         (12) 

Where ࣵሺݐሻ is the instant amplitude and ߠሺݐሻ is the 
instant phase as follows which perfectly reflected the 
instantaneity of data. 

2 2( ) ( ) ( )a t t tX Y= +                     (13) 

( )( ) arctan
( )

Y tt
X t

θ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

          (14) 

          
Consequently, the definition of instantaneous 

frequency is: 
( )( ) d tt

dt
θω =                               (15) 

Upon the Hilbert transform is done to IMF values, the 
original data sequence  ሻ can be explained as theݐሺݔ 
following: 

( )( ) Re ( ) i
j t dt

i
X t ta e ω∫= ∑           (16) 

Here, the residual term ݎ௡ሺݐሻ  is omitted, and then 
show the amplitude on the frequency-time plane, so 
constructed the Hilbert-Huang amplitude spectrum, 
simplified as Hilbert Spectrum which accurately 
describes the variable rule of the signal amplitude value 
in the whole frequency band as the frequency and time 
variation. Definite the ܴ݁ to represent the real part. The 
formula (16) can be explained as the following:  
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( )

1

( , ) Re ( ) i

n
j t dt

i
i

wH t ta eω
=

∫= ∑         (17) 

Then the Hilbert spectrum of the original signal is 
obtained through the sum of the Hilbert spectrum of all 
the IMF components: 

1

( , ) ( , )
n

i
i

H t tHω ω
=

=∑             (18) 

If we only consider the energy corresponding to time 
while ignoring its frequency information, the expression 
of IMF marginal energy can be obtained. Owing to 
energy can be described as amplitude square, therefore, 
the Hilbert energy spectrum is obtained through the 
amplitude square in formula (19) denoted as ܧሺݐሻ. ܧሺݐሻ 
reflects the distribution rule of signal energy in various 
space (or time) scale to some extent.  

2( ) ( , )E t t dH
ω

ω ω= ∫               (19) 

The Hilbert energy spectrum of the original signal is 
obtained through the sum of the Hilbert energy spectrum 
of all the IMF components: 

1

( ) ( )
n

i
i

E t tE
=

= ∑                     (20) 

     
III.  FEATURE EXTRACTION 

A.  SMFCC: the EMD based signal reconstruction 
method 
The convergence criteria of EMD guarantees that the 
residual term nr is monotone function, of which the cycle 
is greater than the signal record length. Therefore,  EMD 
method can be applied without any priori assumption, 
through the nr to easily identify and extract the signal 
trend. In addition, besides the long-period items which is 
greater than the recording time, some more complex 
signal trend need to be considered. Ultimately, the 
definition of the signal trend can be extended to the 
amounts of IMF of which the frequency is lower than the 
specified frequency cf . The zero-crossing rate detection 
method was performed in the study to identify and extract 
the signal trend. By setting a certain threshold, we can 
calculate the slowly changed signal trend. Threshold 
formula is as follows:  

    If 
1

0.01iIMF

IMF

R
R

<  ( 2,3... )i n=           (21) 

where R  represents the zero-crossing rate. Then iIMF  
is the signal trend, the sum of which is denoted as  

( )r
i

T t IMF=∑                 (22) 

Subsequently, the ( )rT t  was subtracted from the 
original speech signal, the rest of which is a relatively 
stable speech signal, denoted as ( )xS t .  

( ) ( ) ( )x rS t X t T t= −             (23) 

( )X t  represents the original speech signal. 
In this paper, the simulation results inform that general 

speech signal can be decomposed into about 18 IMFs, in 
which the top 10 IMFs can be classified to the ( )xS t . 

  Table 1 illustrates an example in the respect of the 
zero-crossing rate of each order of IMF.  

Table 1.  The zero-crossing rate of each order of IMF 

each order of IMF zero-crossing rate 
IMFଵ 
IMFଶ 
IMFଷ 
IMFସ 
IMFହ 
IMF଺ 
IMF଻ 
IMF଼ 
IMFଽ 
IMFଵ଴ 
IMFଵଵ 
IMFଵଶ 
IMFଵଷ 
IMFଵସ 
IMFଵହ 
IMFଵ଺ 
IMFଵ଻ 
residual 

19990 
12447 
8223 
5638 
3003 
1615 
1011 
753 
487 
262 
149 
79 
37 
21 
11 
6 
2 
0 

As shown in the table 1, from the beginning of 11IMF
, the zero-crossing rate compared with that of the 1IMF  
has already less than 0.01. Therefore, each order of IMF 
greater than the 11IMF is the slowly changed signal trend, 
and can be eliminated when performing the speech signal 
processing. 

For extracting the S_MFCC feature, EMD method was 
conducted on the original speech signal firstly. Secondly, 
the zero-crossing rate of each order of IMF was 
calculated, and ( )xS t  was obtained according to 
(8)(9)(10). Thereby, the S_MFCC was obtained by 
calculating the MFCC of ( )xS t . MFCCs with 12 orders 

were computed as in (11) where M  is the number of 
cepstrum coefficients and kX  represents the log-energy 

output of the k  filter.  
20

1

1[ ( ) ] , 1, 2,..,
2

s
2

o
0

c  ki
k

MFCC i k i MX π
=

= − =∑
             (24) 

 
B.  ECC: Hilbert energy spectrum based features 

The process of extracting ECC is presented as follows. 
Firstly, a frame size of 25ms and a shift of 12.5 ms were 
performed. Consequently, the spectrum was divided into 
a number of sub-bands and overlaps existed between the 
sub-bands. Afterwards, calculate the natural logarithm of 
sub-band energy and complement the discrete cosine 
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transform (DCT), the 12-order cepstrum parameters were 
extracted as the compositions of ECC. 
C.  Improved features of ECC: TECC and EFCC 

By the algorithm proposed above, two improvements 
were developed based on analysis of the Hilbert energy 
spectrum. 

1) Combination with the Teager energy operator. The 
majority of studies in the field of SER have concentrated 
on the features derived from a linear speech production 
models which assume that airflow propagates in the vocal 
tract as a plane wave. This pulsatile flow is considered 
the source of sound production. According to studies by 
Teager [18], however, this assumption may not hold since 
the flow is actually separate and concomitant vortices are 
distributed throughout the vocal tract. Teager suggested 
that the true source of sound production is actually the 
vortex-flow interactions, which are nonlinear. This 
observation was supported by the theory in fluid 
mechanics [19] as well as by numerical simulation of 
Navier–Stokes equation [20]. It is believed that changes 
in vocal system physiology induced by emotional 
conditions such as muscle tension will affect the 
vortex-flow interaction patterns in the vocal tract [21]. 
Therefore, nonlinear speech features are necessary for 
classification of different emotional status. 

In an effort to reflect the instantaneous energy of 
nonlinear vortex-flow interactions, Teager developed an 
energy operator, with the supporting observation that 
hearing is the process of detecting the energy. The simple 
and elegant form of the operator was introduced by 
Kaiser as 

[ ]
2

2( ) ( ) ( ) ( )
c

dx t x t x t x t
dt t

d
d

ψ
⎡ ⎤⎡ ⎤= − ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

          (25) 

Where ߰  is Teager energy operator (TEO), and ݔሺݐሻ  
is single component of the continuous speech signal. 

Since speech is represented in discrete form in most 
current speech processing systems, Kaiser [22] derived 
the operator for discrete-time signals from its continuous 
form as 

[ ] 2( ) ( ) ( 1) ( 1)x n n x n x nxψ = − + −         (26) 

Where ݔሺ݊ሻ is sampled speech signal. 
As a powerful nonlinear operator, TEO gives a 

remarkable performance in the field of background noise 
suppression and signal feature extraction. It retained the 
quasi-steady-state assumptions in cepstral analysis, and 
thus more effective characterizations of the complexity of 
speech signals can be obtained. In this paper, therefore, 
feature extraction by combining the Hilbert energy 
spectrum with the TEO was carried out and the features 
named TECC were extracted. The purpose here is to 
identify whether the nonlinear instantaneous energy 
features are effective when performing emotion 
recognition.  

For extracting TECC feature, the TEO was applied to 
the Hilbert energy spectrum firstly, and then a frame size 
of 25ms and a shift of 12.5 ms were employed for 
windowing. Consequently, the spectrum was divided into 
a number of sub-bands and overlaps existed between the 

sub-bands. Finally, calculated the natural logarithm of 
sub-band energy and complement the DCT, the 12-order 
cepstrum parameters were extracted as the compositions 
of TECC. 

2) Instantaneous frequency-weighted energy. Hilbert 
energy spectrum is the distribution of energy in the time 
domain. Although precise expression of the energy is 
obtained, the instantaneous frequency, however, is 
ignored. In a separate study [23], according to the results 
of analysis of emotional speech, distribution of spectral 
energy also varies on speech produced under different 
emotions. It is suggested that emotion may affect energy 
distribution of speech among different frequency bands. 
With compare to neutral speech, it is shown that 
additional energy is typically moved from low to high 
frequency bands with regard to angry, happy and sad 
emotion [24]. Energy distribution varies due to different 
frequencies, lead to the main energy is located in 
different bands under various emotions. The traditional 
time-domain energy analysis, thereby, was verified 
neglecting the breath-noise and consonants which have 
low amplitude but the high frequencies. Aside from this, 
the instantaneous energy of each IMF components is 
considered to be proportional with the amplitude ࣵሺݐሻ 
and has nothing to do with the instantaneous frequency 
߱ ሺݐሻ in current standard approach. However, according 
to the physical model of instantaneous frequency, not 
only the instantaneous energy is included in the energy 
envelope of ࣵሺݐሻ, but also in the instantaneous frequency 
߱ሺݐሻ. Since the internal energy is proportional with its 
circumferential velocity by physical sense. In light of the 
above considerations, instantaneous frequency-weighted 
energy was developed to improve the ECC, and thus the 
features called EFCC were obtained. 

The instantaneous frequency-weighted energy is 
conducted by the weighted operation using instantaneous 
frequency of each IMF from formula (15): 

( )2( ) ( , ) ( )EF t t t dH
ω

ω ω ω= ×∫           (27) 

 Then the instantaneous frequency-weighted energy of 
the original signal is obtained through the sum of the 
instantaneous frequency-weighted energy of all the IMF 
components: 

1

( ) ( )
n

i
i

EF t tEF
=

= ∑                       (28) 

The weighted operation using instantaneous frequency 
included the influence factors of amplitude as well as 
frequency, and reflected the density of energy distribution 
to some extent likewise. With this approach, the effects of 
breath-noise and consonants on the SER were well 
considered. 

For extracting EFCC, the instantaneous energy were 
multiplied with its corresponding instantaneous 
frequency, and then windowing procedure were 
performed as above. Consequently, the energy spectrum 
via weighted operation was divided into a number of 
sub-bands and overlaps existed between the sub-bands. 
Afterwards, calculated the natural logarithm of sub-band 
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energy and complement the DCT, the 12-order cepstrum 
parameters were extracted as the compositions of EFCC. 

 
IV.  EXPERIMENTAL RESULTS AND ANALYSIS 

A.  Speech Database 
The Berlin emotional speech database [25] was applied 

in our studies. Five female and five male actors uttered 
ten sentences in German that have little emotional content 
textually. The speech was recorded with 16-bit precision 
and at a sampling rate of 22 kHz. A total of 490 
utterances were divided among seven emotional classes: 
neutral, anger, fear, joy, sadness, disgust and boredom. 
The duration of the utterances varies from one to two 
seconds. 70% of the utterances were used for training and 
the rest for testing. 
B.  Results and Analysis 

Continuous Hidden Markov Models were trained to 
constitute our SER system with each HMM has 5 Status 
and 5 Gaussian mixtures. Additionally, the confusion 
degree was calculated aside from the recognition 
accuracy for the purpose of measuring the confusion 
conditions between two emotions which defined as 
follows: 

        100%ij jiM
N

N N+
= ×                   (29) 

Where ड़ܰढ़  is the number of samples of emotion ݅ 
which mistakenly identified as emotion ݆. Likewise, ढ़ܰड़ is 
the number of samples of emotion ݆ which mistakenly 
identified as emotion ݅ . ܰ  is the total number of 
samples for testing.  

Four groups of comparative experiments were 
designed in this paper. All of the features used here also 
included their derived parameters: the first and 
second-order differential. 

1). MFCC and SMFCC were employed as the first 
group. The numerical results were elucidated from table I 
to table II. 
 

TABLE I. EXPERIMENTAL RESULTS USING MFCC 

Emotion Recognized emotion(%): 74.29 on average 

Anger Boredom Disgust Fear Happiness Neutral Sadness 
Anger 70 0 0 0 30 0 0 

Boredom 0 90 10 10 0 30 5 

Disgust 5 0 90 0 10 5 5 

Fear 5 0 0 70 10 0 5 

Happiness 15 0 0 0 50 0 0 

Neutral 5 0 0 15 0 65 0 

Sadness 0 10 0 5 0 0 85 

 
TABLE II. EXPERIMENTAL RESULTS USING SMFCC 

Emotion Recognized emotion(%): 76.43 on average 

Anger Boredom Disgust Fear Happiness Neutral Sadness 
Anger 70 0 0 0 25 0 0 

Boredom 0 80 5 10 0 5 15 

Disgust 5 5 90 0 5 15 0 

Fear 10 0 5 75 10 5 0 

Happiness 15 0 0 0 60 0 0 

Neutral 0 0 0 20 0 75 0 

Sadness 0 15 0 5 0 0 85 

 
   The results illustrate that compared with MFCC, 
SMFCC improved the overall classification capacity by 
2.14%, which proves that the speech signal after 
eliminating the signal trend is more adaptable to be 
employed as the speech database. 

2). Short-term average energy (ASE), ECC, TECC and 
EFCC were employed as the second group to observe 
their performance in the SER. The numerical results were 
elucidated from table III to table VI. 

 
TABLE III. EXPERIMENTAL RESULTS USING ASE 

emotion Recognized emotion(%): 48.57 on average 
Anger Boredom Disgust Fear Happiness Neutral Sadness 

Anger 40 0 10 0 5 0 0 
Boredom 0 70 15 5 5 40 15 
Disgust 10 0 25 15 20 10 10 
Fear 10 0 10 45 5 0 0 
Happiness 15 5 10 0 60 5 0 
Neutral 15 15 15 15 5 40 15 
Sadness 10 10 15 20 0 5 60 

 
 

TABLE IV. EXPERIMENTAL RESULTS USING ECC 

emotion Recognized emotion(%):64.29 on average 
Anger Boredom Disgust Fear Happiness Neutral Sadness 

Anger 70 0 0 5 20 0 0 
Boredom 0 65 0 0 5 20 15 
Disgust 5 5 75 5 10 10 5 
Fear 15 10 5 75 10 10 0 
Happiness 10 5 0 5 45 0 0 
Neutral 0 10 20 5 10 55 15 
Sadness 0 5 0 5 0 5 65 

 
TABLE V. EXPERIMENTAL RESULTS USING TECC 

emotion Recognized emotion(%):68.57 on average 
Anger Boredom Disgust Fear Happiness Neutral Sadness 

Anger 65 0 0 0 10 0 0 
Boredom 0 75 15 5 0 25 30 
Disgust 0 0 60 5 0 5 5 
Fear 20 0 5 75 0 5 0 
Happiness 10 0 5 0 85 0 0 
Neutral 5 15 15 10 5 65 10 
Sadness 0 10 0 5 0 0 55 

 
 

TABLE VI. EXPERIMENTAL RESULTS USING EFCC 

emotion Recognized emotion(%): 67.14 on average 

Anger Boredom Disgust Fear Happiness Neutral Sadness 
Anger 65 0 0 5 20 0 0 

Boredom 0 85 25 0 0 25 25 

Disgust 0 5 65 5 0 0 5 

Fear 20 0 0 65 5 5 0 

Happiness 10 0 5 5 75 5 0 

Neutral 0 0 5 15 0 55 5 
Sadness 5 10 0 5 0 10 60 

 
The results reveal that in comparison with ASE, 

15.72%, 20.00% and 18.57% relative improvements of 
classification capacity were obtained when using the 
HHT based instantaneous energy feature ECC and its 
improved features, TECC and EFCC. It predominantly 
proves that the proposed features perform better than the 
traditional short-term average energy which can provide a 
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more accurate description of the distribution and changes 
of energy in the time domain. Moreover, from the point 
of view of single emotion, the higher classification ratios 
were obtained when using ECC to recognize disgust and 
fear utterances, and the same when using TECC for the 
happiness and EFCC for the sadness. 

3). Hilbert energy spectrum is the distribution of 
energy in the time domain. Although precise expression 
of the energy is obtained, the instantaneous frequency, 
however, is ignored. MFCC have good performance in 
description of the human ear's auditory characteristics, 
and the frequency spectrum under Mel frequency domain 
can be obtained, as a result, through the short-term 
analysis techniques of the time domain signal. Taking the 
considerations aforesaid into account and for the purpose 
of investigating whether the proposed features can have 
better performance, the combination of MFCC with ECC, 
TECC and EFCC were performed in this group of 
comparative experiments. The numerical results were 
given out from table VII to table XI. 

 
TABLE VII. EXPERIMENTAL RESULTS USING ASE AND MFCC 

Emotion Recognized emotion(%): 77.86 on average 

Anger Boredom Disgust Fear Happiness Neutral Sadness 
Anger 80 0 0 0 30 0 0 

Boredom 0 80 0 5 0 10 10 

Disgust 5 0 85 10 0 5 5 

Fear 5 0 0 70 5 0 0 

Happiness 10 0 0 10 60 0 0 

Neutral 0 15 10 5 5 85 0 

Sadness 0 5 5 0 0 0 85 

 
TABLE VIII. EXPERIMENTAL RESULTS USING F0 AND MFCC 

Emotion Recognized emotion(%): 78.57 on average 

Anger Boredom Disgust Fear Happiness Neutral Sadness 
Anger 75 0 0 0 20 0 0 

Boredom 0 95 15 10 0 5 15 

Disgust 5 0 70 0 0 0 10 

Fear 5 0 0 70 10 0 0 

Happiness 10 0 5 5 70 0 0 

Neutral 5 5 10 10 0 95 0 

Sadness 0 0 0 5 0 0 75 

 
TABLE IX. EXPERIMENTAL RESULTS USING ECC AND MFCC 

emotion Recognized emotion(%): 80.00 on average 

Anger Boredom Disgust Fear Happiness Neutral Sadness 
Anger 80 0 0 0 15 0 0 

Boredom 0 80 10 0 0 15 5 

Disgust 5 0 90 10 5 5 5 

Fear 5 0 0 75 5 5 0 

Happiness 10 0 0 0 75 0 0 

Neutral 0 20 0 10 0 75 5 

Sadness 0 0 0 5 0 0 85 

 

 

TABLE X. EXPERIMENTAL RESULTS USING TECC AND MFCC 

emotion Recognized emotion(%): 81.43 on average 

Ange
r 

Boredo
m 

Disgus
t 

Fea
r 

Happines
s 

Neutra
l 

Sadnes
s 

Anger 80 0 0 0 25 0 0 

Boredom 0 90 5 5 0 10 0 

Disgust 0 0 80 10 0 0 10 

Fear 10 0 5 80 5 10 0 

Happines
s 

0 0 0 0 70 0 0 

Neutral 0 10 10 5 0 80 0 

Sadness 0 0 0 0 0 0 90 

 
 

TABLE XI. EXPERIMENTAL RESULTS USING EFCC AND MFCC 

emotion Recognized emotion(%): 83.57 on average 

Ange
r 

Boredo
m 

Disgus
t 

Fea
r 

Happines
s 

Neutra
l 

Sadnes
s 

Anger 75 0 0 0 5 0 0 

Boredom 0 100 15 0 0 5 5 

Disgust 0 0 75 5 5 0 10 

Fear 15 0 0 75 5 5 0 

Happines
s 

10 0 0 0 85 0 0 

Neutral 0 0 10 15 0 90 0 

Sadness 0 0 0 5 0 0 85 

 
 
Table I indicate that the recognition rate is not 

satisfying when using only the MFCC features. In an 
exhaustive review, it is better to combine ECC, TECC 
and EFCC with MFCC. 5.71%, 7.14% and 9.28% relative 
improvements of classification capacity were obtained 
when compared with MFCC. The performance of 
emotion classification is improved with increment of 
2.14%, 3.57% and 5.71% when compared with 
ASE+MFCC and with increment of 1.43%, 2.86% and 
5.10% when compared with F0+MFCC.The classification 
results also demonstrate that in comparison with ECC, 
the improved features TECC and EFCC have better 
performances in terms of accuracy with increment of 
1.43% and 3.57%. Furthermore, the combination of 
EFCC with MFCC is found to provide the best 
discrimination for the task of SER in this group. It is also 
suggested that the combination of time-domain 
characteristics with frequency domain characteristics can 
greatly improve the classification accuracy since the 
emotional information reflected in both the aspects of 
time domain and frequency domain. 

4).To further boosts the recognition rate and to 
combine with the improved features of MFCC in the first 
group, the combination of SMFCC with ECC, TECC and 
EFCC were performed as the fourth experimental group. 
The numerical results were provided from table XII to 
table XIV. 

 
 
 
 
 

JOURNAL OF COMPUTERS, VOL. 6, NO. 5, MAY 2011 995

© 2011 ACADEMY PUBLISHER



TABLE XII. EXPERIMENTAL RESULTS USING ECC AND SMFCC 

emotion Recognized emotion(%): 81.43 on average 

Ange
r 

Boredo
m 

Disgus
t 

Fea
r 

Happines
s 

Neutra
l 

Sadnes
s 

Anger 85 0 0 0 15 0 0 

Boredom 0 80 10 0 0 15 5 

Disgust 5 0 90 10 5 5 0 

Fear 0 0 0 75 5 5 0 

Happines
s 

10 0 0 0 75 0 0 

Neutral 0 20 0 10 0 75 5 

Sadness 0 0 0 5 0 0 90 

 
 

TABLE XIII. EXPERIMENTAL RESULTS USING TECC AND SMFCC 

emotion Recognized emotion(%): 82.14 on average 

Ange
r 

Boredo
m 

Disgus
t 

Fea
r 

Happines
s 

Neutra
l 

Sadnes
s 

Anger 80 0 0 0 25 0 0 

Boredom 0 90 5 5 0 5 0 

Disgust 0 0 80 10 0 0 10 

Fear 10 0 5 80 5 10 0 

Happines
s 

0 0 0 0 70 0 0 

Neutral 0 10 10 5 0 85 0 

Sadness 0 0 0 0 0 0 90 

 
 

TABLE XIV. EXPERIMENTAL RESULTS USING EFCC AND SMFCC 

emotion Recognized emotion(%): 85.00 on average 

Ange
r 

Boredo
m 

Disgus
t 

Fea
r 

Happines
s 

Neutra
l 

Sadnes
s 

Anger 80 0 0 0 5 0 0 

Boredom 0 100 15 0 0 5 5 

Disgust 0 0 80 5 5 0 10 

Fear 10 0 0 75 5 5 0 

Happines
s 

10 0 0 0 85 0 0 

Neutral 0 0 5 15 0 90 0 

Sadness 0 0 0 5 0 0 85 

 
 
In this group of experiment, the proposed features of 

our work: SMFCC, ECC, TECC and EFCC performed 
better. The recognition rate with increment of 1.43%, 
0.71% and 1.43% were obtained when compared 
ECC+MFCC, TECC+MFCC, EFCC+MFCC with 
ECC+SMFCC, TECC+SMFCC, EFCC+SMFCC 
respectively. Moreover, it is worth noting that the 
recognition rate of boredom emotion reached up to 100%. 

Through the above analysis it is quite evident that the 
proposed features SMFCC, ECC, TECC and EFCC are in 
fact, effective because of the superiority of HHT method 
and the improved approach presented in this paper. 

The confusion degree of 21 groups of emotions and 
their mean in the third and fourth group of experiments 
were calculated as shown in Fig.1 to Fig.3. 

 
 
 

TABLE XV.  21 GROUPS OF EMOTIONS  

No. of emotions               Emotion types 
1         Anger-Boredom 
2         Anger-Disgust 
3         Anger-Fear 
4         Anger-Happiness 
5         Anger-Neutral 
6         Anger-Sadness 
7         Boredom-Disgust 
8         Boredom-Fear 
9         Boredom-Happiness 
10         Boredom-Neutral 
11         Boredom-Sadness 
12         Disgust-Fear 
13         Disgust-Happiness 
14         Disgust-Neutral 
15         Disgust-Sadness 
16         Fear-Happiness 
17         Fear-Neutral 
18         Fear-Sadness 
19         Happiness-Neutral 
20         Happiness-Sadness 
21         Neutral-Sadness 

 
 

 
 

Fig.1. confusion degree of 5 experiments in the group III 
 

As is shown in the figure above, F0+MFCC and 
ASE+MFCC perform comparably, while the 
ECC+MFCC, TECC+MFCC and EFCC+MFCC 
outperform them in terms of confusion degree especially 
in the group of Anger-Happiness.  

 
 

 
Fig.2. Average confusion degree of 5 experiments in the group III 

 
Fig.2 illustrates that the groups of 6, 9, and 20 have the 

smallest confusion degree and the group of 4 has the 
largest confusion degree. Therefore, it is obviously 
demonstrated that anger and sadness, boredom and 
happiness, happiness and sadness are the emotions most 
easily to be distinguished. Anger and happiness are the 
emotions most easily to be confused with each other. 
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Fig.3. confusion degree of 3 experiments in the group IV 
 

Fig.3 portrays that the features of EFCC+SMFCC has 
the lowest confusion degree in this experimental group. 
Thus confirms that a more precisely calculation of the 
signals' instantaneous energy and a more complete 
description of the signal oscillation modes can be 
obtained by EFCC compared with ECC and TECC. 

From the point of view of single emotion, the feature 
combination which has the highest recognition rate was 
enumerated in table XVI. 

 
TABLE XVI. FEATURE COMBINATION WHICH HAS THE HIGHEST 

RECOGNITION RATE OF SINGLE EMOTION  

Anger ECC+SMFCC（85%） 

Boredom EFCC+MFCC, EFCC+SMFCC（100%） 

Disgust MFCC,ECC+MFCC, ECC+SMFCC（90%） 

Fear TECC+MFCC, TECC+SMFCC（80%） 

Happiness TECC,EFCC+MFCC, EFCC+SMFCC（85%） 

Neutral F0+MFCC（95%） 

Sadness TECC+MFCC, ECC+SMFCC, TECC+SMFCC
（90%） 

 
The results, except the Neutral emotion, manifest that 

in the aspect of single emotion, all of the highest accuracy 
rates were obtained by the proposed features and their 
combinations with the MFCC or the SMFCC. Apart from 
this, the proposed features of TECC, EFCC+MFCC and 
EFCC+SMFCC performed better in the promotion of the 
classification accuracy of happiness which has the most 
dissatisfactory recognition effect. The validity of the 
features proposed in this paper, subsequently, is further 
confirmed. 

 
V.  CONCLUSIONS 

Signal processing is one of the key points of feature 
extraction. EMD method can extract or remove the 
average of the data series effectively and adaptively. It 
also can get rid of the trend part of the data and 
decompose the complicated data into some liner and 
stationary mode. Furthermore, different with FFT, which 
is based on cosine functions, HHT is self-adaptive and 
can acquire better performance in some signal segments, 

and these make it can be used in analyzing both 
stationary and non-stationary signals. To that end, 
Hilbert-Huang Transform method was employed in this 
paper which focused on the aspect of HHT based 
instantaneous energy. With these approaches, a improved 
feature of MFCC named SMFCC were developed, and 
another novel feature called ECC and its improved 
features TECC and EFCC were extracted. The proposed 
features are evaluated for the task of SER using HMM 
and it is shown that the SMFCC, ECC, TECC and EFCC 
features outperform traditional short-term average 
energy, pitch and MFCC substantially.  

In the future, a speech emotion recognition system that 
combines with facial features and EEG involved in 
multimodal interactions will be investigated. 
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