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Abstract—Graph coloring problem (GCP) is one of the most 
studied combinatorial optimization problems. It is 
important in theory and practice. There have been many 
algorithms for graph coloring problem, including exact 
algorithms and (meta-)heuristic algorithms. In this paper, 
we attempt another meta-heuristic method⎯particle swarm 
optimization to graph coloring problem. Particle swarm 
optimization (PSO) was originally developed for continuous 
problem. To apply PSO to discrete problem, the standard 
arithmetic operators of PSO are required to be redefined 
over discrete space. A conception of distance over discrete 
solution space is introduced. Under this notion of distance, 
the PSO operators are redefined. After reinterpreting the 
composition of velocity of a particle, a general discrete PSO 
algorithm is proposed. In order to solve graph coloring 
problem by the discrete PSO algorithm, an algorithm to 
implement the crucial PSO operator⎯difference of two 
positions (solutions) is designed. Then, a hybrid discrete 
PSO algorithm for graph coloring problem is proposed by 
combining a local search. Empirical study of the proposed 
hybrid algorithm is also carried out based on the second 
DIMACS challenge benchmarks. The experimental results 
are competitive with that of other well-known algorithms. 
 
Index Terms—graph coloring problem, DIMACS 
benchmarks, discrete particle swarm optimization, distance, 
redefinition of operators 
 

I.  INTRODUCTION 

The graph coloring problem (GCP) is one of the most 
studied combinatorial optimization problems. The 
challenge is, given a graph, to find the least number of 
colors for which there is a coloring of the vertices of the 
graph in which no two adjacent vertices bear the same 
color. The least number of colors needed to color a graph 
G  is called its chromatic number, denoted ( )Gχ . A 
graph that can be assigned a legal (conflict-free) k-
coloring is k-colorable.  

The problem of coloring a graph has found numerous 
applications including for instance, scheduling, register 
allocation in compilers and frequency assignment in 
mobile networks. Unfortunately, the problem is very 
difficult to solve. The problem of finding the chromatic 
number is NP-hard. The corresponding decision problem 

(Is there a coloring which uses at most k  colors?) is NP-
complete [1]. 

The problem is most often solved by using a conflict 
minimization algorithm. Given k  colors, a coloring is 
sought which minimizes the number of conflicts (i.e., the 
number of adjacent vertices bearing the same color). Here 
we can find the sequential algorithms (those that color 
one vertex at a time, such as well-known DSATUR [2] 
and RLF [3]) and (meta-)heuristic algorithms (such as 
tabu search [4][5], simulated annealing [6], genetic 
algorithms [7], ant colony optimization [8], variable 
neighborhood search [9] and variable space search [10], 
etc.). In this paper, we attempt an adaptation of another 
meta-heuristic method⎯particle swarm optimization to 
graph coloring problem. 

Particle swarm optimization (PSO) is a population-
based search algorithm, originated from the simulation of 
the social behavior of birds within a flock. Since particle 
swarm optimization as a method for optimization of 
continuous nonlinear problem was introduced by James 
Kennedy and Russell Eberhart in 1995 [11], it has been 
used across a wide range of applications, such as image 
and video analysis, design and restructuring of electricity 
networks, control, antenna design, electronics and 
electromagnetics, and so on [12].  

Particle swarm optimization was originally developed 
for continuous-valued spaces. The simplest and necessary 
change to the PSO for discrete problems is discretization 
of the position vectors. For more complex discrete 
problems over combinatorial spaces, the standard 
arithmetic operators used in the velocity and position 
equations,　including addition, subtraction and 
multiplication, need to be redefined. General　 ly, these 
changes also change the interpretation of velocity, 
particle trajectory, velocity clamping and momentum [13]. 

There have been a few attempts to extend PSO to 
discrete spaces. Kennedy and Eberhart developed a 
discrete binary version of PSO that operates on binary 
space [14]. Clerc designed a discrete PSO for solving 
traveling salesman problem [15]. Moraglio et al. 
generalized PSO to any type of solution space by 
introducing a topological/ geometric crossover [16]. In 
[17], the original PSO operator was generalized in a 
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formal manner to permutation problem domain using 
forma analysis in form of equivalence relations. 

In this paper, inspired by the idea in [16], we redefine 
the standard operators of PSO and reinterpret the 
components of velocity of a particle for optimization of 
discrete problems. And then we propose a hybrid discrete 
PSO algorithm for graph coloring problem by combining 
a local search. Empirical study of the proposed hybrid 
algorithm is also carried out based on the DIMACS 
benchmarks. 

II.  GENERALIZATION OF PSO TO DISCRETE SPACE 

A.  Notion of Distance over Discrete Solution Space 
The generalization of PSO to discrete space involves 

redefining the standard PSO operators over discrete space. 
Taking into account the basic idea of PSO, the 
redefinition of the operators must manage to embody a 
true distance in the search space. A true distance should 
be a good measure of difference of two points in the 
search space. Based on the work in [16], we introduce a 
notion of distance which is a good foundation for discrete 
PSO. 

Definition 1 (Solution space) A (discrete) solution 
space is a pair ( , )S o  where S  is a set of solutions and o  
is an operator which operates on an element in S  and 
generates another one. The operator must be reversible 
and connected (any solution can be transformed into any 
other by applying the operator a finite number of times). 

A (discrete) solution space ( , )S o  is associated with (or 
represented by) an undirected graph (known as state-
space graph in most artificial intelligence 
literatures) ( , )G V E=  where V S=  and 

{( , ) | , , ( ) }i j i j i jE s s s s S o s s= ∈ = . A vertex in the graph 
G  represents a solution in S  and an edge represents an 
application of operator which operates on one of 
endpoints of the edge to produce the other endpoint of the 
edge. For example, a set of binary strings with length 3 
and an operator which reverses one bit of a binary string 
from 0 to 1 or 1 to 0 constitutes a solution space. Fig. 1 
illustrates its associated state-space graph. 

 
 
 
 
 
 
 
 
 
 
 
Fig. 1 An example of state-space graph with which a solution space 

is associated 
 
Definition 2 (Metric space) A metric space is a pair 

( , )M d  where M  is a set and d is a metric or distance 

on M , i.e., a function :d M M R× → such that for any 
x , y  and z  in M  

(1) ( , ) 0d x y =  if and only if x y= ; (identity) 
(2) ( , ) ( , )d x y d y x= ; (symmetry) 
(3) ( , ) ( , ) ( , )d x z d x y d y z≤ + . (triangle inequality) 
Here, we introduce a notion of distance over a given 

solution space which meets above three properties. 
Definition 3 (Distance) Given a solution space ( , )S o , 

a distance of two solutions is S∈  and js S∈  is the least 
number of consecutive applications of the operator 
required for transforming is  into js . The definition 
implies that there exists a sequence of applications of the 
operator: ( ) , ( ) ,..., ( )i k k l t jo s s o s s o s s= = = . 

Under the above notion of distance, a given (discrete) 
solution space ( , )S o  can induce a corresponding metric 
space ( , )M d  where M S=  and the distance between 
two solutions is S∈  and js S∈ , ( , )i jd s s  conforms to 
definition 3. For the metric space ( , )M d  induced by the 
solution space ( , )S o , there is an intuitive geometric 
explanation for the distance ( , )i jd s s  of is  and js , i.e. it 
is the length of a shortest path between the two nodes, 
respectively representing is  and js , in the associated 
state-space graph. In above example, there are two 
shortest paths from 000 to 101 with length 2, i.e. 
000 001 101↔ ↔  and 000 100 101↔ ↔ . So 

(000,101) 2d = . Indeed, such a distance is the so-called 
Hamming distance. 

Definition 4 (Line segment) Given a metric space 
( , )M d , a line segment between x M∈  and y M∈ is a 
set { | ( , ) ( , ) ( , )}z z M d x z d z y d x y∈ ∧ + = , usually 
denoted as [ ; ]x y . Here x  and y  are called extremes of 
the segment. The length of a line segment is equal to the 
distance between its two extremes. 

For above example, line segment 
[000;111] {000,001,100,101}= . 

Let ( , )M d  be the metric space induced by a solution 
space ( , )S o . From the geometric perspective, the line 
segment between x  and y  is the set of all solutions 
represented by vertices on any shortest paths connecting 
vertices representing x  and y , respectively. The length 
of the line segment is the length of any shortest path. 

B.  Generalization of PSO to Discrete Space 
In canonical PSO, the velocity v  and position 

(candidate solution) x  of a particle at time step 1t +  are 
updated as 

1 1 2 2( 1) ( ) ( ( ) ( )) ( ( ) ( ))v t wv t c r p t x t c r g t x t+ = + − + −  (1) 
( 1) ( ) ( 1)x t x t v t+ = + +     (2) 

where p  and g  are personal best position of the 
particle and the best position of its neighborhood, 
respectively. w  is an inertia weight, 1c  and 2c  are two 

000 001 

010 

100 101 

110 111 

011 
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acceleration coefficients, and 1r  and 2r  are two random 
numbers in [0,1] . 

To generalize PSO to discrete solution space, we are 
required to redefine all the arithmetic operators in 
equation (1) and (2). Most important of them is the 
difference of positions of two particles. The basic idea of 
traditional PSO is any particle moves close to the best of 
its neighbors and return to the best position of itself so far, 
in other words, the particle try to reduce both the distance 
from the best of its neighbors and the distance from the 
best position of itself so far. In terms of the notion of 
distance over a (discrete) solution space, for any positions 
x  and y , x  can be transformed into y  through 
applying the operator along one of shortest paths between 
them in turn. Every application of the operator decreases 
the distance between x  and y  by 1. Thus, the difference 
of two positions (candidate solutions) of particles can be 
viewed as any sequence of applications of operator which 
transforms one position into the other one. 

Definition 5 (Difference of two positions) For any 
position x  and y , the difference of them, x y− , is a 
sequence of least number of consecutive applications of 
operator i.e. ( ), ( ),...., ( )x y v o x o r o t− = =  such that 

, , ,..., , [ ; ], ( ) , ( ) ,...., ( )x r s t y x y o x r o r s o t y∈ = = = . 
Difference of two positions results in a velocity, in other 
words, a velocity is also a sequence of applications of 
operator. 

Definition 6 (Product of number and velocity) 
Supposing that [0,1]φ ∈  is a real number and 

1 2 ... dv o o o= ( ( 1,2,..., )io i d=  is the i -th application of 
the operator) is a velocity, the product of them, vφ  is a 
subsequence of v  such that [ ]1 2 ... ( )kv o o o k cdφ = = . 

Definition 7 (Sum of position and velocity) Supposing 
that x  is a position and 1 2 ... dv o o o=  is a velocity, the 
sum of them, x v+ , is a new position such that 

(... ( ( )))x v o o o x+ = ( d  consecutive applications of the 
operator). 

In Eq. (1), the velocity of particle is composed of three 
components, known as inertia, cognitive component and 
social component, respectively. Since velocity is defined 
as a sequence of applications of operator which 
transforms a position into another position or iconically a 
shortest path from one position to another, sum of two 
velocities is deficient in meaningful geometric 
explanation. Therefore, the sum of two velocities is not 
introduced. Particles, however, are driven by two forces: 
one from its best neighbor (corresponding to social 
component) and the other from its best position so far 
(corresponding to cognitive component). Here the two 
forces are dealt as follows: each one is assigned with a 
probability, pprob  for force from personal best and 

nprob  for force from neighbor best position, respectively. 
1p nprob prob+ =  is met, i.e., at any time step, the 

update of a particle is influenced by exactly one of the 
two components. 

Now, we can describe the discrete PSO algorithm as 
follows: 

 
Algorithm 1 Discrete PSO algorithm 
Input: a problem with discrete domain 
Output: a (near) optimal solution 

 
Create and initialize an N -dimensional swarm, S; 
REPEAT 

FOR each particle i S∈  DO 
IF ( ) ( )i if x f p<  THEN i ip x← ; 

ENDFOR 
FOR each particle i S∈  DO 

arg min{ ( ) | ( ) }
j

i j
p

g f p j Neighbor i S← ∈ ⊂ ; 

ENDFOR 
FOR each particle i S∈  DO 

Generate a random number [0,1)δ ∈  
IF 0 pprobδ≤ <  THEN 1( )i i iv r p x← − ; 
IF 1nprob δ≤ <  THEN 2 ( )i i iv r g x← − ; 

i i ix x v← + ; 
ENDFOR 

UNTIL stopping condition is true; 

 
Notice that the inertia component is omitted and the 

functionality of acceleration coefficients 1c  and 2c  which 
weight the contribution of personal best and 
neighborhood best to velocity are replaced by pprob  and 

nprob . 

III. HYBRID DISCRETE PSO ALGORITHM FOR GCP 

The usual definitions about graph coloring problem are 
formally formulated as follows: 

Definition 8 (Graph k-coloring problem) Given a 
graph ( , )G V E= , where V  and E  are respectively the 
set of vertices and the set of edges and a positive integer 
k , the graph k-coloring problem is to determine whether 
there exists a conflict-free vertex coloring using k  colors 
or less, i.e. a function : {1,2,..., }c V k→  such that 

( , ) , ( ) ( )u v E c u c v∀ ∈ ≠ . If such a coloring exists, G  is 
said to be k-colorable. 

Definition 9 (Graph Coloring problem) Given a graph 
G , the graph coloring problem is to determine the 
smallest k  such that G  is k-colorable, i.e. to find out its 
chromatic number. 

The above definitions view GCP as an assignment of 
colors to the vertices of the graph, which is not proper for 
optimization algorithms to solve the coloring problem 
because of permutation symmetry. In terms of Definition 
8, for a given graph, the number of all possible k-
colorings is | |Vk (the number of all possible functions 
from V  into {1, 2,..., }k ), in other words, there are | |Vk  
candidate solutions for an optimization algorithm to 
search. Indeed, for any k-coloring : {1, 2,..., }c V k→  of a 
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graph, another coloring ' : {1,2,..., }c V k→  such that 
, '( ) ( ( ))v V c v I c v∀ ∈ =  where :{1,2,..., } {1,2,..., }I k k→  

is a bijection (permutation) is the same k-coloring of the 
graph. A more efficient method involves the equivalence 
of GCP to the problem of partitioning the vertex set into 
k  or fewer independent sets. In the sense of partition, 
coloring c  and 'c  are identical. Under the notion, a 
coloring of a graph can be formulated as follows: 

Definition 10 (Coloring) Given a graph ( , )G V E= , a 
coloring C  of G  is a partition of V  into disjoint subsets, 
i.e., { | , , , }i i i jC V V V i j i j V V= = ∧∀ ≠ ∩ = ΦU . 

The number of possible partitions of V into k  
nonempty disjoint subsets is the Stirling number of the 
second kind (| |, )S V k . Hence, the number of all possible 
partitions of V into k  or less disjoint subsets is 

1
(| |, )k

i
S V i

=∑  which is much less than | |Vk . For this 
reason, to solve the graph k-coloring problem, an 
optimization algorithm may only search much less 
solutions. 

The graph coloring problem can be viewed an 
optimization problem (to minimize k ), while k-coloring 
problem is its corresponding decision problem (to 
determine whether there exists a k-coloring or not). If one 
can solve k-coloring problem, one can also solve coloring 
problem by the following iterative approach: find a k-
coloring for a fixed k , then decrease k  ( 1k k= − ) until 
no conflict-free k-coloring can be found. 

To solve a problem by above discrete PSO algorithm, 
the difference of two positions must be evaluated, i.e. 
find out a sequence of least number of applications of 
operator over solution set. Firstly, however, the solution 
space need to be determined, i.e. the set solution is 
determined and an operator is defined or designed. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2 An example of state-space graph for solution space of 3-
coloring problem 

 
For k-coloring problem, an operator, say move , that 

transforms a solution into another solution is designed as 
changing the color of a vertex into another color or 
imaginatively moving a vertex from a color class into 
another color class. A constraint on the operator is that it 
can not be applied to a color class containing only one 
element to prevent generating an illegal solution. In Fig. 2, 
an example of state-space graph for solution space of 3-

coloring problem is illustrated. The symbol on an edge is 
the vertex being moved for transforming into each other 
of two solutions connected by the edge. 

Secondly, we need to calculate difference of two 
positions (candidate solutions), in other words, to find out 
the shortest path between two solutions. For graph 
coloring problem, we adopt the partition-based 
representation of solution formulated in Definition 10. In 
terms of [18], the problem of solving distance of two 
partitions can be reduced to an assignment problem. It’s 
well known that an assignment problem can be solved by 
Hungarian algorithm with 3(| | )O V time complexity [19]. 
By virtue of Hungarian algorithm, we can easily complete 
the construction of difference of two partitions. The full 
procedure is depicted as Algorithm 2. The cost matrix of 
corresponding assignment problem is constructed first. 
Then the maximum assignment problem is solved using 
Hungarian algorithm which generates maximum 
assignment indexed by the subscripts of selected elements. 
For k-coloring problem, this means that the vertices 
belonging to corresponding intersection of two color 
classes need not be moved. Finally, all other vertices 
must be moved for transforming one coloring into 
another. For details of Hungarian algorithm, see [19]. 

 
Algorithm 2 Calculation of difference of two partitions 
Input: two partitions (colorings) of k-coloring problem 

1 2{ , ,..., }s s s s
kC V V V=  and 1 2{ , ,..., }t t t t

kC V V V=  
Output: a set Γ  of vertices which will moved according 
to the sequence of applications of operator move  
transforming sC  into tC  
 
Create cost matrix ( )k k ijA a× = ; 
FOR 1, 2,...,i k=  DO 

FOR 1, 2,...,j k=  DO 
| |s t

ij i ja V V← ∩ ; 
ENDFOR 

ENDFOR 
Calculate maximum assignment {( , )}i jΛ = using 
Hungarian algorithm; 

{}Γ ← ; 
FOR any ( , )i j ∉Λ  DO 

( )s t
i jV VΓ ← Γ∪ ∩ ; 

ENDFOR 
 
Metaheuristic hybrids that in some way manage to 

combine the advantage of population-based methods with 
the strength of trajectory methods are often very 
successful [20]. For the discrete PSO (metaheuristic) for 
graph coloring problem, a local search (trajectory method) 
algorithm is inserted after each update of each particle. 
One of the successful local search methods that has been 
proposed for solving graph coloring problems is Tabucol 
[21]. Tabucol is a tabu search algorithm developed by 
Hertz and de Werra in 1986 [4]. Here, we use the 
improved version of Tabucol by Galinier and Hao [22]. 

{a}, {b}, {c, d} 

{a}, {b, c}, {d}{a}, {b, d}, {c} 

{a, b}, {c}, {d} 

{a, c}, {b}, {d}{a, d}, {b}, {c} 
d 

d 

c 

c 
a 

d c 

b b 

a a 
b 
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Tabucol iteratively modifies the color of a single vertex 
to decrease progressively the number of conflicting edges 
until a legal k-coloring is obtained. A tabu list is used in 
order to escape from local optima and to avoid short term 
cycling. Let ( , )move v i denote moving vertex v  to color 
class iV  and ( , )v iδ  denote the decrement of number of 
conflicts after execution of the movement. We describe 
the algorithm formally as follows: 

 
Algorithm 3 Tabu search for k-coloring problem 
Input: A graph ( , )G V E=  and an initial k-coloring 

1 2{ , ,...., }kC V V V=  of G  
Output: An improved k-coloring * * * *

1 1{ , ,...., }kC V V V=  
 

*C C← ; 
0iter ← ; 

REPEAT 
Choose a candidate ( , )move v i  with maximum ( , )v iδ ; 
Add ( , )move v i  to the tabu list for t  iterations; 
Execute ( , )move v i and generate a new coloring C′ ; 
IF *( ) ( )f C f C′ <  THEN *C C ′← ; 

1iter iter← + ; 
UNTIL TABUiter MAX=  or *( ) 0f C =  

 
Notice that only critical moves involving conflicting 

vertices are considered. In [22], the tabu tenure t  for a 
move depends on the number ( )F C  of conflicting 
vertices in the current coloring: [0-9] 0.6 ( )t U F C= + , 
where [0-9]U  is random integer between 0 and 9. The 
fitness function ( )f C  for GCP evaluates the number of 
conflicting edges in the coloring C . TABUMAX  is the 
maximum number of iterations for Tabucol. 

To mitigate the effect of premature convergence, a 
stochastic factor is introduced as one of components of 
velocity. The stochastic factor is stemmed from the 
influence of a point chosen at random imposing on the 
current velocity. For graph coloring problem, a coloring 

rC  is generated at random with probability rprob  and 
then 3 ( )rr C C−  serves as the impact of a stochastic 
coloring. Now, we present the hybrid discrete PSO 
algorithm for k-coloring problem in algorithm 4. 

 
Algorithm 4 Hybrid Discrete PSO algorithm for k-
coloring problem 
Input: A graph ( , )G V E=  and number of colors k  
Output: A best k-coloring of G  

 
Create and initialize a collection of N  k-colorings, S; 

0iter ← ; 
REPEAT 

FOR each k-coloring C S∈  DO 
IF ( ) ( )pf C f C<  THEN pC C← ; 

ENDFOR 

FOR each k-coloring C S∈  DO 
arg min{ ( ) | ( ) }g

C
C f C C Neighbor C S

′
′ ′← ∈ ⊂ ; 

ENDFOR 
FOR each k-coloring C S∈  DO 

Generate a random number [0,1)δ ∈ ; 
IF 0 pprobδ≤ <  THEN 1( )pC C r C C← + − ; 
IF p p nprob prob probδ≤ < +  THEN 

2 ( )gC C r C C← + − ; 
IF 1p nprob prob δ+ ≤ <  THEN 

3 ( )rC C r C C← + − ; 
Improve C  using Tabucol 

ENDFOR 
1iter iter← − ; 

UNTIL PSOiter MAX=  or ( ) 0gf C =  

 
To generate a stochastic solution of k-coloring problem, 

it’s terrible that vertices are classified into k  disjoint sets 
one by one because the k  disjoint sets will be more or 
less the same size. In order to construct an initial 
population with abundant diversity, we design the 
following algorithm to initialize a solution of k-coloring 
problem. 

 
Algorithm 5 Initialize a solution of k-coloring problem 
Input: A graph ( , )G V E=  and number of colors k  
Output: A random k-coloring 1 2{ , ,..., }kC V V V= of G  

 
VΓ ← ; 

FOR 1, 2,...,i k=  DO 
{}iV ← ; 

ENDFOR 
Generate randomly k  positive integers 1 2, ,..., kn n n  such 

that 
1

| |
k

i
i

n V
=

=∑ ; 

FOR 1, 2,...,i k=  DO 
FOR 1,2,..., ij n=  DO 

Choose a vertex v∈Γ  at random, { }i iV V v← ∪ , 
\{ }vΓ ← Γ ; 

ENDFOR 
ENDFOR 

 

IV. EXPERIMENT & DISCUSSION 

To demonstrate the performance of the proposed 
hybrid discrete PSO (HPSO for short), an extensive 
experiments on some benchmarks are conduct. 

The demonstrated graphs are derived from the well-
known second DIMACS challenge benchmarks [23], 
illustrated in Table 1. These instances cover a variety of 
types and sizes of graphs. 
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TABLE 1 BENCHMARK GRAPHS 
Graph number of vertices number of edges Chromatic Number Description 

DSJC250.5 250 31336 Unknown 

DSJC500.5 500 125248 Unknown 
Random graphs with edge density 0.5 

le450_15c 450 16680 15 

le450_15d 450 16750 15 

le450_25c 450 17343 25 

le450_25d 450 17425 25 

Leighton graphs with guaranteed coloring size 

flat300_26 300 21633 26 

flat300_28 300 21695 28 
Quasi-random coloring problem 

 
TABLE 2 PARAMETER SETTING 

Parameter Swarm size probp probn probr MAXPSO MAXTABU 

Value 10 0.4 0.5 0.1 16|V| 16|V| 

 
 
The values of parameters in HPSO algorithm for the 

graph coloring problems are presented in Table 2. These 
values are selected based on some preliminary trials. 

16 | |PSOMAX V=  means that HPSO algorithm is 
terminated when it finds out a legal k-coloring or reaches 
16 | |V  iterations. Similarly, 16 | |TABUMAX V=  means 
that each run of Tabucol is terminated when it finds out a 
legal k-coloring or reaches 16 | |V  iterations. 

For each instance in Table 1, 10 independent runs of 
algorithm are carried out. The experimental results are 
shown in Table 3. Column 2 records chromatic number 
(“?” stands for unknown chromatic number) and best 
known result. Column 3 indicates various values of k 
which corresponds to various k-coloring problems solved 
by HPSO. Column 4 reports the number of successful 
runs and the number of tries. The average number of 
HPSO iterations on successful runs is presented in 
Column 5. And final column records the average CPU 
time (in seconds) cost by successful runs. 

We also compare HPSO with several other well-known 
algorithms including HCA (a hybrid evolutionary 
algorithm by Galinier and Hao in [22]), VNS (a variable 
neighborhood search algorithm by Avanthay et al. in [9]), 

VSS (a variable space search algorithm by Hertz et al. in 
[10]) and ANTCOL (a hybrid ant colony optimization 
algorithm by Dowsland and Thompson in [8]). For each 
algorithm, the smallest k with which a legal k-coloring 
was found is reported in Table 4. It is worth notice that 
this is only a rough comparison because of various 
experimental conditions. 

The experimental results in Table 3 show that our 
hybrid discrete PSO algorithm for graph coloring 
problem is feasible and robust. HPSO is capable of 
finding out an optimal coloring for graphs le450_15c, 
le450_15d and flat300_26 with a very high probability 
(100%). For random graphs DSJC250.5 and DSJC500.5, 
HPSO has also found best known optimal colorings. For 
the more difficult instance, graphs le450_25c, le450_25d 
and flat300_28, HPSO found out approximate best-
known colorings. Moreover, HPSO is expected to 
improve the solution quality for most instances with 
additional iterations since all runs of HPSO on these 
instances are all successful. From Table 4, we can 
observe that HPSO is competitive with other well-known 
algorithms. 

 
TABLE 3 EXPERIMENTAL RESULTS 

Graph χ, k* k Succ/run PSO Iter CPU time (s) 

DSJC250.5 ?, 28 28 10/10 145.3 69 

DSJC500.5 ?, 48 48 1/10 5831 20726 

  49 4/10 4305 13112 

  50 10/10 1602.5 3642 

le450_15c 15, 15 15 10/10 49.6 52 

le450_15d 15, 15 15 10/10 68.9 69 

le450_25c 25, 15 26 10/10 868.6 1352 

le450_25d 25, 15 26 10/10 526.7 712 

flat300_26 26, 26 26 10/10 20.3 57 

flat300_28 28, 28 31 10/10 412.8 327 
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TABLE 4 COMPARISON OF HPSO WITH OTHER ALGORITHMS 

Graph χ, k* HPSO HCA VNS VSS ANTCOL 

DSJC250.5 ?, 28 28 28 ⎯ ⎯ 28 

DSJC500.5 ?, 48 48 48 49 48 49 

le450_15c 15, 15 15 15 15 15 15 

le450_15d 15, 15 15 ⎯ 15 15 ⎯ 

le450_25c 25, 15 26 26 ⎯ 26 25 

le450_25d 25, 15 26 ⎯ ⎯ 26 ⎯ 

flat300_26 26, 26 26 ⎯ 31 ⎯ ⎯ 

flat300_28 28, 28 31 31 31 29 31 

 
 
In the experiment, for the sake of simplicity, the 

algorithm adopted the same values of parameters for all 
benchmark graphs. From the viewpoint of optimization, 
however, the landscapes of the fitness functions of these 
graphs are greatly different from each other, which results 
in significant difference in difficulty of solving them. For 
instance, estimated by experiments, there are millions of 
local optimum 15-colorings in the neighborhood of radius 
2 of a legal 15-coloring for le450_15c. The neighborhood 
of radius 2 of a coloring is the set of all neighbors with 
distance 2 from the coloring. Formally, for a coloring C , 
its neighborhood of radius 2 is ( ) { | ( , ) 2}N C C d C C′ ′= = . 
For more difficult instances, there are much more local 
optima in the whole solution space. 

In the light of great difference of distinct graphs, it’s 
possible to improve the solution of coloring of each graph 
by fine-tuning values of parameters for each graph. 

V. CONCLUSION 

In this paper, we attempted an adaptation of PSO to 
graph coloring problem. For generalization of PSO to 
discrete problem, we introduced a notion of distance over 
any discrete solution space. A distance is defined as the 
least number of consecutive applications of the operator 
on the solution space. The definition is a general concept 
provided a definite set of solutions and an operator on 
solution is given. Under this notion of distance, we 
redefined the standard PSO operators based on the basic 
idea of PSO. After reinterpreting the composition of 
velocity of a particle, we proposed a framework of PSO 
algorithm for any discrete problem. 

The key to apply the discrete PSO algorithm to solve 
discrete problem is calculate difference of two positions. 
For graph coloring problem, we determined its solution 
space and then designed an algorithm to evaluate 
difference of two colorings, i.e. to find out the sequence 
of applications of operator transforming one coloring into 
the other one. Combining a local search, we proposed a 
hybrid discrete PSO algorithm for graph coloring 
problem, named HPSO. Experiment on a set of eight 
DIMACS benchmarks was conducted and the 
computational results show that HPSO is feasible and 
competitive with other well-known algorithms. 

For time limit, we just tested our algorithm on several 
instances. In the future, more tests will be carried out to 
check the performance of our algorithm. Moreover, there 
is still a big room for improvement of our algorithm in 
the future. Also, the proposed discrete PSO algorithm 
will be applied to other combinatorial optimization 
problems. 
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