
Hybrid Discrete Particle Swarm Algorithm for
Graph Coloring Problem

Jin Qin

College of Information Engineering, University of Science & Technology Beijing, Beijing, China
College of Computer Science & Information, Guizhou University, Guiyang, China

cse.jqin@gzu.edu.cn

Yi-xin Yin and Xiao-juan Ban
College of Information Engineering, University of Science & Technology Beijing, Beijing, China

Abstract—Graph coloring problem (GCP) is one of the most
studied combinatorial optimization problems. It is
important in theory and practice. There have been many
algorithms for graph coloring problem, including exact
algorithms and (meta-)heuristic algorithms. In this paper,
we attempt another meta-heuristic method⎯particle swarm
optimization to graph coloring problem. Particle swarm
optimization (PSO) was originally developed for continuous
problem. To apply PSO to discrete problem, the standard
arithmetic operators of PSO are required to be redefined
over discrete space. A conception of distance over discrete
solution space is introduced. Under this notion of distance,
the PSO operators are redefined. After reinterpreting the
composition of velocity of a particle, a general discrete PSO
algorithm is proposed. In order to solve graph coloring
problem by the discrete PSO algorithm, an algorithm to
implement the crucial PSO operator⎯difference of two
positions (solutions) is designed. Then, a hybrid discrete
PSO algorithm for graph coloring problem is proposed by
combining a local search. Empirical study of the proposed
hybrid algorithm is also carried out based on the second
DIMACS challenge benchmarks. The experimental results
are competitive with that of other well-known algorithms.

Index Terms—graph coloring problem, DIMACS
benchmarks, discrete particle swarm optimization, distance,
redefinition of operators

I. INTRODUCTION

The graph coloring problem (GCP) is one of the most
studied combinatorial optimization problems. The
challenge is, given a graph, to find the least number of
colors for which there is a coloring of the vertices of the
graph in which no two adjacent vertices bear the same
color. The least number of colors needed to color a graph
G is called its chromatic number, denoted ()Gχ . A
graph that can be assigned a legal (conflict-free) k-
coloring is k-colorable.

The problem of coloring a graph has found numerous
applications including for instance, scheduling, register
allocation in compilers and frequency assignment in
mobile networks. Unfortunately, the problem is very
difficult to solve. The problem of finding the chromatic
number is NP-hard. The corresponding decision problem

(Is there a coloring which uses at most k colors?) is NP-
complete [1].

The problem is most often solved by using a conflict
minimization algorithm. Given k colors, a coloring is
sought which minimizes the number of conflicts (i.e., the
number of adjacent vertices bearing the same color). Here
we can find the sequential algorithms (those that color
one vertex at a time, such as well-known DSATUR [2]
and RLF [3]) and (meta-)heuristic algorithms (such as
tabu search [4][5], simulated annealing [6], genetic
algorithms [7], ant colony optimization [8], variable
neighborhood search [9] and variable space search [10],
etc.). In this paper, we attempt an adaptation of another
meta-heuristic method⎯particle swarm optimization to
graph coloring problem.

Particle swarm optimization (PSO) is a population-
based search algorithm, originated from the simulation of
the social behavior of birds within a flock. Since particle
swarm optimization as a method for optimization of
continuous nonlinear problem was introduced by James
Kennedy and Russell Eberhart in 1995 [11], it has been
used across a wide range of applications, such as image
and video analysis, design and restructuring of electricity
networks, control, antenna design, electronics and
electromagnetics, and so on [12].

Particle swarm optimization was originally developed
for continuous-valued spaces. The simplest and necessary
change to the PSO for discrete problems is discretization
of the position vectors. For more complex discrete
problems over combinatorial spaces, the standard
arithmetic operators used in the velocity and position
equations,　including addition, subtraction and
multiplication, need to be redefined. General　 ly, these
changes also change the interpretation of velocity,
particle trajectory, velocity clamping and momentum [13].

There have been a few attempts to extend PSO to
discrete spaces. Kennedy and Eberhart developed a
discrete binary version of PSO that operates on binary
space [14]. Clerc designed a discrete PSO for solving
traveling salesman problem [15]. Moraglio et al.
generalized PSO to any type of solution space by
introducing a topological/ geometric crossover [16]. In
[17], the original PSO operator was generalized in a

JOURNAL OF COMPUTERS, VOL. 6, NO. 6, JUNE 2011 1175

© 2011 ACADEMY PUBLISHER
doi:10.4304/jcp.6.6.1175-1182

formal manner to permutation problem domain using
forma analysis in form of equivalence relations.

In this paper, inspired by the idea in [16], we redefine
the standard operators of PSO and reinterpret the
components of velocity of a particle for optimization of
discrete problems. And then we propose a hybrid discrete
PSO algorithm for graph coloring problem by combining
a local search. Empirical study of the proposed hybrid
algorithm is also carried out based on the DIMACS
benchmarks.

II. GENERALIZATION OF PSO TO DISCRETE SPACE

A. Notion of Distance over Discrete Solution Space
The generalization of PSO to discrete space involves

redefining the standard PSO operators over discrete space.
Taking into account the basic idea of PSO, the
redefinition of the operators must manage to embody a
true distance in the search space. A true distance should
be a good measure of difference of two points in the
search space. Based on the work in [16], we introduce a
notion of distance which is a good foundation for discrete
PSO.

Definition 1 (Solution space) A (discrete) solution
space is a pair (,)S o where S is a set of solutions and o
is an operator which operates on an element in S and
generates another one. The operator must be reversible
and connected (any solution can be transformed into any
other by applying the operator a finite number of times).

A (discrete) solution space (,)S o is associated with (or
represented by) an undirected graph (known as state-
space graph in most artificial intelligence
literatures) (,)G V E= where V S= and

{(,) | , , () }i j i j i jE s s s s S o s s= ∈ = . A vertex in the graph
G represents a solution in S and an edge represents an
application of operator which operates on one of
endpoints of the edge to produce the other endpoint of the
edge. For example, a set of binary strings with length 3
and an operator which reverses one bit of a binary string
from 0 to 1 or 1 to 0 constitutes a solution space. Fig. 1
illustrates its associated state-space graph.

Fig. 1 An example of state-space graph with which a solution space

is associated

Definition 2 (Metric space) A metric space is a pair

(,)M d where M is a set and d is a metric or distance

on M , i.e., a function :d M M R× → such that for any
x , y and z in M

(1) (,) 0d x y = if and only if x y= ; (identity)
(2) (,) (,)d x y d y x= ; (symmetry)
(3) (,) (,) (,)d x z d x y d y z≤ + . (triangle inequality)
Here, we introduce a notion of distance over a given

solution space which meets above three properties.
Definition 3 (Distance) Given a solution space (,)S o ,

a distance of two solutions is S∈ and js S∈ is the least
number of consecutive applications of the operator
required for transforming is into js . The definition
implies that there exists a sequence of applications of the
operator: () , () ,..., ()i k k l t jo s s o s s o s s= = = .

Under the above notion of distance, a given (discrete)
solution space (,)S o can induce a corresponding metric
space (,)M d where M S= and the distance between
two solutions is S∈ and js S∈ , (,)i jd s s conforms to
definition 3. For the metric space (,)M d induced by the
solution space (,)S o , there is an intuitive geometric
explanation for the distance (,)i jd s s of is and js , i.e. it
is the length of a shortest path between the two nodes,
respectively representing is and js , in the associated
state-space graph. In above example, there are two
shortest paths from 000 to 101 with length 2, i.e.
000 001 101↔ ↔ and 000 100 101↔ ↔ . So

(000,101) 2d = . Indeed, such a distance is the so-called
Hamming distance.

Definition 4 (Line segment) Given a metric space
(,)M d , a line segment between x M∈ and y M∈ is a
set { | (,) (,) (,)}z z M d x z d z y d x y∈ ∧ + = , usually
denoted as [;]x y . Here x and y are called extremes of
the segment. The length of a line segment is equal to the
distance between its two extremes.

For above example, line segment
[000;111] {000,001,100,101}= .

Let (,)M d be the metric space induced by a solution
space (,)S o . From the geometric perspective, the line
segment between x and y is the set of all solutions
represented by vertices on any shortest paths connecting
vertices representing x and y , respectively. The length
of the line segment is the length of any shortest path.

B. Generalization of PSO to Discrete Space
In canonical PSO, the velocity v and position

(candidate solution) x of a particle at time step 1t + are
updated as

1 1 2 2(1) () (() ()) (() ())v t wv t c r p t x t c r g t x t+ = + − + − (1)
(1) () (1)x t x t v t+ = + + (2)

where p and g are personal best position of the
particle and the best position of its neighborhood,
respectively. w is an inertia weight, 1c and 2c are two

000 001

010

100 101

110 111

011

1176 JOURNAL OF COMPUTERS, VOL. 6, NO. 6, JUNE 2011

© 2011 ACADEMY PUBLISHER

acceleration coefficients, and 1r and 2r are two random
numbers in [0,1] .

To generalize PSO to discrete solution space, we are
required to redefine all the arithmetic operators in
equation (1) and (2). Most important of them is the
difference of positions of two particles. The basic idea of
traditional PSO is any particle moves close to the best of
its neighbors and return to the best position of itself so far,
in other words, the particle try to reduce both the distance
from the best of its neighbors and the distance from the
best position of itself so far. In terms of the notion of
distance over a (discrete) solution space, for any positions
x and y , x can be transformed into y through
applying the operator along one of shortest paths between
them in turn. Every application of the operator decreases
the distance between x and y by 1. Thus, the difference
of two positions (candidate solutions) of particles can be
viewed as any sequence of applications of operator which
transforms one position into the other one.

Definition 5 (Difference of two positions) For any
position x and y , the difference of them, x y− , is a
sequence of least number of consecutive applications of
operator i.e. (), (),...., ()x y v o x o r o t− = = such that

, , ,..., , [;], () , () ,...., ()x r s t y x y o x r o r s o t y∈ = = = .
Difference of two positions results in a velocity, in other
words, a velocity is also a sequence of applications of
operator.

Definition 6 (Product of number and velocity)
Supposing that [0,1]φ ∈ is a real number and

1 2 ... dv o o o= ((1,2,...,)io i d= is the i -th application of
the operator) is a velocity, the product of them, vφ is a
subsequence of v such that []1 2 ... ()kv o o o k cdφ = = .

Definition 7 (Sum of position and velocity) Supposing
that x is a position and 1 2 ... dv o o o= is a velocity, the
sum of them, x v+ , is a new position such that

(... (()))x v o o o x+ = (d consecutive applications of the
operator).

In Eq. (1), the velocity of particle is composed of three
components, known as inertia, cognitive component and
social component, respectively. Since velocity is defined
as a sequence of applications of operator which
transforms a position into another position or iconically a
shortest path from one position to another, sum of two
velocities is deficient in meaningful geometric
explanation. Therefore, the sum of two velocities is not
introduced. Particles, however, are driven by two forces:
one from its best neighbor (corresponding to social
component) and the other from its best position so far
(corresponding to cognitive component). Here the two
forces are dealt as follows: each one is assigned with a
probability, pprob for force from personal best and

nprob for force from neighbor best position, respectively.
1p nprob prob+ = is met, i.e., at any time step, the

update of a particle is influenced by exactly one of the
two components.

Now, we can describe the discrete PSO algorithm as
follows:

Algorithm 1 Discrete PSO algorithm
Input: a problem with discrete domain
Output: a (near) optimal solution

Create and initialize an N -dimensional swarm, S;
REPEAT

FOR each particle i S∈ DO
IF () ()i if x f p< THEN i ip x← ;

ENDFOR
FOR each particle i S∈ DO

arg min{ () | () }
j

i j
p

g f p j Neighbor i S← ∈ ⊂ ;

ENDFOR
FOR each particle i S∈ DO

Generate a random number [0,1)δ ∈
IF 0 pprobδ≤ < THEN 1()i i iv r p x← − ;
IF 1nprob δ≤ < THEN 2 ()i i iv r g x← − ;

i i ix x v← + ;
ENDFOR

UNTIL stopping condition is true;

Notice that the inertia component is omitted and the

functionality of acceleration coefficients 1c and 2c which
weight the contribution of personal best and
neighborhood best to velocity are replaced by pprob and

nprob .

III. HYBRID DISCRETE PSO ALGORITHM FOR GCP

The usual definitions about graph coloring problem are
formally formulated as follows:

Definition 8 (Graph k-coloring problem) Given a
graph (,)G V E= , where V and E are respectively the
set of vertices and the set of edges and a positive integer
k , the graph k-coloring problem is to determine whether
there exists a conflict-free vertex coloring using k colors
or less, i.e. a function : {1,2,..., }c V k→ such that

(,) , () ()u v E c u c v∀ ∈ ≠ . If such a coloring exists, G is
said to be k-colorable.

Definition 9 (Graph Coloring problem) Given a graph
G , the graph coloring problem is to determine the
smallest k such that G is k-colorable, i.e. to find out its
chromatic number.

The above definitions view GCP as an assignment of
colors to the vertices of the graph, which is not proper for
optimization algorithms to solve the coloring problem
because of permutation symmetry. In terms of Definition
8, for a given graph, the number of all possible k-
colorings is | |Vk (the number of all possible functions
from V into {1, 2,..., }k), in other words, there are | |Vk
candidate solutions for an optimization algorithm to
search. Indeed, for any k-coloring : {1, 2,..., }c V k→ of a

JOURNAL OF COMPUTERS, VOL. 6, NO. 6, JUNE 2011 1177

© 2011 ACADEMY PUBLISHER

graph, another coloring ' : {1,2,..., }c V k→ such that
, '() (())v V c v I c v∀ ∈ = where :{1,2,..., } {1,2,..., }I k k→

is a bijection (permutation) is the same k-coloring of the
graph. A more efficient method involves the equivalence
of GCP to the problem of partitioning the vertex set into
k or fewer independent sets. In the sense of partition,
coloring c and 'c are identical. Under the notion, a
coloring of a graph can be formulated as follows:

Definition 10 (Coloring) Given a graph (,)G V E= , a
coloring C of G is a partition of V into disjoint subsets,
i.e., { | , , , }i i i jC V V V i j i j V V= = ∧∀ ≠ ∩ = ΦU .

The number of possible partitions of V into k
nonempty disjoint subsets is the Stirling number of the
second kind (| |,)S V k . Hence, the number of all possible
partitions of V into k or less disjoint subsets is

1
(| |,)k

i
S V i

=∑ which is much less than | |Vk . For this
reason, to solve the graph k-coloring problem, an
optimization algorithm may only search much less
solutions.

The graph coloring problem can be viewed an
optimization problem (to minimize k), while k-coloring
problem is its corresponding decision problem (to
determine whether there exists a k-coloring or not). If one
can solve k-coloring problem, one can also solve coloring
problem by the following iterative approach: find a k-
coloring for a fixed k , then decrease k (1k k= −) until
no conflict-free k-coloring can be found.

To solve a problem by above discrete PSO algorithm,
the difference of two positions must be evaluated, i.e.
find out a sequence of least number of applications of
operator over solution set. Firstly, however, the solution
space need to be determined, i.e. the set solution is
determined and an operator is defined or designed.

Fig.2 An example of state-space graph for solution space of 3-
coloring problem

For k-coloring problem, an operator, say move , that

transforms a solution into another solution is designed as
changing the color of a vertex into another color or
imaginatively moving a vertex from a color class into
another color class. A constraint on the operator is that it
can not be applied to a color class containing only one
element to prevent generating an illegal solution. In Fig. 2,
an example of state-space graph for solution space of 3-

coloring problem is illustrated. The symbol on an edge is
the vertex being moved for transforming into each other
of two solutions connected by the edge.

Secondly, we need to calculate difference of two
positions (candidate solutions), in other words, to find out
the shortest path between two solutions. For graph
coloring problem, we adopt the partition-based
representation of solution formulated in Definition 10. In
terms of [18], the problem of solving distance of two
partitions can be reduced to an assignment problem. It’s
well known that an assignment problem can be solved by
Hungarian algorithm with 3(| |)O V time complexity [19].
By virtue of Hungarian algorithm, we can easily complete
the construction of difference of two partitions. The full
procedure is depicted as Algorithm 2. The cost matrix of
corresponding assignment problem is constructed first.
Then the maximum assignment problem is solved using
Hungarian algorithm which generates maximum
assignment indexed by the subscripts of selected elements.
For k-coloring problem, this means that the vertices
belonging to corresponding intersection of two color
classes need not be moved. Finally, all other vertices
must be moved for transforming one coloring into
another. For details of Hungarian algorithm, see [19].

Algorithm 2 Calculation of difference of two partitions
Input: two partitions (colorings) of k-coloring problem

1 2{ , ,..., }s s s s
kC V V V= and 1 2{ , ,..., }t t t t

kC V V V=
Output: a set Γ of vertices which will moved according
to the sequence of applications of operator move
transforming sC into tC

Create cost matrix ()k k ijA a× = ;
FOR 1, 2,...,i k= DO

FOR 1, 2,...,j k= DO
| |s t

ij i ja V V← ∩ ;
ENDFOR

ENDFOR
Calculate maximum assignment {(,)}i jΛ = using
Hungarian algorithm;

{}Γ ← ;
FOR any (,)i j ∉Λ DO

()s t
i jV VΓ ← Γ∪ ∩ ;

ENDFOR

Metaheuristic hybrids that in some way manage to

combine the advantage of population-based methods with
the strength of trajectory methods are often very
successful [20]. For the discrete PSO (metaheuristic) for
graph coloring problem, a local search (trajectory method)
algorithm is inserted after each update of each particle.
One of the successful local search methods that has been
proposed for solving graph coloring problems is Tabucol
[21]. Tabucol is a tabu search algorithm developed by
Hertz and de Werra in 1986 [4]. Here, we use the
improved version of Tabucol by Galinier and Hao [22].

{a}, {b}, {c, d}

{a}, {b, c}, {d}{a}, {b, d}, {c}

{a, b}, {c}, {d}

{a, c}, {b}, {d}{a, d}, {b}, {c}
d

d

c

c
a

d c

b b

a a
b

1178 JOURNAL OF COMPUTERS, VOL. 6, NO. 6, JUNE 2011

© 2011 ACADEMY PUBLISHER

Tabucol iteratively modifies the color of a single vertex
to decrease progressively the number of conflicting edges
until a legal k-coloring is obtained. A tabu list is used in
order to escape from local optima and to avoid short term
cycling. Let (,)move v i denote moving vertex v to color
class iV and (,)v iδ denote the decrement of number of
conflicts after execution of the movement. We describe
the algorithm formally as follows:

Algorithm 3 Tabu search for k-coloring problem
Input: A graph (,)G V E= and an initial k-coloring

1 2{ , ,...., }kC V V V= of G
Output: An improved k-coloring * * * *

1 1{ , ,...., }kC V V V=

*C C← ;
0iter ← ;

REPEAT
Choose a candidate (,)move v i with maximum (,)v iδ ;
Add (,)move v i to the tabu list for t iterations;
Execute (,)move v i and generate a new coloring C′ ;
IF *() ()f C f C′ < THEN *C C ′← ;

1iter iter← + ;
UNTIL TABUiter MAX= or *() 0f C =

Notice that only critical moves involving conflicting

vertices are considered. In [22], the tabu tenure t for a
move depends on the number ()F C of conflicting
vertices in the current coloring: [0-9] 0.6 ()t U F C= + ,
where [0-9]U is random integer between 0 and 9. The
fitness function ()f C for GCP evaluates the number of
conflicting edges in the coloring C . TABUMAX is the
maximum number of iterations for Tabucol.

To mitigate the effect of premature convergence, a
stochastic factor is introduced as one of components of
velocity. The stochastic factor is stemmed from the
influence of a point chosen at random imposing on the
current velocity. For graph coloring problem, a coloring

rC is generated at random with probability rprob and
then 3 ()rr C C− serves as the impact of a stochastic
coloring. Now, we present the hybrid discrete PSO
algorithm for k-coloring problem in algorithm 4.

Algorithm 4 Hybrid Discrete PSO algorithm for k-
coloring problem
Input: A graph (,)G V E= and number of colors k
Output: A best k-coloring of G

Create and initialize a collection of N k-colorings, S;

0iter ← ;
REPEAT

FOR each k-coloring C S∈ DO
IF () ()pf C f C< THEN pC C← ;

ENDFOR

FOR each k-coloring C S∈ DO
arg min{ () | () }g

C
C f C C Neighbor C S

′
′ ′← ∈ ⊂ ;

ENDFOR
FOR each k-coloring C S∈ DO

Generate a random number [0,1)δ ∈ ;
IF 0 pprobδ≤ < THEN 1()pC C r C C← + − ;
IF p p nprob prob probδ≤ < + THEN

2 ()gC C r C C← + − ;
IF 1p nprob prob δ+ ≤ < THEN

3 ()rC C r C C← + − ;
Improve C using Tabucol

ENDFOR
1iter iter← − ;

UNTIL PSOiter MAX= or () 0gf C =

To generate a stochastic solution of k-coloring problem,

it’s terrible that vertices are classified into k disjoint sets
one by one because the k disjoint sets will be more or
less the same size. In order to construct an initial
population with abundant diversity, we design the
following algorithm to initialize a solution of k-coloring
problem.

Algorithm 5 Initialize a solution of k-coloring problem
Input: A graph (,)G V E= and number of colors k
Output: A random k-coloring 1 2{ , ,..., }kC V V V= of G

VΓ ← ;

FOR 1, 2,...,i k= DO
{}iV ← ;

ENDFOR
Generate randomly k positive integers 1 2, ,..., kn n n such

that
1

| |
k

i
i

n V
=

=∑ ;

FOR 1, 2,...,i k= DO
FOR 1,2,..., ij n= DO

Choose a vertex v∈Γ at random, { }i iV V v← ∪ ,
\{ }vΓ ← Γ ;

ENDFOR
ENDFOR

IV. EXPERIMENT & DISCUSSION

To demonstrate the performance of the proposed
hybrid discrete PSO (HPSO for short), an extensive
experiments on some benchmarks are conduct.

The demonstrated graphs are derived from the well-
known second DIMACS challenge benchmarks [23],
illustrated in Table 1. These instances cover a variety of
types and sizes of graphs.

JOURNAL OF COMPUTERS, VOL. 6, NO. 6, JUNE 2011 1179

© 2011 ACADEMY PUBLISHER

TABLE 1 BENCHMARK GRAPHS
Graph number of vertices number of edges Chromatic Number Description

DSJC250.5 250 31336 Unknown

DSJC500.5 500 125248 Unknown
Random graphs with edge density 0.5

le450_15c 450 16680 15

le450_15d 450 16750 15

le450_25c 450 17343 25

le450_25d 450 17425 25

Leighton graphs with guaranteed coloring size

flat300_26 300 21633 26

flat300_28 300 21695 28
Quasi-random coloring problem

TABLE 2 PARAMETER SETTING

Parameter Swarm size probp probn probr MAXPSO MAXTABU

Value 10 0.4 0.5 0.1 16|V| 16|V|

The values of parameters in HPSO algorithm for the

graph coloring problems are presented in Table 2. These
values are selected based on some preliminary trials.

16 | |PSOMAX V= means that HPSO algorithm is
terminated when it finds out a legal k-coloring or reaches
16 | |V iterations. Similarly, 16 | |TABUMAX V= means
that each run of Tabucol is terminated when it finds out a
legal k-coloring or reaches 16 | |V iterations.

For each instance in Table 1, 10 independent runs of
algorithm are carried out. The experimental results are
shown in Table 3. Column 2 records chromatic number
(“?” stands for unknown chromatic number) and best
known result. Column 3 indicates various values of k
which corresponds to various k-coloring problems solved
by HPSO. Column 4 reports the number of successful
runs and the number of tries. The average number of
HPSO iterations on successful runs is presented in
Column 5. And final column records the average CPU
time (in seconds) cost by successful runs.

We also compare HPSO with several other well-known
algorithms including HCA (a hybrid evolutionary
algorithm by Galinier and Hao in [22]), VNS (a variable
neighborhood search algorithm by Avanthay et al. in [9]),

VSS (a variable space search algorithm by Hertz et al. in
[10]) and ANTCOL (a hybrid ant colony optimization
algorithm by Dowsland and Thompson in [8]). For each
algorithm, the smallest k with which a legal k-coloring
was found is reported in Table 4. It is worth notice that
this is only a rough comparison because of various
experimental conditions.

The experimental results in Table 3 show that our
hybrid discrete PSO algorithm for graph coloring
problem is feasible and robust. HPSO is capable of
finding out an optimal coloring for graphs le450_15c,
le450_15d and flat300_26 with a very high probability
(100%). For random graphs DSJC250.5 and DSJC500.5,
HPSO has also found best known optimal colorings. For
the more difficult instance, graphs le450_25c, le450_25d
and flat300_28, HPSO found out approximate best-
known colorings. Moreover, HPSO is expected to
improve the solution quality for most instances with
additional iterations since all runs of HPSO on these
instances are all successful. From Table 4, we can
observe that HPSO is competitive with other well-known
algorithms.

TABLE 3 EXPERIMENTAL RESULTS

Graph χ, k* k Succ/run PSO Iter CPU time (s)

DSJC250.5 ?, 28 28 10/10 145.3 69

DSJC500.5 ?, 48 48 1/10 5831 20726

 49 4/10 4305 13112

 50 10/10 1602.5 3642

le450_15c 15, 15 15 10/10 49.6 52

le450_15d 15, 15 15 10/10 68.9 69

le450_25c 25, 15 26 10/10 868.6 1352

le450_25d 25, 15 26 10/10 526.7 712

flat300_26 26, 26 26 10/10 20.3 57

flat300_28 28, 28 31 10/10 412.8 327

1180 JOURNAL OF COMPUTERS, VOL. 6, NO. 6, JUNE 2011

© 2011 ACADEMY PUBLISHER

TABLE 4 COMPARISON OF HPSO WITH OTHER ALGORITHMS

Graph χ, k* HPSO HCA VNS VSS ANTCOL

DSJC250.5 ?, 28 28 28 ⎯ ⎯ 28

DSJC500.5 ?, 48 48 48 49 48 49

le450_15c 15, 15 15 15 15 15 15

le450_15d 15, 15 15 ⎯ 15 15 ⎯

le450_25c 25, 15 26 26 ⎯ 26 25

le450_25d 25, 15 26 ⎯ ⎯ 26 ⎯

flat300_26 26, 26 26 ⎯ 31 ⎯ ⎯

flat300_28 28, 28 31 31 31 29 31

In the experiment, for the sake of simplicity, the

algorithm adopted the same values of parameters for all
benchmark graphs. From the viewpoint of optimization,
however, the landscapes of the fitness functions of these
graphs are greatly different from each other, which results
in significant difference in difficulty of solving them. For
instance, estimated by experiments, there are millions of
local optimum 15-colorings in the neighborhood of radius
2 of a legal 15-coloring for le450_15c. The neighborhood
of radius 2 of a coloring is the set of all neighbors with
distance 2 from the coloring. Formally, for a coloring C ,
its neighborhood of radius 2 is () { | (,) 2}N C C d C C′ ′= = .
For more difficult instances, there are much more local
optima in the whole solution space.

In the light of great difference of distinct graphs, it’s
possible to improve the solution of coloring of each graph
by fine-tuning values of parameters for each graph.

V. CONCLUSION

In this paper, we attempted an adaptation of PSO to
graph coloring problem. For generalization of PSO to
discrete problem, we introduced a notion of distance over
any discrete solution space. A distance is defined as the
least number of consecutive applications of the operator
on the solution space. The definition is a general concept
provided a definite set of solutions and an operator on
solution is given. Under this notion of distance, we
redefined the standard PSO operators based on the basic
idea of PSO. After reinterpreting the composition of
velocity of a particle, we proposed a framework of PSO
algorithm for any discrete problem.

The key to apply the discrete PSO algorithm to solve
discrete problem is calculate difference of two positions.
For graph coloring problem, we determined its solution
space and then designed an algorithm to evaluate
difference of two colorings, i.e. to find out the sequence
of applications of operator transforming one coloring into
the other one. Combining a local search, we proposed a
hybrid discrete PSO algorithm for graph coloring
problem, named HPSO. Experiment on a set of eight
DIMACS benchmarks was conducted and the
computational results show that HPSO is feasible and
competitive with other well-known algorithms.

For time limit, we just tested our algorithm on several
instances. In the future, more tests will be carried out to
check the performance of our algorithm. Moreover, there
is still a big room for improvement of our algorithm in
the future. Also, the proposed discrete PSO algorithm
will be applied to other combinatorial optimization
problems.

ACKNOWLEDGEMENT

We would like to thank the referees for their thoughtful
comments.

REFERENCES

[1] M. R. Garey & D. S. Johnson, Computers and
Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman, New York, 1997.

[2] D. Brélaz, New methods to color vertices of a graph,
Communications of ACM, vol. 22, pp. 251–256,
1979.

[3] F.T. Leighton, A graph coloring algorithm for large
scheduling problems, Journal of Research of the
National Bureau Standard, vol. 84, pp. 489–505,
1979.

[4] A. Hertz, D. de Werra: Using tabu search techniques
for graph coloring. Computing 39(4), 345–351,
1987

[5] R. Dorne, J. K. Hao: Tabu search for graph coloring,
T-colorings and set Tcolorings. Meta-Heuristics:
Advances and Trends in Local Search Paradigms for
Optimization, 77–92, 1998

[6] D. S. Johnson, C. R. Aragon, L. A. McGeoch, C.
Schevon: Optimization by Simulated Annealing: An
Experimental Evaluation; Part II, Graph Coloring
and Number Partitioning. Operations Research
39(3), 378–406, 1991

[7] C. Fleurent, J. A. Ferland: Genetic and hybrid
algorithms for graph coloring. Annals of Operations
Research 63, 437–461, 1996

[8] K. A. Dowsland and J. M. Thompson, An improved
ant colony optimisation heuristic for graph
colouring, Discrete Applied Mathematics, Volume
156, Issue 3, Pages 313-324, 2008

[9] C. Avanthay, A. Hertz, N. Zufferey, A variable

JOURNAL OF COMPUTERS, VOL. 6, NO. 6, JUNE 2011 1181

© 2011 ACADEMY PUBLISHER

neighborhood search for graph coloring, European
Journal of Operational Research 151, 379–388,
2003

[10] A. Hertz, M. Plumettaz, N. Zufferey, Variable space
search for graph coloring, Discrete Applied
Mathematics 156, 2551–2560, 2008

[11] J. Kennedy & R. C. Eberhart, Particle Swarm
Optimization, Proceedings of the 1995 IEEE
International Conference on Neural Networks (Perth,
Australia): IEEE Service Center, Piscataway, NJ, IV:
pp 1942-1948, 1995.

[12] R. Poli, Analysis of the Publications on the
Applications of Particle Swarm Optimisation,
Journal of Artificial Evolution and Applications,
2008.

[13] A. P. Engelbrecht, Fundamentals of computational
swarm intelligence. Chichester: Wiley. 2005

[14] J. Kennedy & R. C. Eberhart, A discrete binary
version of the particle swarm algorithm. In
Proceedings of the conference on systems, man, and
cybernetics pp. 4104–4109. Piscataway: IEEE, 1997.

[15] M. Clerc, Discrete particle swarm optimization,
illustrated by the traveling salesman problem. In B.
V. Babu & G. C. Onwubolu (Eds.), New
optimization techniques in engineering (pp. 219–
239). Berlin: Springer, 2004.

[16] A. Moraglio, C. Di Chio, & R. Poli, Geometric
particle swarm optimization. In M. Ebner et al.

(Eds.), Lecture notes in computer science: Vol. 4445.
Proceedings of the European conference on genetic
programming (EuroGP). (pp. 125–136). Berlin:
Springer, 2007.

[17] T. Gong & A. L. Tuson, "Forma Analysis of Particle
Swarm Optimisation for Permutation Problems,"
Journal of Artificial Evolution and Applications,
Volume 2008, Article ID 587309, 16 pages, 2008.

[18] D. Gusfield, Partition-distance: A problem and class
of perfect graphs arising in clustering, Information
Processing Letters, Volume 82, Issue 3, 16 May
2002, Pages 159-164

[19] R. Burkard, M. Dell'Amico, S. Martello,
Assignment Problems, Society for Industrial and
Applied Mathematics, Philadelphia, 2009

[20] C. Blum, A. Roli. Metaheuristics in Combinatorial
Optimization: Overview and Conceptual
Comparison. ACM Computing Surveys (CSUR),
Volume 35, Issue 3, September 2003. Pages: 268 -
308

[21] P. Galiniera, A. Hertz, A survey of local search
methods for graph coloring, Computers &
Operations Research 33, 2547–2562, 2006

[22] P. Galinier, J. K. Hao: Hybrid evolutionary
algorithms for graph coloring. Journal of
Combinatorial Optimization 1999; 3: 379–97

[23] http://mat.gsia.cmu.edu/COLOR/instances.html.

1182 JOURNAL OF COMPUTERS, VOL. 6, NO. 6, JUNE 2011

© 2011 ACADEMY PUBLISHER

