
QoS-driven Global Optimization Approach for
Large-scale Web Services Composition

Minghui Wu1,2, Xianghui Xiong1,2, Jing Ying1,2, Canghong Jin2, Chunyan Yu3

1 Department of Computer Science and Engineering, Zhejiang University City College, Hangzhou, P.R. China
2 College of Computer Science and Technology, Zhejiang University, Hangzhou, P.R. China

3College of Mathematics and Computer Science, Fuzhou University, P.R. China
Email: {minghuiwu}@cs.zju.edu.cn

Abstract—One of the aims of SOA is to compose atomic web
services into a powerful composite service. QoS based
selection approaches are used to choose the best solution
among candidate services with the same functionality. Due
to the increasing scale of the candidate services and
demands for real-time in some specific application domains,
the rapid convergent algorithm for large-scale web service
composition is especially important, but rare work has been
done to solve the problem. This paper describes the Web
services composition model and constructs the web service
selection mathematical model. According to these models,
service composition problem can be considered as Single-
Objective Multi-Constraints optimization problem. We
propose a new algorithm named GAELS (Genetic
Algorithm Embedded Local Searching), which uses the
strategies of enhanced initial population and mutation with
local searching, to speed up the convergence. Finally, the in-
depth experimental results show that the GAELS algorithm
can get the non-inferior solution more quickly and more
adaptively than simple genetic algorithm in large-scale web
service composition.

Index Terms—SOA; web services composition; QoS global
optimization; genetic algorithm; local searching

I. INTRODUCTION

SOC (Service-Oriented Computing) is a new subject
across several domains, such as computer and
information technology, business management, business
consultation, etc. A lot of simple and convenient services
have appeared in recent years (e.g., Google Map). Being
one of the most important technologies of SOC, web
services are autonomous systems identified by URIs
which can be advertised, located, and accessed through
messages encoded according to XML-based standard
(e.g., SOAP, WSDL and UDDI) and transmitted using
Internet Protocols [1]. Web services distributed in various
locations can be integrated into a composite service with
more powerful function. Through services composition,
resources could be reused and we could implement a
complicated functionality rapidly at lower cost and faster,
which can bring incredible social and economic
efficiency.

A composite service is assembled by several tasks to
accomplish a mission. In Internet there are maybe many
available web services with various QoS (Quality of
Service) providing the same functionality to a specific

task. So a selection needs to be made. According to the
definition of ISO 8402 [2] and ITU [3], QoS can be
defined as some nonfunctional attributes, such as price,
response time, availability and reputation etc. More about
QoS can refer to [4]. During the composition, there are
demands for QoS constraints to be met and criterions for
QoS optimization. For example, as a constraint condition,
response time can not exceed 2ms, and as an optimization
criterion, the lower price the better. Therefore, under
user’s QoS constraint and basic functionality claim, web
service composition has to search for an optimal set of
services to construct a composite service. And how to
make a fast selection among a large number of candidate
services is the main research goal of the paper.

QoS-driven web services selection is a NP-hard
problem [5]. Applied to this problem, SGA (Simple
Genetic Algorithm) has a good time consumed
performance, but on-going research works mainly aim to
small scale of candidate services. If the scale is large,
SGA could not satisfy the time consumed performance
requirement, especially for those real-time or interactive
systems. This paper proposes a method named GAELS
(Genetic Algorithm Embedded Local Searching) which
applies the policies of enhanced initial population and
mutation with local searching to speed up the
convergence of genetic algorithm and reduce the time
consumed for large-scale composition. The empirical
evaluation based on simulation demonstrates that GAELS
can get the result faster than SGA and has a better
adaptability to the increasing of composition scale.

The remainder of this paper is organized as follows:
the section 2 provides some related works of web services
composition, and the section 3 describes the web services
composition model. Then in section 4, we introduce the
multi-dimensions QoS model. A particular depiction of
the QoS-driven web service selection mathematical
model and algorithm has been given in section 5, and in
section 6 there is a contrastive empirical evaluation.
Finally, section 7 concludes this paper and prospects the
future work.

II. RELATED WORKS

The web services composition model makes an
important role in the web service composition problem. A
service process may have multiple execution routes, and
the same abstract service may be bound to different

1452 JOURNAL OF COMPUTERS, VOL. 6, NO. 7, JULY 2011

© 2011 ACADEMY PUBLISHER
doi:10.4304/jcp.6.7.1452-1460

candidate services after each execution route doing the
optimization in its own scope. Zeng [1] uses hot path, the
most frequently executed plan containing the abstract
service, to handle this problem. But for those plans which
are not hot, the binding method might dissatisfy the
constraints. Moreover, multiple execution routes need to
call the optimization module several times, which will
bring extra time consumed. To solve this problem, Yu [6]
proposes an approach using integrative optimization. It
could avoid the dissatisfaction of constraints and use the
optimization module for only once.

Some approaches of web service selection are based on
semantic web [7-9], and others are basis of QoS attribute
computing [1, 5, 6, 10-16]. The former has difficulties in
global QoS evaluation. At present there are many
approaches base on QoS attribute computing. Zeng [1]
proposes two ways, local optimization and global
planning by using integer programming. Local
optimization will obtain optimal candidate services in one
abstract service scope without considering constraints
across multiple abstract services and contributions to
optimize global QoS criterions. Consequently, the
binding of abstract services is independent with each
other. Unless QoS of service is changed or unavailable,
the service binding do not need to redo. The time
consumed will be stable if we keep identical scale of
service composition. However, unlike global planning
which can get better global QoS, local optimization could
not follow global criterion. Nevertheless, global
optimization also has its defect: the time cost will grow
proportionally with the amount of execution routes for
the same scale of services. Yu [6] defines the service
composition problem as a Multi-dimensions Multi-choice
0-1 knapsack problem (MMKP) in combinatorial model
and a Multi-constraint optimal path (MOP) problem in
graph model, and solves it by using Integer
Programming. Li [11] proposes a mapping framework to
construct Service Overlay Network (SON), and translates
web service composition problem to single constraint
path selection problem. In the end, Dijistra shortest path
algorithm could give an optimal selection. Ko [15]
applies an intelligent algorithm mixed Simulated
Annealing (SA) and Tabu Search (TS) to service
composition. Ye [10] implements reusing of service
composition scenario by Case-Based Reasoning (CBR),
which reduces the cost and time consumed of
composition. The strongpoint of QoS attribute computing
based on integer programming lies on the maturation of
theory and plenty of approaches. But it claims that the
QoS constraints and QoS criterions should be linear while
there are many non-linear QoS attributes just like
availability. Simple Genetic Algorithm is also been
applied to web service selection [5, 13, 16]. In contrast to
Integer Programming, it has no requirement on whether
the QoS constraints and objective function are linear or
not, which extends the field of application rooting from
Genetic Algorithm’s dependence to problem areas. On
the other hand, Genetic Algorithm has better time
consumed than Integer Programming as the increasing of
composition scale [13].

The rapid development of web services promotes the
expanding of service scale, so the research of large scale
web service composition is necessary. The previous work
did not pay attention to a large number of execution plans
selection. For example, the number of candidate plans is
from

510 to
2010 [5, 12, 13, 16]. For real-time large scale

web service composition problem, which has many
execution plans resulting from a lot of abstract services
and candidate services, the key point is how to get non-
inferior solution fast. Simple Genetic Algorithm will cost
a lot of time to find a solution in huge search field.
GAELS proposed in this paper improves the efficiency of
search algorithm and the adaptability to real-time large
scale web service composition.

�. WEB SERVICES COMPOSITION MODEL

A. Basic Definition
Definition 1: (Abstract Service). Abstract service has

function descriptions without implementation and
standard service interfaces across different service
providers. An abstract service is corresponding to a
workflow task.

Definition 2: (Service Instance). Service instances are
concrete services published by service providers. They
could give the function implementation specified by
abstract services. And some service instances may have
the same function, but different QoS.

 Definition 3: (Candidate Relationship). While the
function of several service instances

1 ,..., nS S are
consisted with the function description of abstract service
T , we state that service instances

1 ,..., nS S and abstract
service T have the candidate relationship. We also say
that

1 ,..., nS S is the candidate services of T which is
labeled as (1...)iS T i n∈ = .

Definition 4: (Service Function Graph). Constructing
abstract services as a workflow to fulfill user’s
requirement in functionality will obtain a service function
graph. In the service function graph, we have two
additional special abstract services treated as Start label
and End label, which have no functional meaning. An
example is given as Fig.2.

Definition 5: (Service Selection Graph). Shown as
Fig.3, all the service instances corresponding to abstract
services in Service Function Graph of Fig.2 have been
discovered, and a service function graph appears. In the
process of service discovering, we will discard service
instances that do not meet local constraints.
Consequently, local constraints are already met in service
selection graph, and we will not take account of local
constraints in the following discussion.

B. Web Service Composition Procedure
We abstract web service composition procedure as

three phases:
Firstly, compose abstract services as a service function

graph to meet user’s functionality demand in abstract
hierarchy.

JOURNAL OF COMPUTERS, VOL. 6, NO. 7, JULY 2011 1453

© 2011 ACADEMY PUBLISHER

Second, discover all the service instances which have
candidate relationships with abstract services. And
transform service function graph to service selection
graph.

Last, select a service chain linking the start node and
end node in service selection graph, and the chain could
keep the QoS constraints.

Figure1. Service flow graph

In service function graph and service selection graph,
the composite structure among nodes could be separated
as Fig.1 shows:

 Sequence Structure:
1S is the frontal service of

2S , and
2S is the successive service of

1S . The
finish of

1S will trigger
2S .

 Parallel Structure:
1S and

2S will be triggered at
the same time, and successive service will start
after both of them finished.

 Loop Structure: service
1S will execute itself for

several loops.
 Condition Structure: service

1S will be triggered
in probability

1p , and service
2S in probability

2p , and 1 2 1p p+ = . Moreover, once either of
them finish, successive service will be triggered.

All other structures could be woven by these four basic
structures. In the following discussion, loop structure will
not appear again, because we could handle loop structure
using unlooping method which quickly converges to a
sub-optimal solution [5], and unlooping method is in
accord with our emphasis goal.

Special for service function graph, we state two
conceptions as following [6].

Definition 6: (Execution Route). In the service
function graph, execution route is a passageway between
start node and end node, and only include one spur track
for every condition structure. If there are k execution
routes with a probability (1...)i i kρ = in a service function

graph, then
1

1
k

i
i

ρ
=

=∑ .

In Fig.2, there are two execution routes:
1 1 2 3 4 6: (, , , ,)ER S S S S S , with probability 1ρ

2 1 2 3 5 6: (, , , ,)ER S S S S S , with probability 2ρ
and

1 2 1ρ ρ+ = .
Definition 7: (Execution Plan). For execution

route
1(,...,)nS S , we define

1(,...,)nT T as a execution plan

of execution route
1(,...,)nS S , if (1...)i iT S i n∈ = , here

iT denotes service instance,
iS represents abstract service.

According to the definition, an execution plan is an
executable service chain which meets user’s requirement.

In Fig.3, execution plans of execution route
1ER could

be:
11 21 31 41 61 12 23 33 42 63(, , , ,),..., (, , , ,)S S S S S S S S S S .

Figure2. Service function graph

S11

S12

S1

S21

S22

S23

S2
S32

S31

S33

S3
S41

S42

S51

S52

S62

S61

S63

S4

S5

S6

Figure.3 Service selection graph

Ⅳ. MULTI-DIMENSIONS QOS MODEL

A. Multi-dimensions QoS Model
QoS is a series of non-function attributes, such as

reputation, price, availability, duration time. During the
service composition, all services instances belong to the
same abstract service have identity functionality but
different QoS, so QoS is the only criterion while binding
abstract service in this situation. In this paper will just use
three attributes: reputation, price and availability into
account. Other attributes could be imported and will not
impact our results. Due to article [1] has already given an
explicit depiction of definition and calculation methods of
QoS attribute, we will not give a duplicate description.

B. QoS Attribute Standardization
Because different QoS values have different value

range, it is unfair to calculate these values directly. In our
paper, we should standardize them before computing. For
example, value scope of service price is [2000, 5000], but
the value of reputation may only range from 1 to 10. So
QoS attribute standardization is needed.

In this paper, we state the jth service instances as
ijS

of abstract service
iS , and the QoS attributes of

ijS
is

1(,...,)j jnq q . QoS attributes can be separated into
positive attributes and negative attributes. The positive
attribute, as availability and reputation, means the higher
value the better. Negative attribute, as price and response
time, is contrast with positive one. So we standardize
positive attribute with formula (1) and standardize
negative attribute with formula (2)

 1jk k
jk

k

q
q k n

α
σ
−

= ≤ ≤ (1)

 1 1jk k
jk

k

q
q k n

α
σ
−

= − ≤ ≤ (2)

1454 JOURNAL OF COMPUTERS, VOL. 6, NO. 7, JULY 2011

© 2011 ACADEMY PUBLISHER

Where
kα ,

kσ are the average and standard deviation of
the QoS values for all candidates of kth QoS attribute.

C. QoS of Execution Plan (Composite Service)
Execution plan

1(,...,)nEP S S is a powerful service
composed by a series of other services. Like a normal
service, execution plan has its own QoS. The QoS
calculation formula of execution plan is displayed in
Table 1.

TABLE I.
QOS CALCULATION FORMULAS

QoS attribute Formula

Price ∑
=

=
n

i
priceprice

iqq
1

,)(

Reputation)(1
1

, i
n

n

i
reputationreputation qq ∑

=
=

Availability)(
1

, i
n

i
tyavailabilityavailabili qq ∏

=
=

Others Formulas decided by attribute

D. QoS of Execution Route
In execution route (,...,)i nER S S , the candidates of

abstract service (1)iS i n≤ ≤ are 1,...,i ilS S , and QoS of the

jth service instance
ijS is

1(,...,)j jmq q , so the QoS
calculation formulas are as follows:

 n

n

i j

repu

ijij
repu

i l

qx
Q

∑∑
= == 1 1

.

 (3)

∑∑
= =

=
n

i j

price

ijij
price i l

qxQ
1 1

.
 (4)

∏∑

= =
=

n

i j

yreliabilit

ijij
yreliabilit i l

qxQ
1 1

.
 (5)

When the service
ijS is selected as an instance of the

abstract service
iS , we set 1ijx = , otherwise 0ijx = . The

li denotes the amount of candidate services of the abstract
service

iS . Other QoS calculation formula of execution
route could be imported by the same way.

E. Utility Function
A service has multi-dimensions QoS value (,...,)i jq q ,

so we need to consider all the QoS in web service
selection process. But multi-dimensions value is not easy
for comparison. Thus we propose a utility function,
mapping multi-dimensions value into a single function
value which is a scalar quantity, to give a comprehensive
reference for our comparison. The definition of utility
function is as follows:

 qi

n

i
isUF '

1
.)(∑

=
= ω and 1

1
=∑

=

n

i
iω (6)

Where
iω denotes the weight of the ith QoS attribute

which reflects their importance.
iq is the standard

attribute value.

Ⅴ. QOS-DRIVEN WEB SERVICE SELECTION
MATHEMATICAL MODEL AND ALGORITHM

A. Web Service Selection Mathematical Model
QoS-driven web service selection problem could be

mapped into single constraint multi objectives
optimization problem in mathematics. We will first give
web service selection mathematical model for single
execution route, and the model for multi execution routes
will be displayed.

A.1 Selection Model for Single Execution Route
An execution route could make multi execution plans

when abstract service is bound to different candidate
services. So web service selection problem has to choose
the optimal execution plan among all execution plans. In
mathematics, it could map into a single constraint multi
objectives optimization problem.

First of all, all the abstract services in an execution
route are topological sequenced, each abstract service has
its own id i . Then we do the same things to all candidate
services of each abstract service, and every candidate has
an id j . We assume that abstract service (1)iS i n≤ ≤ in
execution route (,...,)i nER S S has candidate services

1(,...,)i ilS S , and
li is the amount of service instances

included in abstract service
iS . Then, the corresponding

single objective multi-constraints optimization problem is:

1) Objective function

)()(ERUFERfMAX = =
Qi

n

i
i

'

1
.∑

=
ω (7)

Where (1)iQ i n≤ ≤ is the ith QoS attribute value of
execution route ER , derives from QoS calculation
formula of execution route for standardization QoS.

iω
denotes the weight.

2) Global QoS constraint
Regarding that QoS values in global QoS constraints

are actual data in application, so all the QoS values are not
standardized in this part. Global QoS constraints can be
divided into two groups.

 Single selection constraint

In the web service selection process, there is only one
candidate service of each abstract service can be selected
into composition flow. So single selection constraint can
formalize as below:

 ∑
=

=∈∀
i l

j
ijxni

1
1, (8)

Where n denotes the number of abstract services in
execution route. When jth candidate service in abstract

JOURNAL OF COMPUTERS, VOL. 6, NO. 7, JULY 2011 1455

© 2011 ACADEMY PUBLISHER

service i is selected, 1ijx = ; Otherwise, 0ijx = ,
li is the

amount of service instances of abstract service i .

 QoS value constraint

QoS value constraints are constraints proposed by
users, such as service price don’t go beyond 100$, service
availability don’t be under 99.9%. If there are h QoS
value constraints ,1kC k h≤ ≤ , and k denotes the kth
QoS attribute , then

 CQ k
k

hkk ≤≤≤∀ ;1, (9)

Where kQ is the QoS value with attribute k of
execution route i .

A.2 QoS-driven Web Service Selection Mathematical
Model for Service Function Graph

There are may be multiple execution routes in a service
function graph. For example in service function graph of
Fig.4, There are three execution routes
exist: 1 2 4 5 71: (, , , ,)path S S S S S ,

1 3 6 8 102 : (, , , ,)path S S S S S and 1 3 6 9 103 : (, , , ,)path S S S S S
. Web service selection of service function graph with
multiple execution routes is more close to the application
in reality. The problem can map into single objective
multi-constraints optimization problem in mathematics.

A.2.1 The Difficulty of Web Service Selection Problem of
Service Function Graph

In the service function graph, each execution route
after optimization will get a best execution plan among its
route, then for multiple execution routes will obtain
multiple optimal execution plans. And it will bring two
problems: 1) how to merge multiple optimal execution
plans, 2) the emergence will need extra resource
consumed. Refer to service function graph of Fig.4,
abstract service

1S is bound to candidate service
1iS in the

optimal execution plan after optimization of 1path . While

1 jS will be bound to
1S in optimization result of execution

route 2path . So which one should be selected,
1iS or

1 jS ?
[1] proposes a method hot-path to deal with this problem.
The hot path chooses the candidate service most
frequently selected before when binding conflicts exist;
and if conflicts don’t exist, it will chose the candidate
service selected by its execution route optimization. But
this approach takes two weak points: first, sometime the
actual execution plan may not conform to the hot path,
and the execution may break the QoS constraints.
Second, hot path indeed need to execute service selection
module as many times as the potential execution routes,
and this will consume extra resource.

Figure.4 Service function graph with multiple execution routes

This paper will use the approach multiple execution
routes comprehensive optimization to address the
problem.

A.2.2 Selection Model of Service Function Graph with
Multiple Execution Routes

Abstract web service selection problem of multiple
execution routes into single objective multiple constraints
optimization problem, then we could comprehensive
optimize multiple execution routes, and there will be only
one binding for each abstract service and only one time to
execute the optimization module. Overall, this approach
can avoid the two weak points above totally.

 First, topological sequencing all the abstract services
and service instances, and every abstract service and
service instance will have an unique id.

The execution routes of service function graph
are

1 2, ,..., sER ER ER , and execution probability of

(1)iER i s≤ ≤ is iξ , where
1

1
=∑

=

s

i
iξ

.
1) Objective function

 ∑
=

=
s

i
ii ERfSFGfMAX

1
)(.)(ξ (10)

Where ()if ER is defined by formula (7).
2) Global QoS constraints

 Selection constraints

It is the same as formula (8).

 QoS value constraints

In order to meet the QoS value constraints strictly, we
enforce every execution route to satisfy the constraint
requirements. If there are h QoS value
constraint ,1kC k h≤ ≤ , and k denotes the kth QoS
attribute, then

 CQ ki

k
hksiki ≤≤≤≤≤∀ ;11, (11)

Where i
kQ is the kth QoS attribute value of the

execution route i.

B. QoS-driven Web Service Selection Algorithm
Being a NP-hard problem, QoS driven web service

selections exhausts traditional algorithm numerous time
and even more as increasing of scale, while Simple
Genetic Algorithm behaves good adaptation [3,15].

Genetic Algorithm is proposed by professor John H.
Holland and his students in last century, then De Jong and
Goldberg’s additional work improved it. Right now, it
has become one of the most broad and successful
intelligent optimization methods. Genetic Algorithm
evolves the generation step by step imitating crossover,
mutation and selection of biological principle [18]. But the
update of Simple Genetic Algorithm’s mutation operation
is not aggressive, which lead to slow hill-climbing [19].
Applying local searching to mutation operation can
improve hill-climbing of Simple Genetic Algorithm and
promote convergence performance. In the following, we

1456 JOURNAL OF COMPUTERS, VOL. 6, NO. 7, JULY 2011

© 2011 ACADEMY PUBLISHER

will introduce our algorithm GAELS, and compare it with
SGA which has been used in web services [5, 13].

B.1 Fitness Function
GAELS and SGA will use the same fitness function,

just like ()f SFG in formula (10). Although fitness
function in [5, 13] is different, it won’t affect the
experiment result of SGA and our comparable evaluation.

B.2 Generation of initial population
SGA: Randomly generate individuals of initial

population, so the average fitness of initial population is
low.

GAELS: Enhanced initial population can accelerate the
convergence of population [12]. So as to generate high
population average fitness, GAELS adopts the following
steps based on the method proposed in [12]:

First, calculate the proportion between the composition
number of every execution plan and the sum of all
composition of all execution plans. So the more execution
plans of the execution route has, the more chromosome
number of the route in population is, which could keep the
diversity of the initial population.

Second, the value of each chromosome gene is decided
by topological number of the selected candidate service.
And the method like roulette wheel selection [20] is
adopted. The algorithm is as following:

Input: chromosome
1(,...,)nS S S , candidate services of

abstract service
iS is

1,...,i ilS S , and il denotes the number
of candidates included. The selection function is ()ijf S ,
just like formula (6).

Output: the coding 1(,...,)nt t of chromosome S
:Begin

 (a) ntoiFor 1=
 (b) 0)(=iSsumfset
 (c)

litojFor 1=
 (d))(ijSfcaculate

(e))()()(ijii SfSsumfSsumf +=
(f) ForEnd
(g)

litojFor 1=

(h)
)(

)(
i

ij
ij Ssumf

SfPset =

(i) ForEnd
(j) wheelroulettetheset
(k) selectandnumberrandomagenerate
(l) ForEnd

The steps (c), (d), (e), (f) calculate the sum of selection
function values of candidates for abstract service

ijS . And
the steps (g), (h), (i) obtain the probability of every
service instance to be selected. Then the following steps
(j), (k) apply the method roulette wheel selection to give
value j of the ith gene position of the chromosome,
which means abstract service

iS is bound to service
instance

ijS .The algorithm above promises that candidate

service with better QoS also has the higher probability to
be selected.

Last, repeat the first and second step until obtain
enough individuals.

B.3 Structure of Chromosome
GAELS and SGA adopt the same chromosome

structure. For a service function graph with n abstract
services, the gene position number of chromosome is
also n , and the (1)i i n≤ ≤ gene position is
corresponding to the ith abstract service in topological
sequencing. The value range of i gene position is integer
in [1,]li , and

li denotes the amount of service instances
belonging to abstract service i (1)i n≤ ≤ . The structure is
like [5, 13].

B.4 Crossover
In this step, we randomly select two parent

chromosomes to do two-point crossover operation, and we
will have a new child chromosome. Because the new one
may break the global QoS constraint, it needs to be
checked for verification. If the new chromosome fails to
meet constraint, we will discard this chromosome, and
repeat the process until find a new chromosome fulfilling
constraints. GAELS has the same crossover operation as
SGA.

B.5 Mutation
The mutation algorithm of SGA and GAELS just as

following:
Input: the chromosome coding

1(,...,)nS t t to mutate,
and available value of the ith chromosome gene position
range from 1 to

li .
Output: the chromosome coding

1(,...,)nS t t after
mutation.

:MutationSGA
 (a) ilocusgenemutationageneraterandom
 (b)],1[lrandom iininumberrandomagenerate
 (c)

randomi itset ='
 (d))(' ijttset jj ≠∀=

:MutationGAELS
 (a) ilocusgenemutationageneraterandom
 (b)

litojFor 1=
 (c)),...,,,,...,(111 niitemp ttjttSset +−

 (d))(][tempSUFjpFitnessTemcaculate =
 (e) ForEnd
 (f)][][max optipFitnessTemjpFitnessTmeselect =
 (g)

opti itset ='
 (h))(' ijttset jj ≠∀=

In SGA mutation the step (a) produces the gene locus
value i to mutate, step (b) and (c) regards the random
integer

randomi as the gene locus value after mutation; In
GAELS mutation steps (b), (c), (d) and (e) obtain
chromosome fitness array []lFitnessTemp i after all

JOURNAL OF COMPUTERS, VOL. 6, NO. 7, JULY 2011 1457

© 2011 ACADEMY PUBLISHER

available value of gene locus i mutating by themselves,
then in the (f) step selects gene locus value

opti with the
max fitness value. It is clear that fitness of new individual
after mutation in SGA is not high, while GAELS
mutation enhances the fitness of individual after
mutation, which could accelerate the convergence speed
of generation. In the end, QoS constraints checking must
be imposed to the new individual after mutation, and the
mutation need to redo until meeting the QoS constraint.

B.6 Selection
GAELS and SGA both use optimal individual

preserved and roulette-wheel selection method [20]. After
selection operation to the candidate population, new
generation will go back to the constant scale.

Ⅵ. EMPIRICAL STUDY

A. Objective of Experimental Study
Aiming to real-time large-scale web service

composition problem, we propose the algorithm GAELS,
which adopt two strategies: enhanced initial population
and mutation with local searching, for the purpose of get
a composite service with no-inferior QoS. In order to
verify the performance of the strategies in use, we will
compare three algorithms SGA, GAELSWEIP and
GAELS, where GAELSWEIP is almost identical with
GAELS except for without enhanced initial population
strategy. We must lay emphasis on that our empirical
study is specific to time performance of large scale
composition.

B. Experiment Environment and Parameter Setting
The experiment is run on Windows XP with

AMD@Athlon, 64*2 Dual-Core processor TK-57 (1.9G),
1GB RAM. And program language is JAVA with IDE
Eclipse 3.2.

Genetic Algorithm is set up by the following
parameters:

cross rate: 0.9α = , mutation rate 0.2β = , max
evolving generation of population

max 1000℘ = ,

population convergence parameter max

max

evenFit Fit
Fit

κ
−

= ,

and
maxFit denotes max individual fitness value of

population,
evenFit denotes population average fitness .

The halt criterion of algorithm is:
SGA: As population parameter 0.05κ ≤ or population

evolving generation is equal to
max℘ , halt.

GAELS, GAELSWEIP: As max individual fitness of
population surpass that of SGA while SGA’s halting, or
population evolving generation is equal to

max℘ , halt.
Halt criterion above can ensure that convergence result

of GAELS and GAELSEIP is not inferior to that of SGA,
when GAELS and GAELSEIP stop normally (evolving
generation less than

max℘). Even they are abnormal, still
can halt, but time consuming will be greatly bad than
outweigh SGA.

We will take into account three QoS attributes:
availability, price, reputation. Availability is the random
number in interval [0.0, 1.0], and price is the random
number in [50, 2000], while reputation random generates
from interval [0.5, 1.0]. There still exist global QoS
constraints for all attributes, and the weight of each
attribute is 1/3.

The structure of service function graph in Fig.4
contains 10 abstract services. When the number of
abstract services is 20, then structure will duplicate
structure of Fig.4 in series. In our experiment, the number
of abstract services will increase iteration of 10, and the
structure is iteration in series also.

C. Study Result and Analysis
We fix the number of service instances of each abstract

service as 50. Then compare the run time of three
algorithms under identity QoS data, with number of
abstract service varying from 10 to 90 at step 10. So as to
reflect the empirical result have nothing to do with QoS
data, we generate 50 groups different QoS data under
each service scale. Fig.5 and Fig.6 show the experiment
result.

From Fig.6, we can note that as the expanding of
abstract service, convergence time of GAELS grows
slowly while SGA and GAELSWEIP increase rapidly. In
the other hand, time cost of GAELS is less than the other
two, under the premix of getting a better result than SGA
and GAELSWEIP. Then combining with Fig.5, we can
note that GAELS behaves the merits above all the time
under 50 groups random QoS data, and the merits is
independent with QoS data.

In the evaluation, we notice that time consumed of
GAELS and GAELSWEIP is very high in some cases,
especially for small number of service instances, at these
cases, the evolving generations of GAELS and
GAELSWEIP when halt arrive at our threshold value

max℘ , we name it “storm”. When storm happens, which
is an unstable phenomenon, evolving generations of
GAELS and GAELSWEIP is much larger than SGA, in
order to exceed the max fitness value of SGA. So as to
research the “storm”, we fix the number of abstract
services as 50, and increase the number of service
instances from 10 to 100 at step 10, then watch what
happens. Moreover, for the purpose of excluding
interference of QoS data, we generate 50 groups of
random QoS data and take the average of 100 running
times under each scale. Fig.7 plots the result. We can get
that storm times decrease greatly as the increasing of
service instances, and when the number of service
instance is 30, storm times of GAELS and
GEALESWEIP are only 0.92 and 0.64; and they will
become 0.16 and 0.12 as the number of service instances
is 40. Furthermore, there is almost no storm when the
number of service instances is more than 50.

From all the experiment result, we could conclude that
along with expanding of abstract service, convergence
time of SGA and GAELSWEIP increase quickly while
GAELS performs the opposite case in the condition of
holding a better time cost, so GAELS show more

1458 JOURNAL OF COMPUTERS, VOL. 6, NO. 7, JULY 2011

© 2011 ACADEMY PUBLISHER

suitable. But when number of service instances is too
small, GAELS and GAELSWEIP will have fluctuations,
which is the storm phenomenon. And as the rising of
service instances, storm times reduce rapidly till 0. In
brief, while the scale of abstract service and candidate
services is large, GAELS behaves a better efficiency than
that of [5, 13] when applying to service composition.

10 abstract services

0

10

20

30

40

50

60

0 10 20 30 40 50 60

random QoS data（unit:time）

r
u
n

t
i
me
（
u
n
i
t
:
m
s
）

SGA GAELS GAELSWEIP

30 abstract services

0

20

40

60

80

100

120

0 10 20 30 40 50 60

random QoS data（unit:time）

ru
n
ti
me
（
u
ni
t:
m
s）

SGA GAELS GAELSWEIP

50 abstract services

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60

random QoS data(unit:time）

r
u
n
 t
i
m
e
（

u
n
i
t
:
m
s
）

SGA GAELS GAELSWEIP

70 abstract services

0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50 60

random QoS data(unit:time)

r
u
n
 t
i
m
e
（

u
n
i
t
:
m
s
）

SGA GAELS GAELSWEIP
Figure.5 Convergence time comparison while abstract service

increasing

0

500

1000

1500

2000

2500

10 20 30 40 50 60 70 80 90

number of abstract service

av
e
ra
ge
 r
u
n
ti
me

（
un
i
t:
ms
）

SGA GAELS GAELSWEIP
Figure.6 Average convergence time comparision as abstract service
increasing

0

5

10

15

20

25

30

5 10 20 30 40 50 60 70 80 90 100

number of service instance

st
o
r
m

t
i
m
e
s

GAELS GAELSWEIP
Figure.7 Strom times movement under 50 random QoS data as service
instance increasing

Ⅶ. CONCLUSION AND FUTURE WORK

Services composition has a broad prospect in the
future. And large-scale services composition is the
problem we must face during the development of SOA.

Our work at present mainly focuses on constructing a
platform for SOA application development: SMICE
(Semantic Model-driven Integrated Construction
Environment). Research of services composition and
selection with a large number of abstract services and
complex workflow is an important part in this project. At
the early stage we had developed a QoS driven service
composition ontology framework [21], which provides a
basis for web service composition and selection. Our
work in this paper mainly lays on the following two
aspects: 1) Develop a multi-dimensions QoS model and
web service composition model in detail and map it into
single objective multi-constraints problem. 2) Propose a
large scale web service composition oriented algorithm
GAELS, which uses enhanced initial population and
mutation with local search strategies to accelerate
convergence. And empirical study shows that when apply
to large scale services composition problem, GAELS can
obtain the approximate optimal solution more quickly
than SGA, and perform more suitable and effective to the
increasing of composition scale.

In the future, we will improve algorithm GAELS in
details, particularly the strategy of mutation with local
search, which spend too much time on search all the
candidates of abstract service. Maybe the time waste can
be shorten by applying searching with rank and cash
principle. On the other hand, how to combine service

JOURNAL OF COMPUTERS, VOL. 6, NO. 7, JULY 2011 1459

© 2011 ACADEMY PUBLISHER

semantics and QoS attribute in services composition is
the other goal of our work.

ACKNOWLEDGMENT

This work was supported in part by the National High-
Tech Research and Development Plan Foundation (863),
China (Grant No.2007AA01Z187) and NSFC (Grant No.
60805042)

REFERENCES

[1] L.Z. Zeng, B. Benatallah, A.H.H Ngu et al, “QoS-Aware
Middleware for Web Services Composition”, IEEE Trans.
Softw. Eng., Vol.30, No.5, 2004, pp. 311-327.

[2] UNI EN ISO 8402 (Part of the ISO 9000-2002), Quality
Vocabulary.

[3] ITU, Recommendation E.800 Quality of service and
dependability vocabulary.

[4] J. Cardoso, Quality of Service and Semantic Composition
of Workflows, University of Georgia, 2002.

[5] M. D. P. G Canfora, R Esposito, M.L Villiani, “A
Lightweight Approach for QoS-Aware Service
Composition”, in Proceeding of 2nd International
Conference on Service Oriented Computing, 2004, pp.
36~47.

[6] T. Yu, Y. Zhang, K.J. Lin, “Efficient algorithms for Web
services selection with end-to-end QoS constraints”, ACM
Trans. Web, Vol.1, No.1, 2007.

[7] C. Zhou, L.T. Chiq, B.S. Lee, “DAML-QoS Ontology for
Web Services”, in Proceedings of the 2004 IEEE
International Conference on Web Services (ICWS2004),
2004, pp. 472-479.

[8] A.S. Bilgin, M.P. Singh, “A DAML-Based Repository for
QoS-Aware Semantic Web Service Selection”, in
Proceedings of the 2004 IEEE International Conference
on Web Services (ICWS2004), 2004, pp. 368~375.

[9] M. Tian, A. Gramm, H. Ritter et al, “Efficient Selection
and Monitoring of QoS-Aware Web Services with the WS-
QoS Framework”, in Proceedings of the 2004
IEEE/WIC/ACM International Conference on Web
Intelligence, 2004, pp. 152~158.

[10] X. Ye, R. Mounla, “A Hybrid Approach to QoS-Aware
Service Composition”, in Proceeding of the 2008 IEEE
International Conference on Web Service (ICWS2008),
2008, pp. 62~69.

[11] Y. Li, J. Huai, T. Deng et al, “QoS-aware Service
Composition in Service Overlay Networks”, in Proceeding
of the 2007 IEEE International Conference on Web Service
(ICWS2007), 2007, pp. 703~710.

[12] Y. Ma, C. Zhang, “Quick convergence of genetic algorithm
for QoS-driven Web service selection”, Computer
Networks, Vol.52, No.5, 2008, pp. 1093~1104.

[13] G. Canfora, M.D. Penta, R. Esposito et al, “An approach
for QoS-aware service composition based on genetic
algorithms”, in Proceedings of the 2005 Conference on
Genetic and evolutionary Computation, 2005, pp.
1069~1075.

[14] L. Cao, M. Li, J. Cao, “Using genetic algorithm to
implement cost-driven Web service selection”, Multiagent
and Grid Systems, Vol.3, No.1, 2007, pp. 9-17.

[15] J.M. Ko, C.O. Kim, I.H. Kwon, “Quality-of-service
oriented Web service composition algorithm and planning

architecture”, The Journal Of Systems and Software,
Vol.81, No.11, 2008, pp. 2079~2090.

[16] L.J. Zhang, B. Li, T. Chao et al, “On demand Web
services-based business process composition”, in
Proceeding of IEEE International Conference on System,
Man and Cybernetics (SMC’03), vol.4, 2003, pp.
4057~4064.

[17] D.Y. Fan, Y.H. Chen, Probability and Statistics, China:
Zhejiang University Press, 1996.

[18] M.D. Vose, The Simple Genetic Algorithm: Foundation
and Theory, USA: MIT Press, 1999.

[19] D.W. Wang, J.W. Wang, H.F. Wang et al, Intelligent
Optimization Methods, China: Higher Education Press,
2007.

[20] C.R. Reeves, J.E. Rowe, Genetic Algorithms: Principles
and Perspectives: A Guide to GA Theory, Netherlands:
Kluwer Academic Publisher, 2002.

[21] M.H. Wu, C.H. Jin, C.Y. Yu, et al, “QoS and Situation
Aware Ontology Framework for Dynamic Web Services
Composition”, in Proceeding of Proceedings of the 2008
12th International Conference on Computer Supported
Cooperative Work in Design (CSCWD’ 08), Vol.1, 2008,
pp. 459~464.

Minghui Wu was born in Leping, Jiangxi Province of China

in 1976. He received the BS degree in Computer Science and
Engineering from Nanchang University in July 1997 and MS
degrees in Computer Science and Engineering from Zhejiang
University in March 2000. Now he is the Ph.D. candidate in
Computer Science of Zhejiang University. Since Dec 2006, he
serves as an associate professor of Computer Science at
Zhejiang University City College. His major interests include
Software Engineering, System Dynamics Modeling, Model-
Driven Development, Semantics Web, and Model Checking.

Xianghui Xiong was born in Xiaogan, Hubei Province of

China in 1985. He received his BS degree in Mathematics from
Ocean University of China in July 2006. Now he is the MS
degree candidate in Computer Science and Engineering of
Zhejiang University. His research interests include Semantic
Web, and Intelligent Optimization Algorithms.

Jing Ying was born in Longyou, Zhejiang Province of

P.R.China in 1971. He received the Bs, Ms and PhD degrees in
Computer Science from Zhejiang University in 1990, 1992,
1995 respectively. Since Dec 2000, he has been the professor of
Computer Science at Zhejiang University. His major interests
include Software Engineering, Software Development
Methodology, and Software Architecture.

Canghong Jin was born Shaoxing, Zhejiang Province of

P.R.China in 1982. He received the MS degree in Computer
Science from Zhejiang University in 2008. His major research
interests include Service-oriented Software Engineering and
Aspect-oriented Software Development.

Chunyan Yu was born in Zhuji, Zhejiang Province of China

in 1976. She received her BS degree, MS degree, Ph. D degree
in Computer Science and Technology from Zhejiang University
in July 1997, March 2000 and June 2004 respectively. Since
Aug 2007, she serves as an associate professor of Computer
science at Fuzhou University. Her major interests include
intelligent algorithm, virtual environment, and complexity
adaptive system.

1460 JOURNAL OF COMPUTERS, VOL. 6, NO. 7, JULY 2011

© 2011 ACADEMY PUBLISHER

