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Abstract—Differential Evolution (DE) is a simple and 
efficient optimizer, especially for continuous global 
optimization. Over the last few decades, DE has often been 
employed for solving various engineering problems. At the 
same time, the DE structure has some limitations in the 
complicated problems. This fact has inspired many 
researchers to improve on DE by proposing modifications to 
the original algorithm. Population initialization is very 
important to the performance of differential evolution. A 
good initialization method can help in finding better 
solutions and improving convergence rate. In this paper, a 
uniform-differential evolution algorithm (UDE) is proposed. 
It incorporates uniform design initialization method into 
differential evolution to accelerate its convergence speed 
and improve the stability. UDE is compared with other four 
algorithms of Standard Differential Evolution (SDE), 
Orthogonal Differential Evolution (ODE), Opposition Based 
Differential Evolution(OBDE) and Chaos Differential 
Evolution(CDE). Experiments have been conducted on 23 
benchmark problems of diverse complexities. The results 
indicate that our approach has the stronger ability and 
higher calculation accuracy to find better solutions than 
other four algorithms.  
 
Index Terms—differential evolution, global optimization, 
uniform design method, orthogonal design method, 
Opposition Based, Chaos  Initialization 

 

I. INTRODUCTION  
Global optimization is the task of finding the 

absolutely best set of parameters to optimize an objective 
function. Generally, there are solutions that are locally 
optimal but not globally optimal. Consequently, global 
optimization problems are typically quite difficult to 
solve exactly. Using classical determinate direct search 
techniques may fail to solve such problems because these 

problems usually contain multiple local optima. 
The problem of finding a global minimum of the 

unconstrained optimization problem: 
min ( )

nx R
f x

∈
 

Where f  is a generally nonconvex, real valued 
function defined on nR . 

In recent years, the use of alternative approaches to 
solve complex optimization problems is very common. 
Evolutionary Algorithms (EAs) such as genetic algorithm, 
evolutionary programming, evolution strategy and 
genetic programming have received many interests from 
researchers and practitioners due to their competitive 
results when solving this kind of problems. 

Differential Evolution (DE) is a branch of evolutionary 
algorithms developed by Rainer Storn and Kenneth Price 
[1] for global continuous optimization problem. It has 
won the third place at the 1st International Contest on 
Evolutionary Computation. It shares similarities with 
previous EAs. For example, DE works with a population 
of solutions, called vectors, it uses recombination and 
mutation operators to generate new vectors and, finally, it 
has a replacement process to discard the less fit vectors. 
DE uses real encoding to represent solutions. Some of the 
differences with respect to other EAs are the following: 
DE uses a special mutation operator based on the linear 
combination of three individuals and a uniform crossover 
operator. It has several attractive features. Besides being 
an exceptionally simple evolutionary strategy, it is 
significantly faster and robust for solving numerical 
optimization problem and is more likely to find the 
functions true global optimum. 

Despite having several striking features and successful 
applications to different fields, DE has sometimes been 
shown slow convergence and low accuracy of solutions 
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when the solution space is hard to explore. Many efforts 
have been made to improve the performance of DE and 
many variants of DE have been proposed. 

The first direction for improvement is hybridization. 
Sun et al. [2] developed DE/EDA which combines DE 
with EDA for the global continuous optimization 
problem. It combines global information extracted by 
EDA with differential information obtained by DE to 
create promising solutions. The presented experimental 
results demonstrated that DE/EDA outperforms DE and 
EDA in terms of solution quality within a given number 
of objective function evaluations. Noman et al.[3] 
proposed a DE variant which incorporated a Local 
Search(LS) technique to solve optimization problem by 
adaptively adjusting the length of the search, using a hill-
climbing heuristic. Experimenting with a wide range of 
benchmark functions,the results show that the proposed 
new version of DE performs better, or at least 
comparably,to classic DE algorithm. He et al.[4] 
proposed a new binary differential evolution algorithm 
based on the theory of immunity in biology. The test 
results show the improvement of the searching ability and 
increment in the convergence speed in comparison with 
the other algorithms. Das et al.[5]introduced a stochastic 
selection mechanism to improve the accuracy and 
convergence speed of DE. The idea of a conditional 
acceptance function (that allows accepting inferior 
solutions with a gradually decaying probability) is 
borrowed from the realm of the Simulated Annealing 
(SA). The resulting hybrid algorithm has been compared 
with three state-of-the-art adaptive DE schemes. The 
experiment results indicate that the mixed algorithm is 
able to find better solutions on a six-function testbed and 
one difficult engineering optimization problem. Omran et 
al.[6] incorporated a hybrid of concepts from chaotic 
search, opposition-based learning, differential evolution 
and quantum mechanics, named CODEQ to solve 
constrained problems. The experiment results indicate 
that CODEQ is able to find excellent solutions in all 
cases. Zhang et al.[7] proposed a hybrid of DE with PSO, 
called DE-PSO which incorporates concepts from DE and 
PSO, updating particles not only by DE operators but also 
by mechanisms of PSO. The presented experimental 
results demonstrate its effectiveness and efficiency. 
Wang et al.[8] combined the self-adaptive mixed 
distribution based univariate estimation of distribution 
algorithm (MUEDA) and a modified DE (MDE) to form 
a new algorithm, named ED-DE. It solved Economic 
Load Dispatch (ELD) problem successfully. Coelho et 
al.[9]combined ant colony optimization(ACO) with a 
differential evolution method (MACO) for chaotic 
synchronization. Jia et al.[10] proposed a Chaos and 
Gaussian local optimization based hybrid differential 
evolution (CGHDE) to high-dimensional complex 
engineering problems. The randomicity of chaotic local 
search can explore in a wide search space to overcome 
the premature in the earlier evolution phase and Gaussian 
optimization can refine the optimum in the later run 
phase. The experiment results indicate that CGHDE is 
able to find excellent solutions than other algorithms. 

The second direction for improvement is dynamic 
adaptation of the control parameters. DE is sensitive to 
the two crucial parameters, to a certain extent the 
parameter values determine whether DE is capable of 
finding a near-optimum solution or not. So, recently, 
some studies focus on adaptive control parameters. 
Zaharie[11] proposed to transform F into a Gaussian 
random variable. Liu et al.[12] proposed a fuzzy adaptive 
differential evolution (FADE) which uses fuzzy logic 
controllers to adapt the mutation and crossover control 
parameters. Das et al. [13] proposed two schemes which 
are named DERSF and DETVSF to adapt the scaling 
factor F. Brest et al.[14] presented a novel approach to 
self-adapt parameters F and Cr. In their method, these 
two control parameters are encoded at the individual 
level. Nobakhti et al.[15] proposed a Randomised 
Adaptive Differential Evolution (RADE) method, which 
a simple randomised self-adaptive scheme is proposed for 
the DE mutation weighting factor F. Qin et al.[16] 
proposed self-adaptive DE (SaDE) which the trial vector 
generation strategies and two control parameters are 
dynamically adjusted based on their performance. Zhang 
et al.[17] proposed a new differential evolution (DE) 
algorithm (JADE) which the optional archive operation 
utilizes historical data to provide information of progress 
direction.Pan et al[18]proposed a self-adaptive DE 
algorithm, namely SspDE. It used an associated strategy 
list(SL),a mutation scaling factor F list (FL),and a 
crossover rate CR list (CRL) to be more effective in 
obtaining better quality solutions.  

The third direction for improvement is population 
initialization. Before solving an optimization problem, it 
usually has no information about the location of the 
global minimum. It is desirable that an algorithm starts to 
explore those points that are scattered evenly in the 
decision space. Population initialization is a crucial task 
in evolutionary algorithms because it can affect the 
convergence speed and also the quality of the final 
solution. Recently, some researchers are working some 
methods to improve the EAs population initialization. 
Leung et al.[19] designed a GA called the orthogonal GA 
with quantization (OGA/Q) for global numerical 
optimization with continuous variables. Gong et al [20] 
used orthogonal design method to improve the initial 
population of DE(ODE). Rahnamayan et al. [21-23] 
proposed two novel initialization approaches which 
employ opposition-based learning and quasi-opposition to 
generate initial population. Xu et al.[24] used chaos 
initialization to get rapid convergence of DE as the region 
of global minimum. Pant et al.[25] proposed a novel 
initialization scheme called quadratic interpolation to DE 
with suitable mechanisms to improve its generation of 
initial population. Peng et al.[26] used Uniform-Quasi-
Opposition to generate initial population of DE and 
accelerate its convergence speed and improve the 
stability. Ozer[27] used chaotic maps to generate 
sequences from different chaotic systems to construct 
initial population and proposed Chaotically Initialized 
Differential Evolution (CIDE). 
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In this paper, an improvement version of DE, namely 
Uniform-Differential Evolution (UDE) is presented to 
solve unconstrained optimization problem. UDE 
combines DE with uniform initialization. According to 
our previous study, uniform design generation can 
enhance the quality of initial population. The two 
experiments are designed and UDE is compared with 
SDE, ODE,OBDE,CDE. The experimental results show 
that UDE outperforms SDE, ODE, OBDE, CDE. 

The paper is organized as follows: Section 2 provides 
an overview of differential evolution, uniform design 
method, orthogonal design method, opposition based 
method and Chaos initialization method. Our proposed 
approach is presented in detail in Section 3.After that, in 
Section 4 the experimental design, the results are included. 
The last section, Section 5, is devoted to conclusions and 
future works. 

II. PRELIMINARY 

A. Differential evolution 
The DE algorithm in pseudo-code is shown in 

Algorithm 1. Each vector i  in the population at 
generation t , ix  called target vector will generate one 
offspring called trial vector iv . Trial solutions are 
generated by adding weighted difference vectors to the 
target vector. This process is referred to as the mutation 
operator where the target vector is mutated. A crossover 
step is then applied to produce an offspring which is only 
accepted if it improves on the fitness of the parent 
individual. Many variants of standard DE have been 
proposed, which use different learning strategies and/or 
recombination operations in the reproduction stage. In 
this paper, the DE/best/1/exp strategy is used. 

 

Algorithm 1.Procedure  of DE with best/1/exp 

1: Generate the initial population P , define ( )ix t  as the 
i -th individual of the t -th generation: 

1 2

max1, 2, , 1, 2, ,

( ) ( ( ), ( ), , ( ))
           ;

i i i in

M

x t x t x t x t
i t t

=
= =

 

where n is the number of decision variable, M is the 
population size, maxt is the maximum generation. 
2: Evaluate the fitness ( ( ))if x t  for the each individual.  
3: while the termination condition is not satisfied do 
4:   for i=1  to M  do 
5:     Select xbest , xp1，xp2  and i≠p1≠p2≠best. 
6:       j=randint(1,n)  
7:       L=0 
8:       i iv P=  
9:       repeat 
10:        1 2( )ij bestj p j p jv x F x x= + × −   
11:         j=(j+1) mod n 
12:        L=L+1 
13:      until ijrand [0,1)>CR or L>n 
14:      Evaluate the offspring iv  

15:      If iv  is better than ix  then 
16:           ix = iv  
17:      end if 
18:   end for 
19: end while 
20: F is the scaling factor, CR is crossover factor. 
 

B. Uniform design method 
Experimental design method is a sophisticated branch 

of statistics. The uniform design, proposed by Fang and 
Wang[29] in 1980,is one of space filling designs and has 
been widely used in computer and industrial experiments. 
The main objective of uniform design is to sample a 
small set of points from a given set of points, such that 
the sampled points are uniformly scattered. 

It defines the uniform array as n
MU q , where n  is 

factors and q  is levels. When n  and q are given, the 
population can be constructed by selecting M  
combinations from nq .The steps of initialization 
population are as Algorithm 2. 

 

Algorithm 2. Uniform Design Initialization 

1:  Find all the primer numbers 1 2( , , , )h h h hs=  which 
are less than M , where M is the size of population.  
2: The j -th column of the uniform array is constructed 
according to (1)  

                    [mod ]ij jU ih M=                               (1) 
where 1,2, ,i M= ; 1, 2, ,j s=   

3: Suppose n ( n s< ) is the number of the variables, 
randomly choose , ,il jnh h from the vector 

1 2( , , , )h h h hs= . A uniform matrix of 'M nU ×  is 
constructed. 
4: Generation of initial population 

After constructing the uniform array, it can generate 
the uniform population which scatters uniformly over the 
feasible solution space according to (2). 

'( , ) ( ) /ij j j jP i j U u l M l= × − +    
1,2, ,i M= ; 1, 2, ,j n=                 (2) 

where ju and jl are the maximum and minimum values 
of the variable j . 

 

C. Orthogonal design method 
Orthogonal design method [19,20] with both 

orthogonal array (OA) and factor analysis (such as the 
statistical optimal method) is developed to sample a 
small, but representative set of combinations for 
experimentation to obtain good combinations. OA is a 
fractional factorial array of numbers arranged in rows and 
columns, where each row represents the levels of factors 
in each combination, and each column represents a 
specific factor that can be changed from each 
combination. It can assure a balanced comparison of 
levels of any factor. The array is called orthogonal 
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because all columns can be evaluated independently of 
one another, and the main effect of one factor does not 
bother the estimation of the main effect of another factor. 

 

Algorithm 3. Orthogonal Design Initialization 

1: For k=1 to J do 

2:       
1 1 1

1

kQj
Q

− −
= +

−
 

3:        For i=1 to R do 

4:            ,
1 modi j j k

ia Q
Q −

⎢ ⎥−
= ⎢ ⎥
⎣ ⎦

 

5:        End for 
6:  End for 
7: For k=2 to J do 

8:  
1 1 1

1

kQj
Q

− −
= +

−
 

9:   For s=1 to j-1 do 
10:     For t=1 to j-1 do 
11:        For i=1 to R do 
12:            ,( ( 1)( 1) ) , ,( ) modi j s Q t i s i ja a t a Q+ − − + = × +  
13:        End for 
14:     End for 
15:End for 
16:End for 
17:Increment ,i ja  by one for all [1, ]i R∈  and [1, ]j C∈  
18:eval=0 
19:For i=1 to R do 
20:   For j=1 to n do 
21:      k= ,i ja  

22:        ( , )P i j = ( 1)( ),1
1

j j
j

u l
l k k Q

Q
−

+ − ≤ ≤
−

 

23:           ( [ , ]j jl u  is quantized Q-1 fractions) 
 24:   End for 
25:Evaluate ( , )P i j  and eval++ 
26:End for 
27:Sort the ( , )P i j  
28:Select the best M solution from ( , )P i j  to generate the 
first population 
 

D.  Opposition Based Initialization 
The concept of opposition-based learning (OBL) 

[21,22], in its earlier simple form, was introduced by 
Tizhoosh. The main idea behind OBL is the simultaneous 
consideration of an estimate and its corresponding 
opposite estimate in order to achieve a better 
approximation for the current candidate solution. As an 
advantage of opposite versus random points, purely 
random resampling or selection of solutions from a given 
population, has a higher chance of visiting or even 
revisiting unproductive regions of the search space. 

 
 
 

Algorithm 4. Opposition Based Initialization 

1: Generate uniformly distributed random population 0P  
2:    For i=0 to M do 
3:       For j=0 to n do 
4:       0 , 0 ,i j j j i jOP a b P= + −  
5: Select M fittest individuals from set the 0, 0{ }P OP  as 
the initial population. 
 

E. Chaos  Initialization 
Chaos is a kind of characteristic of nonlinear systems 

and it has been extensively studied and applied in many 
fields[24,27]. Although it appears to be stochastic, it 
occurs in a deterministic nonlinear system under 
deterministic conditions. Chaotic sequences have been 
proven easy and fast to generate and store, there is no 
need for storage of long sequences. Merely a few 
functions (chaotic maps) and few parameters (initial 
conditions) are needed even for very long sequences. In 
addition, an enormous number of different sequences can 
be generated simply by changing its initial condition. 
Moreover, these sequences are deterministic and 
reproducible. Recently, chaotic sequences have been 
adopted instead of random sequences and very interesting 
and somewhat good results have been shown in many 
applications. 

 

Algorithm 5. Chaos  Initialization 

1: Set the Maximum number if chaotic iteration, CI, 
according to the problem ,the population size M and i=0 
2:    While  i≤M  do 
3:    Randomly initialize chaotic variables taking into 
account the constrains , j=1,2,….,n and set counter k=0; 
4:      While (k<CI) do 
5:          Generate different chaotic variables j

kcm , 
j=1,2,.,n, using Logistic map. 
6:          k=k+1 
7:       End While 
8: Map the chaotic variables j

kcm  to feasible region 
according to equation 0 min max min

, ( )j
j i j k j jX X cm X X= + × − , 

j=1,2,.,n 
9:  Set i=i+1 
10:End While 

III. UNIFORM DIFFERENTIAL EVOLUTION 
The performance of DE is sensitive to the choice of 

control parameters. Based on our former research, the 
better choice of the parameters are 0.5F =  and 

0.9CR = .In order to avoid tuning the parameter 
F and CR , a parameter control technology is adopted 
according to the following scheme: 

 (0.5,0.02),  (0.9,0.02)F N CR N= =                (3) 
( , )N τ ε is a normal distribution that can generate values 

in the range of [ 3 , 3 ]τ ε τ ε− × + × . 
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Algorithm 6. Main procedure of Uniform Differential 
Evolution 
1: Initialization: construct the population P  by uniform 
initialization.  
2: Optimization using DE with Best/1/Exp. 

 Mutation 
Select the best individual xbest in the t -th generation 

and two different individuals xp1, xp2 from population 
where i≠p1≠p2≠best. 

 Crossover 
Crossover operation is used to increase the diversity ,  
 Selection 
Compare vi(t) with xi(t), select the vector which has a 

better fitness as the individual in the new generation : 
3: If stop criterion is met, go to step 4,else go to step 2 
4: Terminate 
 

IV. EXPERIMENTS 
In order to assess the performance of our proposed 

algorithm, a comprehensive set of benchmark functions, 
including 23 different global optimization problems 
f01~f23 [20,28],have been employed for performance 
verification of the proposed approach. The formal 
definitions of the test functions and their global 
optimum(s) are summarized in [30]. Generally, following 
characteristics are desirable to provide a comprehensive 
test suite: 

Functions 1 ~ 5 are unimodal problems and functions 
8~ 13 are multimodal. Functions 6~7 are two special 
problems exhibiting a step landscape and a noisy 
landscape respectively. Functions 14~23 are low-
dimensional functions which have only a few local 
minima. 

Two experiments are designed. For each test functions, 
it performs 50 independent runs for each algorithm with 
different random seeds. 

The first test compares the convergence speed of UDE 
with SDE, ODE,OBDE,CDE by measuring the number of 
successful runs and the mean number of function calls 
(NFC) of successful runs which are the most commonly 
used metrics. The test results of SDE and ODE come 
from the literature [20].  

In the first experiment, the parameters of UDE are as 
follows: 

 Population Size: NP=100. 
 Maximum number of NFC( NFCMAX ) is 500000. 
 The scaling factor F and probability of crossover   

CR of UDE use parameter control scheme as (3) . 
 Stopping criterions are   

| ( ) ( ) | 0.005best optimalf x f x− ≤ or NFCMAX  is reached, 
where ( )bestf x is the best solution in the current run, 

( )optimalf x is the globally minimal function value.  
The results are list in TableⅠ. From this table it can 

firstly be observed that ODE,OBDE and UDE can solve 
23 benchmark problems in all 50 runs, but SDE cannot 
solve function f05 and f07 in all runs and it traps in the 
local optima once and four times. CDE traps in the local 
optima six times on function f20.Secondly, UDE needs 

less mean NFEs of successful runs than SDE, ODE, 
OBDE,CDE in 17 test functions f02~f06,f10~f13, 
f15~f17 and f19~f23. Especially in functions f04,f05, 
f06,f20,f21,f22,f23, it can be found that UDE makes 
considerable reduction of the mean NFEs of successful 
runs . 

From these discussions, it can be concluded that firstly, 
the performance of UDE is better than other four 
algorithms; secondly, the uniform design can accelerate 
DE’s convergence speed. 

The second experiment compares the stability and 
calculation accuracy among the five algorithms. UDE has 
been compared with SDE, ODE,OBDE,CDE. The 
performance metrics have: (1)the mean NFEs(MNFEs)  
(2) the mean best function value(Mean best) (3)the 
standard deviation of the function values(Std).It performs 
50 independent runs for each algorithm on the benchmark 
problems.  

The parameters of UDE are as follows: 
 Population Size: NP=100 
 Maximum number of function calls is on Table Ⅱ 
 The scaling factor F and probability of crossover   

CR of UDE use parameter control scheme as (3) 
 
The mean results of 50 independent runs are 

summarized in Table Ⅱ. Results for SDE, ODE are taken 
from [20]. From Table Ⅱ, it can be seen that UDE needs 
less function evaluations than SDE, ODE,OBDE,CDE in 
6 functions(f06, f09, f11, f14, f15, f16). UDE can provide 
better mean best results than SDE, ODE,OBDE,CDE for 
7 functions (f03, f07, f10, f12, f13, f15, f20). Furthermore, 
UDE obtains smaller standard deviation than other four 
algorithms in 10 functions (f01, f03,f04,f10,f12, f13, f20, 
f21,f22,f23). 

The results of the mean function values indicate that 
UDE is able to obtain more accurate solutions .The 
results of the standard deviation of the function values 
present that UDE is more stable than other four 
algorithms. Also, these results demonstrate that uniform 
design initialization used in DE can be effectively worked 
and enhance the performance of DE and   accelerate the 
convergence speed and improve the stability and 
calculation accuracy of differential evolution. 

V. CONCLUSIONS 
In this article, it has presented a new variant of 

differential evolution algorithm (UDE) in which the 
initial population is selected using the uniform design 
initialization method. An adaptive parameter control 
technology is adopted .UDE has compared with other 
four algorithms of SDE, ODE,OBDE,CDE. According to 
the experiment results, it can conclude that uniform 
design initialization can enhance the capability of our 
algorithm and UDE is better and more stable than other 
four algorithms on the benchmark problems. 

Future work consists on extending the present version 
for solving some real life optimization problems and 
combining uniform differential evolution with other local 
optimizer.  
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TABLE I.  COMPARISON WITH SDE, ODE,OBDE,CDE AND UDE ON 1 23f f− . THE BETTER RESULTS OF  NUMBER OF 
SUCCESSFUL RUNS AND MEAN NFES OF SUCCESSFUL RUNS IN BOLDFACE. 

F 
Number of successful runs Mean NFEs of successful runs 

SDE ODE OBDE CDE UDE SDE ODE OBDE CDE UDE 

f01 50 50 50 50 50 53548 35235 16752 17274 16867 

f02 50 50 50 50 50 45912 36914 21344 21698 20547 

f03 50 50 50 50 50 144076 95520 47110 47720 46991 

f04 50 50 50 50 50 189680 126731 188408 199598 111897 

f05 49 50 50 50 50 236808 232171 310538 315624 227266 

f06 50 50 50 50 50 30286 20051 35816 36984 17521 

f07 46 50 50 50 50 328491 83072 161828 176882 129778 

f08 50 50 50 50 50 95590 42346 81452 79596 101567 

f09 50 50 50 50 50 168732 63763 194664 196318 77927 

f10 50 50 50 50 50 53784 36802 63386 64768 35341 

f11 50 50 50 50 50 51602 34010 59810 61448 32952 

f12 50 50 50 50 50 36290 23648 45312 46270 23595 

f13 50 50 50 50 50 50236 33409 50770 51794 21949 

f14 50 50 50 50 50 3702 3383 412 844 525 

f15 50 50 50 50 50 946 1124 1076 1458 868 

f16 50 50 50 50 50 998 1016 642 868 606 

f17 50 50 50 50 50 1356 1584 562 894 454 

f18 50 50 50 50 50 1556 1621 800 1054 808 

f19 50 50 50 50 50 1038 946 520 780 404 

f20 50 50 50 44 50 14504 4059 3278 4634 1193 

f21 50 50 50 50 50 5918 5473 5650 6440 4141 

f22 50 50 50 50 50 5066 5053 5444 6548 1959 

f23 50 50 50 50 50 5184 4782 1614 6332 1547 
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