
A Novel Differential Evolution with Uniform
Design for Continuous Global Optimization

Lei Peng

School of Computer, China University of Geosciences, Wuhan, China
College of Computer Science, Huazhong University of Science and Technology, Wuhan,China

Email:penglei0114@gmail.com

Yuanzhen Wang
College of Computer Science, Huazhong University of Science and Technology, Wuhan,China

Email:wangyz2005@163.com

Guangming Dai
School of Computer, China University of Geosciences, Wuhan, China

Email: gmdai@cug.edu.cn

Zhongsheng Cao
College of Computer Science, Huazhong University of Science and Technology, Wuhan,China

Email: caozhongsheng@126.com

Abstract—Differential Evolution (DE) is a simple and
efficient optimizer, especially for continuous global
optimization. Over the last few decades, DE has often been
employed for solving various engineering problems. At the
same time, the DE structure has some limitations in the
complicated problems. This fact has inspired many
researchers to improve on DE by proposing modifications to
the original algorithm. Population initialization is very
important to the performance of differential evolution. A
good initialization method can help in finding better
solutions and improving convergence rate. In this paper, a
uniform-differential evolution algorithm (UDE) is proposed.
It incorporates uniform design initialization method into
differential evolution to accelerate its convergence speed
and improve the stability. UDE is compared with other four
algorithms of Standard Differential Evolution (SDE),
Orthogonal Differential Evolution (ODE), Opposition Based
Differential Evolution(OBDE) and Chaos Differential
Evolution(CDE). Experiments have been conducted on 23
benchmark problems of diverse complexities. The results
indicate that our approach has the stronger ability and
higher calculation accuracy to find better solutions than
other four algorithms.

Index Terms—differential evolution, global optimization,
uniform design method, orthogonal design method,
Opposition Based, Chaos Initialization

I. INTRODUCTION
Global optimization is the task of finding the

absolutely best set of parameters to optimize an objective
function. Generally, there are solutions that are locally
optimal but not globally optimal. Consequently, global
optimization problems are typically quite difficult to
solve exactly. Using classical determinate direct search
techniques may fail to solve such problems because these

problems usually contain multiple local optima.
The problem of finding a global minimum of the

unconstrained optimization problem:
min ()

nx R
f x

∈

Where f is a generally nonconvex, real valued
function defined on nR .

In recent years, the use of alternative approaches to
solve complex optimization problems is very common.
Evolutionary Algorithms (EAs) such as genetic algorithm,
evolutionary programming, evolution strategy and
genetic programming have received many interests from
researchers and practitioners due to their competitive
results when solving this kind of problems.

Differential Evolution (DE) is a branch of evolutionary
algorithms developed by Rainer Storn and Kenneth Price
[1] for global continuous optimization problem. It has
won the third place at the 1st International Contest on
Evolutionary Computation. It shares similarities with
previous EAs. For example, DE works with a population
of solutions, called vectors, it uses recombination and
mutation operators to generate new vectors and, finally, it
has a replacement process to discard the less fit vectors.
DE uses real encoding to represent solutions. Some of the
differences with respect to other EAs are the following:
DE uses a special mutation operator based on the linear
combination of three individuals and a uniform crossover
operator. It has several attractive features. Besides being
an exceptionally simple evolutionary strategy, it is
significantly faster and robust for solving numerical
optimization problem and is more likely to find the
functions true global optimum.

Despite having several striking features and successful
applications to different fields, DE has sometimes been
shown slow convergence and low accuracy of solutions

JOURNAL OF COMPUTERS, VOL. 7, NO. 1, JANUARY 2012 3

© 2012 ACADEMY PUBLISHER
doi:10.4304/jcp.7.1.3-10

when the solution space is hard to explore. Many efforts
have been made to improve the performance of DE and
many variants of DE have been proposed.

The first direction for improvement is hybridization.
Sun et al. [2] developed DE/EDA which combines DE
with EDA for the global continuous optimization
problem. It combines global information extracted by
EDA with differential information obtained by DE to
create promising solutions. The presented experimental
results demonstrated that DE/EDA outperforms DE and
EDA in terms of solution quality within a given number
of objective function evaluations. Noman et al.[3]
proposed a DE variant which incorporated a Local
Search(LS) technique to solve optimization problem by
adaptively adjusting the length of the search, using a hill-
climbing heuristic. Experimenting with a wide range of
benchmark functions,the results show that the proposed
new version of DE performs better, or at least
comparably,to classic DE algorithm. He et al.[4]
proposed a new binary differential evolution algorithm
based on the theory of immunity in biology. The test
results show the improvement of the searching ability and
increment in the convergence speed in comparison with
the other algorithms. Das et al.[5]introduced a stochastic
selection mechanism to improve the accuracy and
convergence speed of DE. The idea of a conditional
acceptance function (that allows accepting inferior
solutions with a gradually decaying probability) is
borrowed from the realm of the Simulated Annealing
(SA). The resulting hybrid algorithm has been compared
with three state-of-the-art adaptive DE schemes. The
experiment results indicate that the mixed algorithm is
able to find better solutions on a six-function testbed and
one difficult engineering optimization problem. Omran et
al.[6] incorporated a hybrid of concepts from chaotic
search, opposition-based learning, differential evolution
and quantum mechanics, named CODEQ to solve
constrained problems. The experiment results indicate
that CODEQ is able to find excellent solutions in all
cases. Zhang et al.[7] proposed a hybrid of DE with PSO,
called DE-PSO which incorporates concepts from DE and
PSO, updating particles not only by DE operators but also
by mechanisms of PSO. The presented experimental
results demonstrate its effectiveness and efficiency.
Wang et al.[8] combined the self-adaptive mixed
distribution based univariate estimation of distribution
algorithm (MUEDA) and a modified DE (MDE) to form
a new algorithm, named ED-DE. It solved Economic
Load Dispatch (ELD) problem successfully. Coelho et
al.[9]combined ant colony optimization(ACO) with a
differential evolution method (MACO) for chaotic
synchronization. Jia et al.[10] proposed a Chaos and
Gaussian local optimization based hybrid differential
evolution (CGHDE) to high-dimensional complex
engineering problems. The randomicity of chaotic local
search can explore in a wide search space to overcome
the premature in the earlier evolution phase and Gaussian
optimization can refine the optimum in the later run
phase. The experiment results indicate that CGHDE is
able to find excellent solutions than other algorithms.

The second direction for improvement is dynamic
adaptation of the control parameters. DE is sensitive to
the two crucial parameters, to a certain extent the
parameter values determine whether DE is capable of
finding a near-optimum solution or not. So, recently,
some studies focus on adaptive control parameters.
Zaharie[11] proposed to transform F into a Gaussian
random variable. Liu et al.[12] proposed a fuzzy adaptive
differential evolution (FADE) which uses fuzzy logic
controllers to adapt the mutation and crossover control
parameters. Das et al. [13] proposed two schemes which
are named DERSF and DETVSF to adapt the scaling
factor F. Brest et al.[14] presented a novel approach to
self-adapt parameters F and Cr. In their method, these
two control parameters are encoded at the individual
level. Nobakhti et al.[15] proposed a Randomised
Adaptive Differential Evolution (RADE) method, which
a simple randomised self-adaptive scheme is proposed for
the DE mutation weighting factor F. Qin et al.[16]
proposed self-adaptive DE (SaDE) which the trial vector
generation strategies and two control parameters are
dynamically adjusted based on their performance. Zhang
et al.[17] proposed a new differential evolution (DE)
algorithm (JADE) which the optional archive operation
utilizes historical data to provide information of progress
direction.Pan et al[18]proposed a self-adaptive DE
algorithm, namely SspDE. It used an associated strategy
list(SL),a mutation scaling factor F list (FL),and a
crossover rate CR list (CRL) to be more effective in
obtaining better quality solutions.

The third direction for improvement is population
initialization. Before solving an optimization problem, it
usually has no information about the location of the
global minimum. It is desirable that an algorithm starts to
explore those points that are scattered evenly in the
decision space. Population initialization is a crucial task
in evolutionary algorithms because it can affect the
convergence speed and also the quality of the final
solution. Recently, some researchers are working some
methods to improve the EAs population initialization.
Leung et al.[19] designed a GA called the orthogonal GA
with quantization (OGA/Q) for global numerical
optimization with continuous variables. Gong et al [20]
used orthogonal design method to improve the initial
population of DE(ODE). Rahnamayan et al. [21-23]
proposed two novel initialization approaches which
employ opposition-based learning and quasi-opposition to
generate initial population. Xu et al.[24] used chaos
initialization to get rapid convergence of DE as the region
of global minimum. Pant et al.[25] proposed a novel
initialization scheme called quadratic interpolation to DE
with suitable mechanisms to improve its generation of
initial population. Peng et al.[26] used Uniform-Quasi-
Opposition to generate initial population of DE and
accelerate its convergence speed and improve the
stability. Ozer[27] used chaotic maps to generate
sequences from different chaotic systems to construct
initial population and proposed Chaotically Initialized
Differential Evolution (CIDE).

4 JOURNAL OF COMPUTERS, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

In this paper, an improvement version of DE, namely
Uniform-Differential Evolution (UDE) is presented to
solve unconstrained optimization problem. UDE
combines DE with uniform initialization. According to
our previous study, uniform design generation can
enhance the quality of initial population. The two
experiments are designed and UDE is compared with
SDE, ODE,OBDE,CDE. The experimental results show
that UDE outperforms SDE, ODE, OBDE, CDE.

The paper is organized as follows: Section 2 provides
an overview of differential evolution, uniform design
method, orthogonal design method, opposition based
method and Chaos initialization method. Our proposed
approach is presented in detail in Section 3.After that, in
Section 4 the experimental design, the results are included.
The last section, Section 5, is devoted to conclusions and
future works.

II. PRELIMINARY

A. Differential evolution
The DE algorithm in pseudo-code is shown in

Algorithm 1. Each vector i in the population at
generation t , ix called target vector will generate one
offspring called trial vector iv . Trial solutions are
generated by adding weighted difference vectors to the
target vector. This process is referred to as the mutation
operator where the target vector is mutated. A crossover
step is then applied to produce an offspring which is only
accepted if it improves on the fitness of the parent
individual. Many variants of standard DE have been
proposed, which use different learning strategies and/or
recombination operations in the reproduction stage. In
this paper, the DE/best/1/exp strategy is used.

Algorithm 1.Procedure of DE with best/1/exp

1: Generate the initial population P , define ()ix t as the
i -th individual of the t -th generation:

1 2

max1, 2, , 1, 2, ,

() ((), (), , ())
 ;

i i i in

M

x t x t x t x t
i t t

=
= =

where n is the number of decision variable, M is the
population size, maxt is the maximum generation.
2: Evaluate the fitness (())if x t for the each individual.
3: while the termination condition is not satisfied do
4: for i=1 to M do
5: Select xbest , xp1，xp2 and i≠p1≠p2≠best.
6: j=randint(1,n)
7: L=0
8: i iv P=
9: repeat
10: 1 2()ij bestj p j p jv x F x x= + × −
11: j=(j+1) mod n
12: L=L+1
13: until ijrand [0,1)>CR or L>n
14: Evaluate the offspring iv

15: If iv is better than ix then
16: ix = iv
17: end if
18: end for
19: end while
20: F is the scaling factor, CR is crossover factor.

B. Uniform design method
Experimental design method is a sophisticated branch

of statistics. The uniform design, proposed by Fang and
Wang[29] in 1980,is one of space filling designs and has
been widely used in computer and industrial experiments.
The main objective of uniform design is to sample a
small set of points from a given set of points, such that
the sampled points are uniformly scattered.

It defines the uniform array as n
MU q , where n is

factors and q is levels. When n and q are given, the
population can be constructed by selecting M
combinations from nq .The steps of initialization
population are as Algorithm 2.

Algorithm 2. Uniform Design Initialization

1: Find all the primer numbers 1 2(, , ,)h h h hs= which
are less than M , where M is the size of population.
2: The j -th column of the uniform array is constructed
according to (1)

 [mod]ij jU ih M= (1)
where 1,2, ,i M= ; 1, 2, ,j s=

3: Suppose n (n s<) is the number of the variables,
randomly choose , ,il jnh h from the vector

1 2(, , ,)h h h hs= . A uniform matrix of 'M nU × is
constructed.
4: Generation of initial population

After constructing the uniform array, it can generate
the uniform population which scatters uniformly over the
feasible solution space according to (2).

'(,) () /ij j j jP i j U u l M l= × − +
1,2, ,i M= ; 1, 2, ,j n= (2)

where ju and jl are the maximum and minimum values
of the variable j .

C. Orthogonal design method
Orthogonal design method [19,20] with both

orthogonal array (OA) and factor analysis (such as the
statistical optimal method) is developed to sample a
small, but representative set of combinations for
experimentation to obtain good combinations. OA is a
fractional factorial array of numbers arranged in rows and
columns, where each row represents the levels of factors
in each combination, and each column represents a
specific factor that can be changed from each
combination. It can assure a balanced comparison of
levels of any factor. The array is called orthogonal

JOURNAL OF COMPUTERS, VOL. 7, NO. 1, JANUARY 2012 5

© 2012 ACADEMY PUBLISHER

because all columns can be evaluated independently of
one another, and the main effect of one factor does not
bother the estimation of the main effect of another factor.

Algorithm 3. Orthogonal Design Initialization

1: For k=1 to J do

2:
1 1 1

1

kQj
Q

− −
= +

−

3: For i=1 to R do

4: ,
1 modi j j k

ia Q
Q −

⎢ ⎥−
= ⎢ ⎥
⎣ ⎦

5: End for
6: End for
7: For k=2 to J do

8:
1 1 1

1

kQj
Q

− −
= +

−

9: For s=1 to j-1 do
10: For t=1 to j-1 do
11: For i=1 to R do
12: ,((1)(1)) , ,() modi j s Q t i s i ja a t a Q+ − − + = × +
13: End for
14: End for
15:End for
16:End for
17:Increment ,i ja by one for all [1,]i R∈ and [1,]j C∈
18:eval=0
19:For i=1 to R do
20: For j=1 to n do
21: k= ,i ja

22: (,)P i j = (1)(),1
1

j j
j

u l
l k k Q

Q
−

+ − ≤ ≤
−

23: ([,]j jl u is quantized Q-1 fractions)
 24: End for
25:Evaluate (,)P i j and eval++
26:End for
27:Sort the (,)P i j
28:Select the best M solution from (,)P i j to generate the
first population

D. Opposition Based Initialization
The concept of opposition-based learning (OBL)

[21,22], in its earlier simple form, was introduced by
Tizhoosh. The main idea behind OBL is the simultaneous
consideration of an estimate and its corresponding
opposite estimate in order to achieve a better
approximation for the current candidate solution. As an
advantage of opposite versus random points, purely
random resampling or selection of solutions from a given
population, has a higher chance of visiting or even
revisiting unproductive regions of the search space.

Algorithm 4. Opposition Based Initialization

1: Generate uniformly distributed random population 0P
2: For i=0 to M do
3: For j=0 to n do
4: 0 , 0 ,i j j j i jOP a b P= + −
5: Select M fittest individuals from set the 0, 0{ }P OP as
the initial population.

E. Chaos Initialization
Chaos is a kind of characteristic of nonlinear systems

and it has been extensively studied and applied in many
fields[24,27]. Although it appears to be stochastic, it
occurs in a deterministic nonlinear system under
deterministic conditions. Chaotic sequences have been
proven easy and fast to generate and store, there is no
need for storage of long sequences. Merely a few
functions (chaotic maps) and few parameters (initial
conditions) are needed even for very long sequences. In
addition, an enormous number of different sequences can
be generated simply by changing its initial condition.
Moreover, these sequences are deterministic and
reproducible. Recently, chaotic sequences have been
adopted instead of random sequences and very interesting
and somewhat good results have been shown in many
applications.

Algorithm 5. Chaos Initialization

1: Set the Maximum number if chaotic iteration, CI,
according to the problem ,the population size M and i=0
2: While i≤M do
3: Randomly initialize chaotic variables taking into
account the constrains , j=1,2,….,n and set counter k=0;
4: While (k<CI) do
5: Generate different chaotic variables j

kcm ,
j=1,2,.,n, using Logistic map.
6: k=k+1
7: End While
8: Map the chaotic variables j

kcm to feasible region
according to equation 0 min max min

, ()j
j i j k j jX X cm X X= + × − ,

j=1,2,.,n
9: Set i=i+1
10:End While

III. UNIFORM DIFFERENTIAL EVOLUTION
The performance of DE is sensitive to the choice of

control parameters. Based on our former research, the
better choice of the parameters are 0.5F = and

0.9CR = .In order to avoid tuning the parameter
F and CR , a parameter control technology is adopted
according to the following scheme:

 (0.5,0.02), (0.9,0.02)F N CR N= = (3)
(,)N τ ε is a normal distribution that can generate values

in the range of [3 , 3]τ ε τ ε− × + × .

6 JOURNAL OF COMPUTERS, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

Algorithm 6. Main procedure of Uniform Differential
Evolution
1: Initialization: construct the population P by uniform
initialization.
2: Optimization using DE with Best/1/Exp.

 Mutation
Select the best individual xbest in the t -th generation

and two different individuals xp1, xp2 from population
where i≠p1≠p2≠best.

 Crossover
Crossover operation is used to increase the diversity ,
 Selection
Compare vi(t) with xi(t), select the vector which has a

better fitness as the individual in the new generation :
3: If stop criterion is met, go to step 4,else go to step 2
4: Terminate

IV. EXPERIMENTS
In order to assess the performance of our proposed

algorithm, a comprehensive set of benchmark functions,
including 23 different global optimization problems
f01~f23 [20,28],have been employed for performance
verification of the proposed approach. The formal
definitions of the test functions and their global
optimum(s) are summarized in [30]. Generally, following
characteristics are desirable to provide a comprehensive
test suite:

Functions 1 ~ 5 are unimodal problems and functions
8~ 13 are multimodal. Functions 6~7 are two special
problems exhibiting a step landscape and a noisy
landscape respectively. Functions 14~23 are low-
dimensional functions which have only a few local
minima.

Two experiments are designed. For each test functions,
it performs 50 independent runs for each algorithm with
different random seeds.

The first test compares the convergence speed of UDE
with SDE, ODE,OBDE,CDE by measuring the number of
successful runs and the mean number of function calls
(NFC) of successful runs which are the most commonly
used metrics. The test results of SDE and ODE come
from the literature [20].

In the first experiment, the parameters of UDE are as
follows:

 Population Size: NP=100.
 Maximum number of NFC(NFCMAX) is 500000.
 The scaling factor F and probability of crossover

CR of UDE use parameter control scheme as (3) .
 Stopping criterions are

| () () | 0.005best optimalf x f x− ≤ or NFCMAX is reached,
where ()bestf x is the best solution in the current run,

()optimalf x is the globally minimal function value.
The results are list in TableⅠ. From this table it can

firstly be observed that ODE,OBDE and UDE can solve
23 benchmark problems in all 50 runs, but SDE cannot
solve function f05 and f07 in all runs and it traps in the
local optima once and four times. CDE traps in the local
optima six times on function f20.Secondly, UDE needs

less mean NFEs of successful runs than SDE, ODE,
OBDE,CDE in 17 test functions f02~f06,f10~f13,
f15~f17 and f19~f23. Especially in functions f04,f05,
f06,f20,f21,f22,f23, it can be found that UDE makes
considerable reduction of the mean NFEs of successful
runs .

From these discussions, it can be concluded that firstly,
the performance of UDE is better than other four
algorithms; secondly, the uniform design can accelerate
DE’s convergence speed.

The second experiment compares the stability and
calculation accuracy among the five algorithms. UDE has
been compared with SDE, ODE,OBDE,CDE. The
performance metrics have: (1)the mean NFEs(MNFEs)
(2) the mean best function value(Mean best) (3)the
standard deviation of the function values(Std).It performs
50 independent runs for each algorithm on the benchmark
problems.

The parameters of UDE are as follows:
 Population Size: NP=100
 Maximum number of function calls is on Table Ⅱ
 The scaling factor F and probability of crossover

CR of UDE use parameter control scheme as (3)

The mean results of 50 independent runs are

summarized in Table Ⅱ. Results for SDE, ODE are taken
from [20]. From Table Ⅱ, it can be seen that UDE needs
less function evaluations than SDE, ODE,OBDE,CDE in
6 functions(f06, f09, f11, f14, f15, f16). UDE can provide
better mean best results than SDE, ODE,OBDE,CDE for
7 functions (f03, f07, f10, f12, f13, f15, f20). Furthermore,
UDE obtains smaller standard deviation than other four
algorithms in 10 functions (f01, f03,f04,f10,f12, f13, f20,
f21,f22,f23).

The results of the mean function values indicate that
UDE is able to obtain more accurate solutions .The
results of the standard deviation of the function values
present that UDE is more stable than other four
algorithms. Also, these results demonstrate that uniform
design initialization used in DE can be effectively worked
and enhance the performance of DE and accelerate the
convergence speed and improve the stability and
calculation accuracy of differential evolution.

V. CONCLUSIONS
In this article, it has presented a new variant of

differential evolution algorithm (UDE) in which the
initial population is selected using the uniform design
initialization method. An adaptive parameter control
technology is adopted .UDE has compared with other
four algorithms of SDE, ODE,OBDE,CDE. According to
the experiment results, it can conclude that uniform
design initialization can enhance the capability of our
algorithm and UDE is better and more stable than other
four algorithms on the benchmark problems.

Future work consists on extending the present version
for solving some real life optimization problems and
combining uniform differential evolution with other local
optimizer.

JOURNAL OF COMPUTERS, VOL. 7, NO. 1, JANUARY 2012 7

© 2012 ACADEMY PUBLISHER

TABLE I. COMPARISON WITH SDE, ODE,OBDE,CDE AND UDE ON 1 23f f− . THE BETTER RESULTS OF NUMBER OF
SUCCESSFUL RUNS AND MEAN NFES OF SUCCESSFUL RUNS IN BOLDFACE.

F
Number of successful runs Mean NFEs of successful runs

SDE ODE OBDE CDE UDE SDE ODE OBDE CDE UDE

f01 50 50 50 50 50 53548 35235 16752 17274 16867

f02 50 50 50 50 50 45912 36914 21344 21698 20547

f03 50 50 50 50 50 144076 95520 47110 47720 46991

f04 50 50 50 50 50 189680 126731 188408 199598 111897

f05 49 50 50 50 50 236808 232171 310538 315624 227266

f06 50 50 50 50 50 30286 20051 35816 36984 17521

f07 46 50 50 50 50 328491 83072 161828 176882 129778

f08 50 50 50 50 50 95590 42346 81452 79596 101567

f09 50 50 50 50 50 168732 63763 194664 196318 77927

f10 50 50 50 50 50 53784 36802 63386 64768 35341

f11 50 50 50 50 50 51602 34010 59810 61448 32952

f12 50 50 50 50 50 36290 23648 45312 46270 23595

f13 50 50 50 50 50 50236 33409 50770 51794 21949

f14 50 50 50 50 50 3702 3383 412 844 525

f15 50 50 50 50 50 946 1124 1076 1458 868

f16 50 50 50 50 50 998 1016 642 868 606

f17 50 50 50 50 50 1356 1584 562 894 454

f18 50 50 50 50 50 1556 1621 800 1054 808

f19 50 50 50 50 50 1038 946 520 780 404

f20 50 50 50 44 50 14504 4059 3278 4634 1193

f21 50 50 50 50 50 5918 5473 5650 6440 4141

f22 50 50 50 50 50 5066 5053 5444 6548 1959

f23 50 50 50 50 50 5184 4782 1614 6332 1547

ACKNOWLEDGMENT
The authors would like to acknowledge the anonymous

reviewers for their useful comments and constructive
suggestions. This work was supported by the National
Natural Science Foundation of China under Grant
No.60873107, the National High-Tech Research and
Development Plan of China under Grant No.
2008AA12A201,the Fundamental Research Funds for the
 Central Universities under Grant No. CUGL090238 and
CUG100708, the Research Foundation for Outstanding
Young Teachers China University of Geosciences
(Wuhan) under Grant No. CUGQNL0831.

REFERENCES
[1] R. Storn and K. Price, “Differential evolution—A simple

and efficient heuristic for global optimization over
continuous spaces”,Journal of Global Optimization., vol.
11, pp. 341-359, 1997.

[2] J. Sun, Q. Zhang and E. P. K. Tsang, "DE/EDA: A new
evolutionary algorithm for global optimization,"
Information Sciences, vol. 169, pp. 249-262, 2005.

[3] N. Noman and H. Iba, "A new generation alternation
model for differential evolution," in 8th Annual Genetic
and Evolutionary Computation Conference 2006, July 8,
2006 - July 12, 2006, Seattle, WA, United states, 2006, pp.
1265-1272.

[4] X. He and L. Han, "A novel binary differential evolution
algorithm based on artificial immune system," in 2007
IEEE Congress on Evolutionary Computation, CEC 2007,
September 25, 2007 - September 28, 2007, Singapore, pp.
2267-2272.

[5] S. Das, A. Konar and U. K. Chakraborty, "Annealed
differential evolution," in 2007 IEEE Congress on
Evolutionary Computation, CEC 2007, September 25,
2007 - September 28, 2007, Singapore, pp. 1926-1933.

[6] M. G. H. Omran and A. Salman, "Constrained optimization
using CODEQ," Chaos, Solitons and Fractals, vol. 42, pp.
662-668, 2009.

[7] C. Zhang, J. Ning, S. Lu, D. Ouyang, and T. Ding, "A
novel hybrid differential evolution and particle swarm
optimization algorithm for unconstrained optimization,"
Operations Research Letters, vol. 37, pp. 117-122, 2009.

[8] Y. Wang, B. Li and T. Weise, "Estimation of distribution
and differential evolution cooperation for large scale
economic load dispatch optimization of power systems,"
Information Sciences, vol. 180, pp. 2405-2420, 2010.

8 JOURNAL OF COMPUTERS, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

[9] L. D. S. Coelho and D. L. D. A. Bernert, "A modified ant
colony optimization algorithm based on differential
evolution for chaotic synchronization," Expert Systems
with Applications, vol. 37, pp. 4198-4203, 2010.

[10] D. Jia and G. Zheng, "Hybrid differential evolution
combined with chaos and Gaussian local optimization,"
Kongzhi yu Juece/Control and Decision, vol. 25, pp. 899-
902, 2010.in Chinese

[11] D.Zaharie, ”Critical values for the control parameters of
differential evolution algorithms”, in Proc. MENDEL 8th
Int.Conf.Soft Comput.,2002,pp.62-67

[12] J.Liu and J.Lampinen, “A fuzzy adaptive differential
evolution algorithm”, Soft Computing--A Fusion of
Foundations, Methodologies and Applications,vol.9,no.6,
pp.448-642, 2005.

[13] S. Das, A. Konar and U. K. Chakraborty, "Two improved
differential evolution schemes for faster global search," in
GECCO 2005 - Genetic and Evolutionary Computation
Conference, June 25, 2005 - June 29, 2005, Washington,
D.C., United states, 2005, pp. 991-998.

[14] J. Brest, S. Greiner, B. Bokovic, M. Mernik, and V. Zumer,
"Self-adapting control parameters in differential evolution:
A comparative study on numerical benchmark problems,"
IEEE Transactions on Evolutionary Computation, vol. 10,
pp. 646-657, 2006.

[15] A. Nobakhti and H. Wang, "A simple self-adaptive
Differential Evolution algorithm with application on the
ALSTOM gasifier," Applied Soft Computing Journal, vol.
8, pp. 350-370, 2008.

[16] A. K. Qin and P. N. Suganthan, "Self-adaptive differential
evolution algorithm for numerical optimization," in 2005
IEEE Congress on Evolutionary Computation, IEEE CEC
2005, September 2, 2005 - September 5, 2005, Edinburgh,
Scotland, United kingdom, 2005, pp. 1785-1791.

[17] J. Zhang and A. C. Sanderson, "JADE: Adaptive
differential evolution with optional external archive," IEEE
Transactions on Evolutionary Computation, vol. 13, pp.
945-958, 2009.

[18] Q. Pan, P. N. Suganthan, L. Wang, L. Gao, and R.
Mallipeddi, "A differential evolution algorithm with self-
adapting strategy and control parameters," Computers &
Operations Research, vol. 38, pp. 394-408, 2011.

[19] Y. W. Leung and Y. Wang, "An orthogonal genetic
algorithm with quantization for global numerical
optimization," IEEE Transactions on Evolutionary
Computation, vol. 5, pp. 41-53, 2001.

[20] W. Gong, Z. Cai and L. Jiang, "Enhancing the performance
of differential evolution using orthogonal design method,"
Applied Mathematics and Computation, vol. 206, pp. 56-
69, 2008.

[21] S. Rahnamayan, H. R. Tizhoosh and M. M. A. Salama, "A
novel population initialization method for accelerating
evolutionary algorithms," Computers & Mathematics with
Applications, vol. 53, pp. 1605-1614, 2007.

[22] S. Rahnamayan, H. R. Tizhoosh and M. M. A. Salama,
"Opposition-based differential evolution," IEEE
Transactions on Evolutionary Computation, vol. 12, pp.
64-79, 2008.

[23] S. Rahnamayan, H. R. Tizhoosh and M. M. A. Salama,
"Quasi-oppositional differential evolution," in 2007 IEEE
Congress on Evolutionary Computation, CEC 2007,
September 25, 2007 - September 28, 2007, Singapore,
2008, pp. 2229-2236.

[24] X.Xu, X.Huang, and D.Qain, “Adaptive accelerating
differential evolution,” Complex Systems and Complexity
Science ,5(3),pp:87-92,2008. In Chinese

[25] M. Pant, M. Ali and V. P. Singh, "Differential evolution
using quadratic interpolation for initializing the
population," in 2009 IEEE International Advance
Computing Conference, IACC 2009, March 6, 2009 -
March 7, 2009, Patiala, India, 2009, pp. 375-380.

[26] L. Peng and Y. Wang, "Differential evolution using
uniform-quasi-opposition for initializing the population,"
Information Technology Journal, vol. 9, pp. 1629-1634,
2010.

[27] A. Bedri Ozer, "CIDE: chaotically initialized differential
evolution," Expert Systems with Applications, vol. 37, pp.
4632-4641, 2010.

[28] X. Yao, Y. Liu and G. Lin, "Evolutionary programming
made faster," IEEE Transactions on Evolutionary
Computation, vol. 3, pp. 82-102, 1999.

[29] Y. Wang and K. T. Fang, “A note on uniform distribution
and experimental design”, KEXUE TONGBAO, vol. 26,
no. 6, pp. 485-489,1981.In Chinese.

[30] L.Peng,Y.Wang,and G.Dai, “UDE:differential evolution
with uniform design”,in 3rd International Symposium on
Parallel Architectures,Algorithms and Programming,
PAAP 2010, December 18, 2010-December 20, 2010,
Dalian, China, 2010, pp.239-246

Lei Peng is a lecturer in School of Computer Science in China
University of Geosciences, Wuhan, China and a Ph.D. student
at College of Computer Science and Technology, Huazhong
University of Science and Technology. The research interests
are evolutionary algorithm and evolutionary engineering
optimal design.

Yuanzhen Wang is Professor in College of Computer Science
and Technology, Huazhong University of Science and
Technology, Wuhan, China. The research interest is DataBase.

Guangming Dai is Professor in School of Computer Science in
China University of Geosciences, China. His main interests are
in the area of evolutionary algorithm and mission analysis and
design.

.

Zhongsheng Cao is Associate Professor in College of
Computer Science and Technology, Huazhong University of
Science and Technology, Wuhan, China. The research interest
is DataBase and Data Mining.

JOURNAL OF COMPUTERS, VOL. 7, NO. 1, JANUARY 2012 9

© 2012 ACADEMY PUBLISHER

TA
B

LE
 II

.
C

O
M

PA
R

IS
IO

N
 W

IT
H

 D
E,

 O
D

E,
 O

B
D

E,
C

D
E,

U
D

E.
 M

A
X

_E
V

A
L

: T
H

E
M

A
X

 N
U

M
B

ER
 O

F
FU

N
C

TI
O

N
 C

A
LL

S,
 M

EA
N

 B
ES

T:
 T

H
E

M
EA

N
 B

ES
T

FU
N

C
TI

O
N

 V
A

LU
E

(O
V

ER
 5

0
TR

IA
LS

),
ST

D
: T

H
E

ST
A

N
D

A
R

D
 D

EV
IA

TI
O

N
 O

F
TH

E
FU

N
C

TI
O

N
 V

A
LU

ES
. T

H
E

B
ES

T
M

N
FE

S,
 M

EA
N

 B
ES

T
A

N
D

 S
TD

 IN
 B

O
L

D
FA

C
E

.

F
M

ax
_e

va
l

M
N

FE
s

M
ea

n
be

st

St
d

SD
E

O
D

E
O

B
D

E
C

D
E

U
D

E
SD

E
O

D
E

O
B

D
E

C
D

E
U

D
E

SD
E

O
D

E
O

B
D

E
C

D
E

U
D

E

f0
1

15
00

00

15
00

00

15
00

00

12
79

52

12
86

96

12
86

53

1.
64

E-
18

2.

06
E-

23

8.
91

E
-5

1
9.

11
E-

51

8.
97

E-
51

5.

29
E-

18

1.
83

E-
23

8.

28
E-

52

8.
29

E-
52

6.

69
E

-5
2

f0
2

20
00

00

20
00

00

20
00

00

20
00

00

20
00

00

20
00

00

2.
97

E-
15

1.

43
E-

18

1.
83

E
-4

2
2.

83
E-

42

4.
55

E-
42

5.

78
E-

15

8.
11

E-
19

1.

64
E

-4
2

2.
87

E-
42

4.

87
E-

42

f0
3

50
00

00

50
00

00

50
00

00

36
24

74

36
55

88

36
60

15

3.
53

E-
20

5.

25
E-

27

9.
47

E-
51

9.

41
E-

51

9.
36

E
-5

1
3.

53
E-

20

9.
66

E-
27

5.

07
E-

52

5.
64

E-
52

4.

80
E

-5
2

f0
4

50
00

00

50
00

00

50
00

00

50
00

00

50
00

00

50
00

00

9.
73

E-
10

2.

72
E

-1
5

2.
22

E-
07

2.

11
E-

07

2.
74

E-
15

5.

00
E-

10

9.
30

E-
15

8.

14
E-

07

7.
19

E-
07

5.

17
E

-1
5

f0
5

50
00

00

49
47

88

42
87

76

50
00

00

50
00

00

48
67

84

2.
55

E-
29

0

1.
23

E-
16

7.

29
E-

18

1.
63

E-
27

1.

15
E-

28

0
4.

26
E-

16

1.
06

E-
17

7.

97
E-

27

f0
6

15
00

00

30
45

4
22

64
0

36
39

0
36

79
8

17
53

9
0

0
0

0
0

0
0

0
0

0

f0
7

30
00

00

30
00

00

30
00

00

30
00

00

30
00

00

30
00

00

0.
00

59
8

0.
00

14
5

0.
00

27
9

0.
00

28
8

0.
00

13
7

0.
00

12
5

4.
20

E
-0

4
9.

92
E-

04

1.
38

E-
03

5.

52
E-

04

f0
8

30
00

00

16
73

24

90
38

1
30

00
00

30

00
00

13

16
10

-1

25
69

.4
86

62

-1
25

69
.4

86
62

-1

25
69

.4
86

62

-1
25

69
.4

86
62

-1

25
69

.4
86

62

0
0

7.
35

E-
12

7.

35
E-

12

0

f0
9

30
00

00

24
76

26

12
76

66

28
65

12

28
88

90

12
55

67

0
0

0
7.

11
E-

17

0
0

0
0

5.
02

E-
16

0

f1
0

15
00

00

15
00

00

15
00

00

15
00

00

15
00

00

15
00

00

3.
19

E-
10

4.

67
E-

13

1.
52

E-
08

1.

74
E-

08

4.
64

E
-1

5
1.

10
E-

10

1.
86

E-
13

3.

47
E-

09

3.
47

E-
09

1.

25
E

-1
5

f1
1

20
00

00

13
82

36

10
98

53

16
28

74

16
28

66

88
54

1
0

0
0

0
0

0
0

0
0

0

f1
2

15
00

00

15
00

00

15
00

00

15
00

00

15
00

00

15
00

00

4.
99

E-
20

6.

73
E-

26

1.
89

E-
16

2.

22
E-

16

1.
57

E
-3

2
3.

68
E-

20

9.
27

E-
26

9.

12
E-

17

8.
83

E-
17

1.

66
E

-4
7

f1
3

15
00

00

15
00

00

15
00

00

15
00

00

15
00

00

15
00

00

4.
42

E-
18

4.

37
E-

24

1.
07

E-
15

1.

33
E-

15

1.
35

E
-3

2
4.

66
E-

18

3.
67

E-
24

4.

29
E-

16

6.
07

E-
16

8.

29
E

-4
8

f1
4

10
00

0
97

96

95
52

22

20

24
36

20

79

0.
99

8
0.

99
8

0.
99

8
0.

99
8

0.
99

8
7.

92
E-

15

0
1.

01
E-

15

1.
01

E-
15

1.

01
E-

15

f1
5

15
00

00

34
48

4
32

43
0

15
00

00

15
00

00

18
15

0
3.

08
E-

04

3.
08

E-
04

3.

07
5E

-0
4

3.
99

E-
04

3.

07
5E

-0
4

0
0

2.
14

E-
19

2.

77
E-

04

6.
45

E-
19

f1
6

10
00

0
10

00
0

10
00

0
10

00
0

68
94

28

71

-1
.0

31
63

-1

.0
31

63

-1
.0

31
63

-1

.0
31

63

-1
.0

31
62

85

9.
16

E-
14

0

3.
09

E-
16

6.

13
E-

16

6.
73

E-
16

f1
7

10
00

0
10

00
0

10
00

0
28

68

32
32

10

00
0

0.
39

78
9

0.
39

78
9

0.
39

78
9

0.
39

78
9

0.
39

78
9

6.
35

E-
11

2.

01
E-

10

3.
36

E-
16

3.

36
E-

16

3.
36

E
-1

6

f1
8

10
00

0
10

00
0

10
00

0
10

00
0

10
00

0
10

00
0

3
3

3
3

3
1.

34
E-

14

0
3.

22
E-

01
5

2.
69

E-
15

3.

56
E-

15

f1
9

10
00

0
10

00
0

10
00

0
10

00
0

10
00

0
10

00
0

-3
.8

62
78

-3

.8
62

78

-3
.8

62
78

-3

.8
62

78

-3
.8

62
78

2.

68
E-

15

2.
68

E
-1

5
2.

69
E-

15

2.
69

E-
15

2.

69
E-

15

f2
0

20
00

0
20

00
0

20
00

0
20

00
0

20
00

0
20

00
0

-3
.3

19
62

-3

.3
22

-3

.2
79

-3

.2
44

-3

.3
22

0.

01
68

1
1.

13
E-

12

5.
76

E-
02

5.

69
E-

02

3.
17

E
-1

6

f2
1

10
00

0
10

00
0

10
00

0
10

00
0

10
00

0
10

00
0

-1
0.

15
32

-1

0.
15

32

-1
0.

15
32

-1

0.
15

32

-1
0.

15
32

1.

29
E-

05

1.
04

E-
06

3.

07
E-

06

1.
33

E-
06

7.

76
E

-1
5

f2
2

10
00

0
10

00
0

10
00

0
10

00
0

10
00

0
10

00
0

-1
0.

40
29

4
-1

0.
40

29
4

-1
0.

40
29

4
-1

0.
40

29
4

-1
0.

40
29

4
5.

84
E-

08

2.
49

E-
08

5.

99
E-

07

1.
48

E-
05

3.

30
E

-1
0

f2
3

10
00

0
10

00
0

10
00

0
10

00
0

10
00

0
10

00
0

-1
0.

53
64

1
-1

0.
53

64
1

-1
0.

53
64

1
-1

0.
53

64
1

-1
0.

53
64

1
5.

80
E-

08

2.
35

E-
08

2.

04
E-

07

1.
20

1E
-0

5
8.

44
E

-1
1

10 JOURNAL OF COMPUTERS, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

