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Abstract—The asymmetric cryptosystem plays an important 
role in the cryptology nowadays. It is widely used in the 
fields of data encryption, digital watermarking, digital 
signature, secure network protocol, etc. However, with the 
improvement of computing capability, longer and longer the 
key length is required to ensure the security of interaction 
information. To shorten the key length and improve the 
encryption efficiency, by defining the two-dimension 
discrete logarithm problem (DLP), a new public-key 
cryptosystem is proposed. This new cryptosystem 
generalizes the public-key cryptosystem from one dimension 
to two dimensions. The core algorithms of the proposed 
cryptosystem are also designed, including the fast algorithm, 
computing the inverse matrix modulo p and finding the 
period. To verify the correctness and rationality of the new 
cryptosystem, two examples are carried out. Meanwhile, the 
efficiency and security are analyzed in detail. Experimental 
results and theoretical analyses show that the new 
cryptosystem possesses the advantages of the outstanding 
robustness, short key length, high security and encrypting 
many data once. 
 
Index Terms—asymmetric cryptosystem, discrete logarithm 
problem (DLP), two dimensions, RSA, ECC (elliptic curve 
cryptosystem) 
 

I.  INTRODUCTION 

The cryptosystems can be classified as the symmetrical 
cryptosystem and the asymmetrical cryptosystem (also 
named as the public-key cryptosystem) by the 
characteristics of the key. For the symmetrical 
cryptosystem, ( 1) / 2n n −  keys are required to satisfy the 
secure communication among n  users over the Internet. 
The key distribution and management become very 
difficult when n  is a very large number. However, the 

asymmetrical cryptosystem just requires 2n  keys, whose 
key distribution and management are much easier. 
Meanwhile, the asymmetrical cryptosystem cannot only 
use for data encryption [1-3], but also for digital signature 
and authentication [4-6].  

As a landmark of the cryptology development, W. 
Diffie and M. E. Hellman proposed the concept of public-
key cryptosystem in 1976 [7]. Afterwards many public-
key cryptosystems are proposed. Experts in cryptology 
select three types of asymmetrical cryptosystem, which 
are regarded as the secure and efficient cryptosystems. 
The detailed description is as follows. 

• The cryptosystem based on the integer 
factorization problem (IFP): Its representative is 
RSA (Rivest, Shamir, Adleman), which was 
proposed in 1977 [8]. The advantages of RSA are 
the simple principle and easy application. RSA 
cryptosystem is designed based on two big prime 
numbers p  and q  instead of a two-dimension 
matrix. Meanwhile, the plaintext M  is segmented 
to several data blocks im , 1, 2,3,i =  in advance, 
and each data block im  can correspond a decimal 
number in . RSA can only encrypt the number in  
instead of a two-dimension plaintext matrix during 
an encryption process [9]. However, with the 
improvement of the integer factorization algorithm, 
we need to continuously lengthen the key length 
of RSA to ensure the security of the cipher text. 
768 bits RSA is unsecure at present, and experts 
suggest applying 1024 bits RSA to ensure the 10-
year security. To ensure the 20-year security, we 
are required to choose 2048 bits RSA. Although 
the extending of the key length can enhance the 
security of RSA cryptosystem, the encryption 
speed reduces sharply and the application becomes 
very difficult.  

• The cryptosystem based on the discrete logarithm 
problem (DLP): Its representative is DSA (digital 
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signature algorithm), which was proposed by the 
National Institute of Standards and Technology 
(NIST) in August 1991. It is a United States 
Federal Government standard for digital signatures. 

• The cryptosystem based on the elliptic curve 
discrete logarithm problem (ECDLP): Its 
representative is ECC (elliptic curve 
cryptosystem). Koblitz and Miller proposed ECC 
in 1985 [10, 11]. The ElGamal scheme of ECC is 
designed based on a basic point of the elliptic 
curve instead of a two-dimension matrix. 
Meanwhile, the plaintext M  is encoded to several 
corresponding points of the elliptic curve in 
advance, and then ECC can only encrypt one of 
these points instead of a two-dimension plaintext 
matrix during an encryption process [12]. ECC 
possesses the advantages of the short key length, 
fast speed, etc [13]. There is not an effectively 
deciphered method at present [15].  

With the improvement of computing capability, the 
key length becomes longer and longer to maintain the 
security of interaction information. The increasing of the 
key length makes the encryption efficiency low. 
Meanwhile, current asymmetric cryptosystems are one 
dimension, which can only encrypt a datum once. To 
improve the encryption efficiency, it is reasonable to 
generalize the public-key cryptosystem from one 
dimension to two dimensions, and even high dimensions. 
Therefore, by defining two-dimension DLP, a new 
public-key cryptosystem is proposed in this paper. This 
cryptosystem generalizes the public-key cryptosystem 
from one dimension to two dimensions. 

The rest of the paper is organized as follows. We 
generalize the definition of DLP from one dimension to 
two dimensions in Section II. Section III designs the new 
cryptosystem based on the two-dimension DLP. The fast 
algorithm for the proposed cryptosystem, the algorithm of 
computing the inverse matrix modulo p and the algorithm 
of finding the period are designed in Section IV. To 
verify the correctness and rationality of the new 
cryptosystem, two examples are carried out respectively 
in Sections V and VI. The efficiency analysis of the new 
cryptosystem is given in Section VII. The security 
analysis of the new cryptosystem is discussed in Section 
VIII. Section IX concludes the paper. 

II. DLP 

Solving DLP is a difficult mathematic problem at 
present, which plays an important role in cryptology. 
DLP is described as follows. 

Let G  be an Abelian group comprised of numbers. 
α  denotes a subgroup of G  generated by mod pα , 

where 3p >  and p  is a prime. Supposing β α∈ , the 
discrete logarithm logα β  is the smallest non-negative 
integer x  such that modx pα β= . DLP is computing 

logx α β=  under the premise of given α  and β  [14]. 
For easy discussion, we call this problem as one-
dimension DLP.  

The matrix possesses more elements and complexer 
construction than a number. As an extension, we define 
the two-dimension DLP as follows. 

Let G  be an Abelian group comprised of matrixes. 
A  denotes the subgroup of G  generated by a matrix 
modA p , where 3p >  and p  is a prime. Supposing 

B A∈ , the discrete logarithm is the smallest non-

negative integer x  such that modxA p B= . The two-
dimension DLP is computing log Ax B=  under the 
premise of given A  and B . Notice that logA B  is just a 
denotation to unify the form. 

III. NEW PUBLIC-KEY CRYPTOSYSTEM 

A new public-key cryptosystem based on the two-
dimension DLP is designed by using slightly altered 
Elgamal cryptosystem [15]. Supposing the following 
scenario, Alice is a sender and Bob is a receptionist. The 
detailed steps of this new cryptosystem are described as 
follows. 

A. Bob’s key-generating steps 
Bob needs to generate his public key and private key 

before decrypting Alice’s information. The detailed steps 
are as follows. 

• Choose a matrix n nA ×  comprised of the elements 
from the set {0,1, 2, , 1}pZ p= − , where 0A ≠ , 
A  cannot be the identity matrix I  , p  is a prime 

or 2mp = , and gcd( , ) 1A p = . 
• Compute the period T of the generator modA p , 

and then he can obtain a cyclic group 
2 3{ , , , , ,pG I A A A=  1}TA − . 

• Randomly select an integer {1, 2, , 1}d T∈ −  as 
his private key and calculate the matrix 

moddQ A p= . 
• Publish the public key [ , , , ]A T p Q . 

B. Alice’s encryption steps 
Alice performs the following steps to encrypt the 

plaintext. 
• Acquire Bob’s public key [ , , , ]A T p Q . 
• After randomly selecting an integer {1, 2, ,u∈  

1}T − , Alice calculates the matrixes moduC A=  
p  and moduD Q p=   with Bob’s public key. 

• Let a matrix n nM ×  be the plaintext, whose 
elements are from the set pZ . Calculate the cipher 
text matrix ( ) modE D M p= × . 

• Send the encrypted data [ , ]C E  to Bob. 

C. Bob’s decryption steps 
Bob performs the following steps after receiving 

Alice’s encrypted data [ , ]C E . 
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• Calculate the matrix moddD C p=  with his 
private key d . ( ) ( )u d u u d dD Q A A C= = = =  
mod p . 

• Compute the inverse matrix of D  with the 
equation 1( ) modpD D p I−× = , where I  is the 
identity matrix. 

• Bob can recover the plaintext M  by calculating 
1( ) modM D E p−= × . 

IV. ALGORITHMS 

A. Fast algorithm 
modeA p  is the core operation for the proposed 

cryptosystem. To improve the encryption efficiency, the 
square-multiply method for numbers is generalized to 
matrixes. 

The square-multiply method is one of the rapidest 
methods of computing modular exponentiation [16-19]. 
The algorithm idea derives from “QinJiuShao” algorithm, 
which was proposed in Song Dynasty of China [16]. To 
accelerate the computing, the square-multiply method is 
used in RSA [16, 18] and ECC [20, 21] at present.  

The principle of the square-multiply method is 
converting the exponent into its binary expression at first. 
According to the binary expression, the result can be 
obtained conveniently by changing the expression of 
modular exponentiation. 

E.g., first, convert the exponent e  into a binary 
expression 1 1 0( , , , , )r r Be e e e−  to compute modea p , 
where 1re = , {0,1}ie ∈ , 1, ,1,0i r= −  and r =  

2log a⎢ ⎥⎣ ⎦ . Second, the expression of modea p  is changed 
by using Equation (1), and then we can compute the 
result of modea p  rapidly. 

1 0 1
1 0 12 2 2 2 2mod mod

r r
r re e e e eea p a p a a× + + × + × × ×= = × ×

0
0 12 2 2mod (((( ( ) mod mod ) ) modre e ea p a p p a×× = × ×

02) ) modep a p× .             (1) 
The computing complexity of the square-multiply 

method is due to the length of the binary expression and 
the number of “1” in the binary expression.  

Similarly, if the number a  is substituted for a matrix 
A , Equation (1) can be rewritten as follows.  

1 0 1
1 0 12 2 2 2 2mod mod

r r
r re e e e eeA p A p A A× + + × + × × ×= = × × ×

0
0 12 2 2mod (((( ( ) mod mod ) ) modre e eA p A p p A× = × ×

02) ) modep A p× .             (2) 
Therefore, we can rapidly compute modeA p  with the 

square-multiply method. 

B. How to compute the inverse matrix modulo p 
The inverse matrix modulo p  of the square matrix A  

is the matrix 1
pA−  satisfying 1( ) modpA A p I−× = , where 

I  is the identity matrix. Meanwhile, A  and 1
pA− are made 

up of the elements from the set pZ . Notice that only if 

gcd( , ) 1A p ≠ , 1
pA−  is existing. The process of 

computing the inverse matrix modulo p  is as follows.  
• According to gcd( , ) 1A p = , judge whether 1

pA−  

exist or not. If gcd( , ) 1A p = , 1
pA−  exist. 

Otherwise, 1
pA−  does not exist. 

• If 1
pA−  exist, compute A . Otherwise, end. 

• Find pi Z∈  satisfying ( ) mod 1A i p× = . 

• Compute 1 1( ) modpA i A A p− −= × × , where 1A−  is 
the inverse matrix in general. 

The Matlab code for computing 1
pA−  is given as 

follows. 
function inverse=invmod(A, p) 
%Compute the inverse matrix modulo p of the square 

matrix A. 
%A and its inverse matrix modulo p are made up of the 

elements from the set Zp={0, 1, 2, ... , p-1}. 
%Check input 
[row,col]=size(A); 
if row~=col 
    error(‘The first parameter must be a square 

matrix.’); 
end 
det_A=det(A); 
%Judge whether the inverse matrix modulo p exist 
if gcd(det_A, p)~=1 
    fprintf(‘The inverse matrix modulo %d does not 

exist.\n’, p); 
    return 
end 
%Compute the inverse matrix modulo p 
for i=1:p 
    if mod(mod(det_A,p)*i, p)==1 
        inv_det_A=i; 
    end 
end 
inverse=mod(round(inv_det_A*det_A*inv(A)),p); 

C. How to find the period T 
Taking a square matrix n nA ×  as the generator, a cyclic 

group 2 3 1{ , , , , , }T
pG I A A A A −=  can be obtained, 

where p  is a prime or 2mp = . To find the period T , we 
design the steps of the algorithm as follows.  

• Compute the elements in the first column of 
(:,1) (:,1)B A A= × . 

• Compute (:,1) (:,1)B A B= ×  repeatedly, until 
(1,1) (1,1)B I= , where I  is the identity matrix. 

• Supposing the times of repeated multiplying A  is 
i  now, we compute modiC A p=  with the fast 
algorithm offered in Section IV(A). 

• Judge whether C I==  or not. If C  is equal to I , 
then T i= ; else go to Step 2. 
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The pseudocode for computing the period T  is as 
follows.  

i=1; B=A; C=A; 
While C==I //I is the identity matrix. 
{   While B(1, 1)== I(1, 1) //Only judge the first 

element. 
{       B(:, 1)=(A*B(:, 1)) mod p; //Only compute 

elements in the first column. 
i=i+1; 
} 
C=Ai mod p; //compute Ai with the fast algorithm 

offered in Section IV(A). 
} 
T i= ; 

V. A SMALL EXAMPLE 

To verify the correctness and rationality of the 
proposed cryptosystem, a small example is carried out 
with a matrix 3 3A × . The result indicates that Bob can 
recover successfully the plaintext with the new 
cryptosystem. The detailed description is given as follows. 

A. Bob’s key-generating steps 
• Choose the matrix A  and the prime 199867p = . 

35229 81087 186969
183258 81999 178611
11570 70526 162525

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. 

• Compute the period 36987216T =  of modA  
199867 . 

• Randomly choose the private key 97131d =  and 
calculate the matrix 

97131

146146 303 187134
mod199867 97027 71586 196024  

58367 115209 91566
Q A

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

. 

• Publish the public key [ ,36987216,97131, ]A Q . 

B. Alice’s encryption steps 
• Acquire Bob’s public key [ ,36987216,97131, ]A Q . 
• After selecting an integer 3925u = , Alice 

calculates the matrixes C  and D  with Bob’s 
public key, 

3925

185342 188610 107335
mod199867 147092 59828 86685

61984 128955 156400
C A

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

, 

3925

158335 135371 118290
mod199867 180294 148209 128784

175149 105464 125418
D Q

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

. 

•  Let the matrix M  be the plaintext. She can 
calculate the cipher text matrix E . 

136164 75845 166248
100495 141799 85721
60882 37905 38660

M
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 

158976 121301 187224
( ) mod199867 108166 176611 42960

95740 189640 129183
E D M

⎡ ⎤
⎢ ⎥= × = ⎢ ⎥
⎢ ⎥⎣ ⎦

. 

•  Send the encrypted data [ , ]C E  to Bob. 

C. Bob’s decryption steps 
Bob performs the following steps after receiving 

Alice’s encrypted data [ , ]C E . 
• Calculate the matrix D  with his private key d  

97131= . 

97131

158335 135371 118290
mod199867 180294 148209 128784

175149 105464 125418
D C

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

. 

• Compute the matrix  

1
199867

5668 103764 100957
19960 146800 40609
75844 105348 165025

D−

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. 

• Bob recovers the plaintext, 1
199867( )M D E−= ×  

136164 75845 166248
mod199867 100495 141799 85721

60882 37905 38660

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. 

VI.  ANOTHER EXAMPLE 

To verify the correctness and rationality of the 
proposed cryptosystem, another example is carried out 
using the digital image Lena. The detailed description is 
given as follows. 

A. Experimental steps 
(1) Bob’s key-generating steps 
• Choose the digital image Tiffany as the matrix 

512 512A ×  and the prime 256p = , as shown in Fig.1. 

 
• Because there are 512 512×  elements in 512 512A ×  

and the element , {0,1,2, , 255}i ja ∈ , the period 

T  of mod 256A  is a big-integer and 8 512 5122T × ×≤ . 
• Randomly choose the private key d = 44536346 

54354354543543543454 922≈  and calculate the 
matrix  mod 256dQ A= . The result of Q  is as 
shown in Fig. 2. 

 
Figure 1. Tiffany 
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• Publish the public key [ , , , ]A T p Q . 

(2) Alice’s encryption steps 
• Acquire Bob’s public key [ , , , ]A T p Q . 
• After randomly selecting an integer u = 57435435 

43543543345799853845, Alice calculates the 
matrixes uC A=  mod 256  and mod 256uD Q=  
with Bob’s public key. The results of ,C D  are 
respectively as shown in Fig. 3 and Fig. 4. 

 
 

 
• Let the digital image Lena be the plaintext 

512 512M × , as shown in Fig. 5. She can calculate the 
cipher text matrix ( ) mod 256E D M= × . E  is the 
encrypted image, as shown in Fig. 6. 

• Send the encrypted data [ , ]C E  to Bob. 
(3) Bob’s decryption steps 
Bob performs the following steps after receiving 

Alice’s encrypted data [ , ]C E . 

 
 

 
• Calculate the matrix mod 256dD C=  with his 

private key d = 445363465435435454354354345 
4 922≈ . 

• Compute the matrix 1
pD− , and the result is as 

shown in Fig. 7. 

 
• Bob recovers the original image by computing 

1( ) mod 256pM D E−= × , and the result is as 
shown in Fig. 8. 

 
 

 
Figure 8. Decrypted image 

 
Figure 7. The inverse matrix of D 

 
Figure 6. Encrypted image 

 
Figure 5. Lena        

 
Figure 2. Q matrix 

 
Figure 4. D matrix 

 
Figure 3. C matrix 
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B. Robustness analysis 
The correlation coefficient between two images with 

the same size is defined as follows [22], 
cov( , )
( ) ( )XY

X Y
D X D Y

ρ = ,                           (3) 

where X  and Y  are gray images, 
1

1( )
N

i
i

E X x
N =

= ∑ ,  

1

1cov( , ) [ ( )][ ( )]
N

i i
i

X Y x E X y E Y
N =

= − −∑ , 1( )D X
N

=  

2

1

[ ( )]
N

i
i

x E X
=

−∑ , N  is the pixel number of the images X  

and Y , ix X∈  and iy Y∈  are two pixels in the 
corresponding position. 

NPCR (Number of Pixels Change Rate) between two 
images with the same size is defined as follows [23], 

0 ( , ) ( , )
( , )

1 ( , ) ( , )
X i j Y i j

f i j
X i j Y i j

=⎧
= ⎨ ≠⎩

,                  (4) 

1 1
( , )

100%

m n

i j
f i j

NPCR
m n

= == ×
×

∑∑
,                  (5) 

where m nX ×  and m nY ×  are images. 
UACI (Unified Average Changing Intensity) between 

two images with the same size is defined as follows [23], 

1 1
( , ) ( , )

100%
255

m n

i j
X i j Y i j

UACI
m n

= =

−
= ×

× ×

∑∑
,       (6) 

where m nX ×  and m nY ×  are images. 
With the criterions of correlation coefficient, NPCR 

and UACI, we analyze the robustness of the proposed 
cryptosystem as follows. 

 (1) Without noise effect 
Supposing that the encrypted image isn’t damaged 

during the storage or transmission, the decrypted image is 
the same as the original image. Therefore, for the 
decrypted image and original image, the correlation 
coefficient is XYρ =1, NPCR  =0 and UACI =0. 

(2) Salt and peppers noise attack 

 
To simulate the noise channel, we add the salt and 

peppers noise (0.03) to the encrypted image, as shown in 
Fig. 9. The corresponding decrypted image is as shown in 
Fig. 10. Finally, for the decrypted image and original 
image, the correlation coefficient is XYρ = 0.8855, 

NPCR =9.841% and UACI = 7.91%. Therefore, the new 
cryptosystem are robust against the salt and peppers noise 
attack. 

 
(3) Cutting attack 
To simulate the tampering operation during the storage 

or transmission, we cut the encrypted image (6.25%), and 
the tampered image is as shown in Fig. 11. The 
corresponding decrypted image is as shown in Fig. 12. 
Finally, for the decrypted image and original image, the 
correlation coefficient is XYρ = 0.8877, NPCR =12.45% 
and UACI =  2.84%. Therefore, the new cryptosystem are 
robust against the cutting attack. 

 
 

 
C. Encryption efficiency analysis 

(1) Encryption efficiency analysis of ECC 
The bottom-layer operations of ECC are the big-

integer operations, such as big-integer addition, big-
integer subtraction, big-integer multiplication and big-
integer division. The core operation of ECC is the scalar 
multiplication operation. People have proposed some fast 
algorithms, such as the binary method, non-adjacent form 
(NAF) method and sliding window method. We realize 
the ElGamal scheme of ECC [15] with the binary method. 

 
Figure 12. Decrypted image 

 
Figure 11. Cutting (6.25%) 

 
Figure 10. Decrypted image 

 
Figure 9. Salt and peppers noise (0.03) 
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The algorithms were programmed in MyEclipse 7.5 on a 
PC with the Intel (R) Pen 4, CPU frequency 2.80 Ghz and 
Memory 2 GB. 

Choose the 192 bits elliptic curve, which is 
recommended by NIST. The parameters of this elliptic 
curve are 3a = − , b = 2455155546008943817740293915 
197451784769108058161191238065, and p = 62771017 
3538668076383578942320766641608390870039032496
1279. The base point is N = (6020462823756886567582 
13480587526111916698976636884684818, 1740503322 
9362203140485755228021941036402348892738665064
1), the period of N  is T =6277101735386680763835789 
423176059013767194773182842284081. The private 
key is d = 1000072627282998656287642690503854234 
53895943703. To encrypt a pixel value with ECC, the 
encrypted time is about 42.1637 ms ≈ 42 ms. Therefore, 
to encrypt Lena 512 512A ×  with ECC, the total encrypted 
time is about 42 512 512× × ≈ 11010 s ≈ 3.0583 h. 

(2) Encryption efficiency analysis of the proposed 
cryptosystem 

The core operations of the proposed cryptosystem are 
multiplication of matrices and module operations, and we 
offer a fast algorithm in Section IV(A). The algorithms 
were programmed in Matlab 6.5 on a PC with the Intel (R) 
Pen 4, CPU frequency 2.80 Ghz and Memory 2 GB. The 
encrypted time in experiment is 43.0531 s. Therefore, the 
proposed cryptosystem is efficient to satisfy the 
requirement in the practical application. 

VII. EFFICIENCY ANALYSIS 

By comparing the difference between one-dimension 
DLP and two-dimension DLP, we analyze the temporal 
complexity of the new cryptosystem in detail as follows. 

A. One-dimension DLP 
Let α  denotes the group generated by a number 

mod pα , where p  is a prime or 2mp = . Suppose the 
order of α  is 1T . If Oscar (the attacker) adopts the 
brute-force attack, the worst case is that he should 
compute 2 ( ) mod pα α α= × , 3 2( ) mod pα α α= × , , 

1 1 1( ) modT T pα α α−= × . Under the premise of known the 
value of kα , he only needs one time of multiplication 
operation ( kα α× ) and one time of modular operation 
( 1 modk pα + ) to obtain the value of 1 ( )k ka α α+ = ×  
mod p . 

B. Two-dimension DLP 
Let A  denotes the group generated by a matrix 

modn nA p× , where p  is a prime or 2mp = . Supposed 
the order of A  is 2T . If Oscar adopts the brute-force 
attack, the worst case is that he should compute 

2 ( ) modA A A p= × , 3 2( ) modA A A p= × , , 2TA =  
2 1( ) modTA A p− × . Under the premise of known the value 

of kA , he needs to compute the elements of 1kA +  at first 

to obtain the result of 1 ( ) modk kA A A p+ = × . According 
to the matrix theory, we have 1

1 1 2 2
k k k
ij i j i ja a a a a+ = × + × +  

k
in nja a+ × , where 1 1k k

ija A+ +∈ , k k
ija A∈  and ija A∈ . 

Therefore, to obtain the value of the element 1k
ija + , we 

need n  times of multiplication operation, 1n −  times of 
addition operation and one time of modular operation 
( 1 modk

ija p+ ). In total, under the premise of known the 

value of kA , to obtain the result of 1 ( )k kA A A+ = ×  
mod p , he needs 2 3n n n× =  times of multiplication 
operation, 2 ( 1)n n −  times of addition operation and 2n  
times of module operation. 

From the above analysis, we can see that solving the 
two-dimension DLP is more different than the one-
dimension DLP. The temporal complexity of two-
dimension DLP is 2n  times at least of one-dimension 
DLP. Therefore, for the same security level, the key 
length of the proposed cryptosystem is 21 / n  of the 
cryptosystems based on the one-dimension DLP in theory. 
In this sense, the key length of the new cryptosystem is 
shorter than the public-key cryptosystem based on the 
one-dimension DLP, such as Diffie-Hellman key 
exchange [7], Elgamal [24] and Massey-Omura [25]. 

To verify the above conclusion, several experiments 
are also performed. Let the generator of the group A  be 

4 7 1
6 4 8
9 6 4

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. 

We calculated the orders T  of A  for 163p = , p =  
1987  and 199867p =  respectively, as shown in Tab.1. 
Supposing that Oscar adopts the brute-force attack, the 
time needed for the worst case to attack one-dimension 
DLP and two-dimension DLP is shown in Tab. 1. 

 

VIII. SECURITY ANALYSIS 

A. Possible attack analysis 
The security of the new public-key cryptosystem is 

based on the hardness of solving the two-dimension DLP. 
To illuminate the cryptosystem security, we consider the 
following three possible attacks. 

(1) Attack 1 
• Attack: Oscar tries to obtain Bob’s private key d  

from Bob’s public key [ , , , ]A T p Q . 

TABLE 1. 
COMPARISON ON THE SPEED FOR ATTACKING ONE-DIMENSION DLP AND 

TWO-DIMENSION DLP. 

p T Time for one-
dimension DLP (s) 

Time for two-
dimension DLP (s)

163 26568≈215 0.0047 0.0734 
1987 3948168≈222 0.5938 11.3594 

199867 36987216≈225 5.5620 107.1880 
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• Attack analysis: From the principle of the public-
key cryptosystem, Bob publishes his public key 
[ , , , ]A T p Q . Therefore, Oscar is available to 
obtain [ , , , ]A T p Q . From the steps of the new 
cryptosystem, we have moddQ A p= . Oscar is 
required to calculate logAd Q= . Therefore, 
obtaining Bob’s private key d  is equivalent to 
solving the two-dimension DLP.  

(2) Attack 2  
• Attack: Supposing that Oscar has obtained Bob’s 

public key [ , , , ]A T p Q  and the cipher text [ , ]C E , 
he tries to compute Bob’s private key d . 

• Attack analysis: From the principle of the public-
key cryptosystem, Oscar is available to obtain 
[ , , , ]A T p Q . We suppose that Oscar can obtain the 
cipher text [ , ]C E  fortunately. From the steps of 
the new cryptosystem, we have moduC A p= , 
i.e., logAu C= . He can calculate moduD Q p=  

moddC p=  with Bob’s public key Q . Finally, he 
can compute logCd D= . During the whole 
process, Oscar should compute logAu C=  and 

logCd D= . Therefore, to obtain Bob’s private 
key d , unless Oscar can solve the two-dimension 
DLP. 

(3) Attack 3 
• Attack: Supposing that Oscar has obtained Bob’s 

public key [ , , , ]A T p Q  and the cipher text [ , ]C E , 
he tries to gain Alice’s plaintext M . 

• Attack analysis: From the principle of the public-
key cryptosystem, Oscar is available to obtain 
[ , , , ]A T p Q . We suppose that Oscar can obtain the 
cipher text [ , ]C E  fortunately. From the steps of 
the new cryptosystem, we have moduC A p= , 
i.e., logAu C= . He can calculate D =  moduQ p  
with Bob’s public key Q . Then he can compute 

1D− . Finally, he can compute 1( ) modM D E−= ×  
p  with the plaintext E . Oscar needs to compute 

logAu C=  during the attack process. Therefore, 
to obtain Alice’s plaintext M , unless the two-
dimension DLP is solved. 

The above analysis demonstrates that the difficulty of 
breaking our cryptosystem is equivalent to breaking the 
Elgamal cryptosystem and solving the two-dimension 
DLP. 

B. Key space analysis 
The key space is a set comprised of all the possible 

keys. For a secure image encryption algorithm, the key 
space should be large enough to make the brute force 
attack infeasible [26]. 

(1) Key space analysis of the cryptosystem based on 
the one-dimension DLP 

Because the integer a  are chosen from the set 
{0,1,2, , 1}pZ p= −  in the cryptosystems based on the 

one-dimension DLP, there are p  possible cases of a . 
Therefore, the period T  of the generator moda p  is an 
integer which is not more than p . Since the private key 
d  is randomly chosen from the set {1, 2, , 1}T − , the 
size of the key space is not over p . 

(2) Key space analysis of the proposed cryptosystem 
Because the elements of the matrix n nA ×  are from the 

set {0,1,2, , 1}pZ p= −  in the new cryptosystem, there 

are n np ×  possible cases of n nA × . Therefore, the period T  
of the generator modn nA p×  is an integer which is not 
over n np × . Since the private key d  is randomly chosen 
from the set {1, 2, , 1}T − , the size of the key space is 
not more than n np × . For example, in the second example, 
the size of the key space is a big integer and not more 
than 8 512 5122 × × . 

In this sense, the key space n np ×  of the new 
cryptosystem is larger than the key space p  of the 
public-key cryptosystem based on the one-dimension 
DLP. Therefore, the proposed cryptosystem possesses the 
advantage of high security. 

IX. CONCLUSIONS 

The definition of DLP is generalized from one 
dimension to two dimensions, and then a new public-key 
cryptosystem based on the two-dimension DLP is 
proposed, which generalizes the public-key cryptosystem 
from one dimension to two dimensions. The core 
algorithms of the new cryptosystem are offered, including 
fast algorithm, the algorithm of computing the inverse 
matrix modulo p, and the algorithm of finding the period 
T. Especially, to improve the efficiency, the square-
multiply method for numbers is generalizing to matrixes. 
The theory analysis and experimental data show that the 
proposed cryptosystem possesses the advantages of the 
outstanding robustness, short key length, high security 
and encrypting many data once. 
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