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Abstract—Recent research has shown the significant 
vulnerabilities of collaborative recommender systems in the 
face of profile injection attacks, in which malicious users 
insert fake profiles into the rating database in order to bias 
the system’s output. A single Support Vector Machine 
(SVM) approach for the detection of profile injection 
attacks, however, suffers from low precision. With this 
problem in mind, in this paper we propose a meta-learning-
based approach to detect such attacks. In particular, we 
propose an algorithm to create the diverse base-level 
training sets through flexible combination of various attack 
types. Combining the created training sets with SVM, we 
construct the base-level and meta-level classifiers. Based on 
these classifiers, we present a meta-learning-based detection 
algorithm which uses the meta-classifier to integrate the 
outputs of the base-classifiers and generates the final results 
of detection. The diversities among the base-classifiers 
effectively reduce the correlation of the misclassifications 
and improve the predictive capability of the meta-level. We 
conduct comparative experiments with a single SVM and 
the voting-based ensemble method on different-scale 
MovieLens datasets. The experimental results show that the 
proposed approach can effectively improve the precision 
under the condition of holding a high recall.  
 
Index Terms—meta-learning, support vector machine, 
profile injection attacks, attack detection, collaborative 
filtering recommendation 
 

I.  INTRODUCTION 

Collaborative filtering recommender systems [1] can 
filter out the information to satisfy the users’ interest 
according to the established user profiles and actively 
recommend the information to users. It provides an 
effective way to solve the information overload problem 
on the Internet and it has become an important part of 

many e-commerce sites. Due to its natural openness, 
however, some malicious users artificially inject a large 
number of fake profiles into the system in order to bias 
the recommendation results to their own advantage. 
These attacks, where a malicious user inserts fake profiles 
into the rating database to influence the system’s 
recommendation behavior, have been termed “shilling” 
attacks or “profile injection attacks” [2]. To distinguish 
the genuine profiles, we usually call the fake profiles as 
attack profiles. Attack model is an approach for attackers 
to construct the attack profiles according to the 
knowledge about the recommender system’s rating 
database, products, users, etc. According to its 
construction strategy, the attack model can be divided 
into the random attack, bandwagon attack, average attack, 
segment attack, etc [3-5]. For the different purposes of 
attacks, profile injection attacks can be divided into push 
attack and nuke attack [6], which increase and decrease 
the recommendation frequency of the target item 
respectively. The strength of profile injection attacks is 
measured by attack size and filler size [7]. Attack size is 
the ratio between the number of attack profiles and the 
number of genuine profiles in a recommender system. 
Filler size is the ratio between the number of ratings in an 
attack profile and the number of all items in the 
recommender system. In the face of the various attack 
types, therefore, how to effectively identify and resist 
profile injection attacks has become an urgent problem to 
be solved for the well development and extensive 
application of collaborative filtering recommender 
systems.  

Recently, the detection of profile injection attacks has 
become a hot research area in collaborative filtering 
recommender systems. Chirita et al. [8] proposed several 
statistical features to describe attack profiles for the 
detection of high-density attack profiles. Su et al. [9] 
developed a similarity spreading algorithm to detect 
simple groups of attack profiles. Mehta et al. [10-12] 
presented a PCA-based detection algorithm by using 
Principal Component Analysis (PCA) technique to filter 
out the attack profiles. PCA-based algorithm is effective 
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for detecting various attack types. But it needs to know 
the total number of attack profiles injected into the rating 
database of the recommender system before detecting, 
which is difficult to estimate in practice. Bryan et al. [13] 
proposed a detection algorithm, which is called UnRAP, 
to identify the attack profiles by introducing the variance 
adjusted mean square residue. This algorithm can detect 
random attack and average attack successfully, but it can 
not detect bandwagon attack. Hurley et al. [14] designed 
supervised and unsupervised Neyman-Pearson detectors 
based on statistical detection theory. These detectors can 
only detect the attack profiles which have the specific 
distributions. He et al. [15] used rough set theory to 
detect attack profiles. They simply take the feature values 
of user profiles as the condition attributes of the decision 
table to perform the operations of reducing data and 
generating rules. This method can detect most of the 
attack profiles, but the precision is low. Burke et al. [16-
18] trained three supervised classifiers (i.e. KNN, C4.5 
and SVM) to detect the attacks by extracting the features 
of user profiles. Of the three classifiers, SVM has the best 
detection performance. To effectively identify the various 
attack profiles in practice, which are constructed by 
various attack models at various attack sizes and filler 
sizes, the training set of SVM needs to contain enough 
attack samples. Although this operation can ensure that 
the classifier has the capability of detecting most of the 
attack profiles in the recommender system, the 
classifier’s precision is poor due to the fact that too many 
genuine profiles are misclassified as attack profiles. In 
our previous work, we presented an improved PCA-based 
detection algorithm by introducing the normal cloud 
model theory and explored its effectiveness when 
detecting profile injection attacks with small attack sizes 
[19][20]. In [21], we proposed an anomaly detection 
algorithm based on analyzing rating distribution 
characteristics of item over rating time series and we 
showed our algorithm to be more effective at detecting 
target items than the method described in [22].  

In this paper, we propose a meta-learning-based 
approach to improve the precision of detecting profile 
injection attacks. Our contributions mainly include:  

(1) We propose an algorithm to create diverse base-
level training sets; 

(2) We present a meta-learning-based detection 
algorithm to improve the overall performance of 
attack detection;  

(3) We conduct simulation experiments on different-
scale MovieLens datasets. The experimental 
results show that the proposed approach can not 
only hold a high recall, but also effectively 
improve the precision of the detection. 

II.  THEORETICAL FOUNDATION 

Meta-learning is an ensemble learning approach. The 
underlying idea of this approach is based on relearning 
the existed knowledge to boost overall predictive 
effectiveness. The meta-classifier (or level-1 model) tries 
to acquire how the outputs of the base-classifiers (or 

level-0 models) should be combined to obtain the final 
classification [23].  

Stacked Generalization [24] is one of the most 
commonly used meta-learning methods. The details of 
this method are given as follows.  

Given a dataset {( , ) | 1, 2,..., }n ny n N S x , where 

ny  is the class value and nx  is a vector representing the 

attribute values of the nth instance, N is the number of 
instances in S , this method randomly splits the dataset 

into J almost equal parts 1{ ,..., }JS S . jS  and 

( )j
j

  S S S  are defined to be the test and training set 

for the jth fold of a J-fold cross-validation. ( )jS  is used 

to train K classification algorithms 1{ ,..., }KA A  to 

generate K classification models 1{ ,..., }KM M  

respectively, where 1{ ,..., }KA A  are called level-0 

algorithms, 1{ ,..., }KM M  are called level-0 models or 

base-classifiers. 
For each instance jx  in jS , let 1{ ( ),..., ( )}j K jM Mx x  

denote the predictions of the models 1{ ,..., }KM M  on 

jx , then, all the predictive results create a new dataset:  

1{( , ( ), , ( )) | 1, , }meta j j K jy j L   S M Mx x     (1) 

where L is the number of instances in metaS . metaS  is 

called level-1 training set or meta-level training set. 

metaS  is used to train a learning algorithm to generate a 

classification model metaM , where metaM  is called 

level-1 model or meta-classifier, the learning algorithm is 
called level-1 generalization algorithm. 

Given a new instance q, the level-0 models produce a 
vector 1( ( ),..., ( ))Kq qM M . This vector is input to the 

level-1 model metaM , whose output is the final predictive 

result for q. 

III.  META-LEARNING-BASED APPROACH FOR ATTACK 

DETECTION 

To facilitate the discussions in this section, we 
introduce some symbols: I  is the set of items in the 
recommender system, x is a rating vector in a user profile 
and ( ,..., ,..., )1 irating rating ratingx I , where 

 ,...,i min maxrating rating rating ,  ,1 1ny    is 

the class value of the nth instance, where -1 represents a 
genuine profile and 1 represents an attack profile. 

( ) SVM ( )k kf x x  denotes the prediction of the kth 

classifier SVMk  on x. 

The framework of the meta-learning-based approach 
for detecting profile injection attacks is depicted in Figure 
1. The detection model of meta-learning is in the dashed 
box. This model contains two training processes which 
are base-level training and meta-level training. Both 
levels use SVM as their learning algorithms. The rating 
database and the attack profiles are input to the proposed 
algorithm for creating the base-level training sets. 
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1{ ( ),..., ( )}Kf fx x , which are the predictions of the K 

base-classifiers 1{SVM ,...,SVM }K  on x, are input to 

SVMmeta . The final predictive results of the test set are 

generated by SVMmeta . 

 
Figure 1. Framework of the meta-learning-based approach for detecting profile injection attacks 

A.  Construction of Base-level Classifiers 

To improve the predictive quality of the meta-level 
model, the base-classifiers have to be diverse [25]. 
Stacked Generalization uses the strategy of cross-
validation to create the base-training sets. Although this 
strategy can create different base-training sets, serious 
skew may be introduced to these sets between the attack 
profiles and the genuine profiles. In the skewed training 
sets, the training samples can not accurately reflect the 
data distributions of the entire space and the classifiers 
trained from these sets would be weak [26]. To balance 
the proportion of the training samples between attack 
profiles and genuine profiles, we propose an algorithm to 
create the diverse base-level training sets through 
flexible combinations of various attack models at various 
attack sizes and filler sizes.  

Let  1A %,..., %Pa a  denote P different attack 

sizes,  1B %,..., %Rb b  denote R different filler sizes, 

 1C ,..., Wc c  denote W different attack models and 

targeti  denote the target item. Let quad ( %, %, , )targeta b c i  

denote the set of attack profiles which are constructed by 
attack model c at attack size of %a  across filler size of 

%b  and their target item is targeti . Let getTargetItem( I ) 

be a function to randomly select an item from I . Let 
T {( , ) | 1, 2, , }n ny n N  x  denote the rating database 

of the recommender system, where N is the number of 
user profiles in T which dose not contain attack profiles. 
Let K P R   denote the number of base-training sets 
and Z  denote the set of base-training sets. The 
algorithm for creating the base-training sets is described 
as follows: 

Algorithm 1 Flexible method for creating the base-
training sets 
Input: A, B, C, P ,R ,W, T, I, itarget, K 
Output: Z 

1:Z←   

2:Mark←   

3:For k = 1 to K Do 
4: TAttack Profile←   

5: TGenuine Profile←   
6: flag←0 
7: For p = 1 to P Do 
8:  For r = 1 to R Do 
9:   For w = 1 to W Do 

10:    itarget←getTargetItem(I) 
11:    T←T  {(ye, xe)| xe (a%, b%, c, itarget)}  

/* Insert attack profiles into the rating database */ 
12:    TAttack Profile←TAttack Profile   

{(ye, xe′)| xe′ is xe after features extraction 
of T}  

/* Create samples of attack profiles */ 
13:    If(((p,r,w)Mark) and (flag < W)) Then 

14:     TGenuine Profile←TGenuine Profile   
{(yn, xn′)| xn′ is xn after features extraction 

of T}  
/* Create samples of genuine profiles */ 

15:     Mark←Mark  {(p,r,w)} 
16:     flag←flag+1 
17:    End If 
18:    T←T-{(ye, xe)| xe (a%, b%, c, itarget)} 
19:   End For 
20:  End For 
21: End For 
22: Z←Z  {TAttack Profile  TGenuine Profile} 
23:End For 
24:Return Z 
In the stage of features extraction for user profiles, we 

use the detection attributes described in [17] to extract 13 
features as follows:  

(1) Six generic features are WDMA, RDMA, WDA, 
Length Variance, DegSim (k=450) and DegSim′ 
(k=2, d=963) respectively. These features 
attempt to make an attack profile look different 
from a genuine profile through capturing some of 
the characteristics.  

(2) Seven attack model features are FMD (random 
attack, push), FAC (random attack, push), FMD 
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(bandwagon attack, push), FAC (bandwagon 
attack, push), FMV (average attack, push), FMD 
(average attack, push) and PV (average attack, 
push) respectively. These features are designed 
to recognize the characteristics of known attack 
models. 

Let { ( ),..., ( )}1 13h hV Vx x  denote the feature values of 

hx  in a base-training set. The kth base-training set is: 

z {( , ( ),..., ( )) | , , }1 13 1k h h hy V V h H  x x      (2) 

where H is the number of samples in zk .  

All the base-training sets are as follows:  

1Z {z , ,z }K  .                (3) 

The base-level SVMs learn the base-training sets 
respectively in Z to generate the base-classifiers 

1{SVM ,...,SVM }K . 

In Algorithm 1, the base-training sets still contain 
enough samples of attack profiles in order to effectively 
identify the various attack profiles. That is to say, we do 
not attempt to reduce the misclassifications of the base-
classifiers, but to create the diverse base-training sets 
under the condition that the recommender system is 
attacked by various attack types. These base-training sets 
can increase the diversities of the base-classifiers, as well 
as reduce the correlations of the misclassifications. 
Furthermore, the predictive capability of the meta-level 
can be improved by using these diverse base-classifiers. 

B.  Construction of Meta-level Classifier 

To create the meta-training set, we set K=1 in 
Algorithm 1 to create a base-training set: 

1 13z {( , ( ),..., ( )) | 1,..., }l l ly V V l L x x        (4) 

where L is the number of samples in z.  
The set z is input to the base-classifiers 

1{SVM ,...,SVM }K , whose outputs are used as the meta-

training set:  

1z {( , ( ),..., ( )) | 1,..., }meta l l K ly f f l L x x .     (5) 

We still select SVM as the learning algorithm of the 
meta-level. SVM has a good generalization performance 
and it can find a decision surface that optimally separates 
the instances into two classes based on the Structural 
Risk Minimization Principle. The decision function is as 
follows [27]:  

1

( ) ( , )
M

i i i

i

f sign y a K b


 
 
 
 
x x x             (6) 

where, M is the number of training samples, x is the 
vector of a test sample, ix  and iy  denote the vector 

and class value of the ith training sample, ( , )iK x x  is a 

kernel function, ia  and b are the parameters of the 

model. ia  can be learned by solving following 

quadratic programming problem: 

1 1 1

1
max ( ) ( , )

2

M M M

i i j i j i j

i i j

Q a a a a y y K
  

   x x       

1
. . 0, 0 , , ,1

M

i i ii
s t a y a C i M


        .       (7) 

Since the outputs of the base-classifiers are binary, a 
lot of input data of the meta-level are reduplicative. The 
special advantages of SVM are that SVM is only 
sensitive to the data on the boundary and it only uses the 
support vectors to predict the class value for a new 
instance. The existence of the reduplicative data does not 
affect the classification performance of this algorithm.  

In the end, the meta-level SVM learns zmeta  to 

generate the meta-classifier SVMmeta . 

C.  Meta-learning-based Algorithm for Attack Detection 

Based on the constructed classifiers 

1{SVM ,...,SVM }K  and SVMmeta , we present an 

algorithm to detect profile injection attacks.  
Let T {( , ) | 1,..., }test q qy q Q x  denote the test set, 

where Q is the number of user profiles in Ttest  and qy  

is unseen to the classifiers. Let Tresult  denote the set of 

the final detection results. The algorithm for detecting 
profile injection attacks is described as follows:  

Algorithm 2 The meta-learning-based algorithm for 
attacks detection 
Input: Ttest 
Output: Tresult 

1:Tresult ←   

2:Ttest′←   
3:Ttest′← {(yq, xq′)| xq′ is xq after features extraction 

of Ttest} 
4:For q=1 to Q Do 
5:  For k=1 to K Do 
6:    fk(xq) ← SVMk(xq′)  

/*Generate the outputs of the base-classifiers */ 
7:  End For 
8:  fmeta(xq) ← SVMmeta(f1(xq),…,fK(xq))  

/* Generate the output of the meta-classifier */ 
9:  Tresult ← Tresult  {fmeta(xq)} 

10:End For 
11:Return Tresult 
In Algorithm 2, the base-classifiers firstly generate 

their classification results. Then, the meta-classifier 
integrates these results and outputs the final predictions 
for the test set. Since each base-classifier is obtained 
using different knowledge, the hypothesis space is 
explored differently. Thus, the correlations of the 
misclassifications are effectively reduced. The 
combination in the meta-level performs better than the 
base-classifier and it also performs better than the simple 
voting-based ensemble method. In our experiments 
below, we show support for this intuition. 

IV.  EXPERIMENTS AND EVALUATIONS 
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A.  Experimental Data and Settings 

We select two different-scale MovieLens1 datasets as 
the experimental data in this paper: 

(1) MovieLens 100K dataset. This dataset consists of 
100,000 ratings on 1,682 movies by 943 users. 
All ratings are integer values between 1 and 5, 
where 1 is the lowest (disliked) and 5 is the 
highest (most liked). Each user in this dataset has 
rated at least 20 movies. We partition the dataset 
in half. The first half is used as the parameter T 
in Algorithm 1 to create base-training sets. To 
create each test set, the second half is injected 
with various attack profiles.  

(2) MovieLens 1M dataset. This dataset consists of 
1,000,209 ratings on 3,900 movies by 6,040 
users. All ratings are integer values between 1 
and 5, where 1 is the lowest (disliked) and 5 is 
the highest (most liked). We randomly select 
1,000 user profiles from this dataset as the 
parameter T in Algorithm 1 to create base-
training sets. To create each test set, we 
randomly select 1,000 user profiles to form a 
new set from the remaining dataset and then 
inject various attack profiles into this new set. 

In the stage of training, we set A={1%, 2%, 5%, 10%}, 
B={1%, 3%, 5%, 10%, 25%}, C={random attack, 
bandwagon attack, average attack} in Algorithm 1 to 
create the base-training sets. Then, we combine these 
sets with the methods described in section III.A and 
section III.B to generate the base-classifiers and the 
meta-classifier. These classifiers are generated using 
libsvm2.  

To create the test sets, the attack profiles, which are 
constructed by the attack models of random, bandwagon 
and average attack at filler sizes of 3% and 5% across 
attack sizes of 1%, 2%, 5% and 10%, are individually 
injected into the second half of MovieLens 100K dataset 
and the second 1,000 user profiles of MovieLens 1M 

dataset described above. We randomly select 50 movies 
as the target items for each test. Each of these movies is 
attacked individually and the average is reported for all 
experiments. So, the final metric values in section IV.C 
and section IV.D are the average values of these 
experiments.  

We only detect the push attack in this paper. Through 
changing the ratings of the target item from maximum to 
minimum, we can use the same method to detect the 
nuke attack. 

B.  Evaluation Metrics 

To measure the detection performance, we use the 
standard measurements of recall and precision [18]: 

Recall
TP

TP FN



,                    (8) 

Precision
TP

TP FP



                   (9) 

where, TP is the number of attack profiles correctly 
detected, FP is the number of genuine profiles 
misclassified as attack profiles, FN is the number of 
attack profiles misclassified as genuine profiles.  

C.  Experimental Results and Analysis on MovieLens 
100K Test Sets 

To verify the effectiveness of the proposed approach, 
the test sets are detected individually by three detection 
method which are Algorithm 2 (called Meta SVM), the 
method of a single SVM (called single SVM) in [17] and 
the voting method (called Voting SVM) which 
ensembles the outputs of the base-classifiers through 
majority voting method [28]. 

The detection results of these three methods on the 
MovieLens 100K test sets are shown in Table Ⅰ, Table 
Ⅱ, Figure 2 and Figure 3.

TABLE Ⅰ. 

RECALL ON MOVIELENS 100K TEST SETS FOR VARIOUS ATTACK MODELS 
 AT FILLER SIZE=3% ACROSS VARIOUS ATTACK SIZES 

Attack Model Random Attack Bandwagon Attack Average Attack 

Attack Size 1% 2% 5% 10% 1% 2% 5% 10% 1% 2% 5% 10% 

Single SVM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Voting SVM 0.98 0.98 0.99 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00 

Meta SVM 0.99 0.99 1.00 1.00 1.00 0.99 0.99 0.99 0.98 0.99 0.99 0.99 

TABLE Ⅱ. 

RECALL ON MOVIELENS 100K TEST SETS FOR VARIOUS ATTACK MODELS 
 AT FILLER SIZE=5% ACROSS VARIOUS ATTACK SIZES 

Attack Model Random Attack Bandwagon Attack Average Attack 

Attack Size 1% 2% 5% 10% 1% 2% 5% 10% 1% 2% 5% 10% 

Single SVM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Voting SVM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 

Meta SVM 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 

1http://www.grouplens.org/node/73 
2http://www.csie.ntu.edu.tw/~cjlin/libsvm 
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Figure 2. Precision on MovieLens 100K test sets for various attack models at filler size=3% across various attack sizes 
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Figure 3. Precision on MovieLens 100K test sets for various attack models at filler size=5% across various attack sizes 

 
 

As shown in Table Ⅰ and Table Ⅱ, most recalls of 
Meta SVM are between 0.99 and 1. These results, which 
are similar to the results of Single SVM and Voting 
SVM, keep at a high level. This is easy to explain, since 
each base-classifier itself can detect most of the attack 
profiles, the integration of these classifiers can still own 
this capability.  

In terms of the attack effects on recommendations, it 
is discovered that the average attack is more powerful 
than others [3][4]. However, as shown in Table Ⅰ and 
Table Ⅱ, Meta SVM is able to effectively identify 
average attacks at various filler sizes across attack sizes 
and the recall can reach 0.99. The reason for these high 
recalls is that the useful classification information of the 
supervised classifier focuses on the training set where we 
had injected enough attack samples.  

Figure 2 and Figure 3 show that the precision of Meta 
SVM has been significantly improved compared to the 

precision of Single SVM and Voting SVM. At 1% attack 
size, the average precision of Meta SVM increases by 6.6 
percentage points and 1.7 percentage points compared to 
the average precision of Single SVM and Voting SVM 
respectively. At 10% attack size, the average precision of 
Meta SVM reaches 0.91 while the average precisions of 
Single SVM and Voting SVM are 0.58 and 0.85 
respectively. These results illustrate the success of Meta 
SVM in reducing the misclassifications. 

D.  Experimental Results and Analysis on MovieLens 
1M Test Sets 

The detection results of the three methods (i.e. Single 
SVM, Voting SVM and Meta SVM) on the MovieLens 
1M test sets are shown in Table Ⅲ, Table Ⅳ, Figure 4 
and Figure 5.  

 
 

TABLE Ⅲ. 

 RECALL ON MOVIELENS 1M TEST SETS FOR VARIOUS ATTACK MODELS 
 AT FILLER SIZE=3% ACROSS VARIOUS ATTACK SIZES 

Attack Model Random Attack Bandwagon Attack Average Attack 

Attack Size 1% 2% 5% 10% 1% 2% 5% 10% 1% 2% 5% 10% 

Single SVM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Voting SVM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 

Meta SVM 0.97 0.98 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 
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TABLE Ⅳ.  

RECALL ON MOVIELENS 1M TEST SETS FOR VARIOUS ATTACK MODELS  
AT FILLER SIZE=5% ACROSS VARIOUS ATTACK SIZES 

Attack Model Random Attack Bandwagon Attack Average Attack 

Attack Size 1% 2% 5% 10% 1% 2% 5% 10% 1% 2% 5% 10% 

Single SVM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Voting SVM 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Meta SVM 0.98 0.97 0.97 0.95 0.95 0.98 1.00 1.00 0.99 1.00 1.00 0.99 
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Figure 4. Precision on MovieLens 1M test sets for various attack models at filler size=3% across various attack sizes 
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Figure 5. Precision on MovieLens 1M test sets for various attack models at filler size=5% across various attack sizes 

 

 
As shown in Table Ⅲ, Table Ⅳ, Figure 4 and Figure 5, 

the recalls and precisions of Meta SVM on MovieLens 
1M test sets, whose scale are larger than the scale of 
MovieLens 100K test sets, still keep at a high level.  

In Table Ⅲ and Table Ⅳ, most recalls of Meta SVM 
are 0.99 and the minimum value has reached 0.95. These 
recalls are slightly lower than the recalls of Single SVM 
and Voting SVM. However, we believe that Meta SVM 
is more practical than the other two detection methods. 
Blew, we show the explanations for this viewpoint. In a 
recommender system, a group of attack profiles is 
particularly harmful against the recommendation results 
while the attack effects of several attack profiles is very 
limited [7][10]. In the worst case, the recall of Meta 
SVM only drops by 0.05 percentage points compared to 
the recall of Single SVM. Meta SVM can detect most of 
the attack profiles under the condition of holding high 
precisions while Single SVM and Voting SVM improve 
their recalls through increasing the misclassifications. 

In Figure 4 and Figure 5, the precisions of Meta SVM 
increase with increasing of attack size, take Figure 4(a) 
for example, when the attack sizes are 1%, 2%, 5%, 10%, 
the precisions of Meta SVM are 0.4, 0.6, 0.81 and 0.92. 
These trends are also shown in Figure 2 and Figure 3. 
This is not hard to explain, with increasing of attack size, 
more attack profiles are detected while the number of 
misclassified genuine profiles keeps the same. These 
illustrate that Meta SVM has a good stability when 
detecting the attacks at large attack sizes.  

The precision curves of Voting SVM are closer to the 
curves of Meta SVM in Figure 4 and Figure 5 than the 
curves in Figure 2 and Figure 3. This illustrates that the 
classification performance of Voting SVM is improved 
on the large-scale dataset. However, the precisions of 
Meta SVM are always higher than the precisions of 
Single SVM and Voting SVM. At 1% attack size, the 
average precision of Meta SVM increases by 3 
percentage points and 0.2 percentage points compared to 
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the average precision of Single SVM and Voting SVM 
respectively. At 10% attack size, while the average 
precisions of Single SVM and Voting SVM are 0.58 and 
0.85 respectively, the average precision of Meta SVM 
reaches 0.94 higher than the average precision 0.91 in 
Figure 2 and Figure 3. These results illustrate that Meta 
SVM can effectively detect the attack profiles not only 
on a small-scale dataset but also on a large-scale dataset 
with a high precision. 

V.  CONCLUSIONS AND FUTURE WORK 

The detection of profile injection attacks is an 
important research area in the recommender system. We 
have made some beneficial explorations and attempts in 
this area. We propose an algorithm to create the diverse 
base-level training sets through flexible combinations of 
various attack types. Using these sets, we construct the 
diverse base-level classifiers to reduce the correlations of 
the misclassifications. Through relearning the results of 
the base-level classifiers, a meta-classifier is constructed. 
Based on base-level and meta-level classifiers, we 
propose a meta-learning-based detection algorithm which 
could effectively detect profile injection attacks. The 
experimental results on the different-scale datasets prove 
that the proposed approach can not only hold a high 
recall, but also effectively improve the precision.  

In the future, we will study the more appropriate meta-
learning strategies to improve the detection performance 
for profile injection attacks in collaborative 
recommender systems. 
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