
A Meta-learning-based Approach for Detecting
Profile Injection Attacks in Collaborative

Recommender Systems

Fuzhi Zhang
School of Information Science and Engineering, Yanshan University, Qinhuangdao, China

Email: xjzfz@ysu.edu.cn

Quanqiang Zhou
School of Information Science and Engineering, Yanshan University, Qinhuangdao, China

Email: zhouqiang128@126.com

Abstract—Recent research has shown the significant
vulnerabilities of collaborative recommender systems in the
face of profile injection attacks, in which malicious users
insert fake profiles into the rating database in order to bias
the system’s output. A single Support Vector Machine
(SVM) approach for the detection of profile injection
attacks, however, suffers from low precision. With this
problem in mind, in this paper we propose a meta-learning-
based approach to detect such attacks. In particular, we
propose an algorithm to create the diverse base-level
training sets through flexible combination of various attack
types. Combining the created training sets with SVM, we
construct the base-level and meta-level classifiers. Based on
these classifiers, we present a meta-learning-based detection
algorithm which uses the meta-classifier to integrate the
outputs of the base-classifiers and generates the final results
of detection. The diversities among the base-classifiers
effectively reduce the correlation of the misclassifications
and improve the predictive capability of the meta-level. We
conduct comparative experiments with a single SVM and
the voting-based ensemble method on different-scale
MovieLens datasets. The experimental results show that the
proposed approach can effectively improve the precision
under the condition of holding a high recall.

Index Terms—meta-learning, support vector machine,
profile injection attacks, attack detection, collaborative
filtering recommendation

I. INTRODUCTION

Collaborative filtering recommender systems [1] can
filter out the information to satisfy the users’ interest
according to the established user profiles and actively
recommend the information to users. It provides an
effective way to solve the information overload problem
on the Internet and it has become an important part of

many e-commerce sites. Due to its natural openness,
however, some malicious users artificially inject a large
number of fake profiles into the system in order to bias
the recommendation results to their own advantage.
These attacks, where a malicious user inserts fake profiles
into the rating database to influence the system’s
recommendation behavior, have been termed “shilling”
attacks or “profile injection attacks” [2]. To distinguish
the genuine profiles, we usually call the fake profiles as
attack profiles. Attack model is an approach for attackers
to construct the attack profiles according to the
knowledge about the recommender system’s rating
database, products, users, etc. According to its
construction strategy, the attack model can be divided
into the random attack, bandwagon attack, average attack,
segment attack, etc [3-5]. For the different purposes of
attacks, profile injection attacks can be divided into push
attack and nuke attack [6], which increase and decrease
the recommendation frequency of the target item
respectively. The strength of profile injection attacks is
measured by attack size and filler size [7]. Attack size is
the ratio between the number of attack profiles and the
number of genuine profiles in a recommender system.
Filler size is the ratio between the number of ratings in an
attack profile and the number of all items in the
recommender system. In the face of the various attack
types, therefore, how to effectively identify and resist
profile injection attacks has become an urgent problem to
be solved for the well development and extensive
application of collaborative filtering recommender
systems.

Recently, the detection of profile injection attacks has
become a hot research area in collaborative filtering
recommender systems. Chirita et al. [8] proposed several
statistical features to describe attack profiles for the
detection of high-density attack profiles. Su et al. [9]
developed a similarity spreading algorithm to detect
simple groups of attack profiles. Mehta et al. [10-12]
presented a PCA-based detection algorithm by using
Principal Component Analysis (PCA) technique to filter
out the attack profiles. PCA-based algorithm is effective

Manuscript received May 2, 2011; revised August 2, 2011;
accepted August 9, 2011.

Supported by the Natural Science Foundation of Hebei Province,
China (F2011203219) and the Special Fund for Fast Sharing of
Science Paper in Net Era by CSTD of Ministry of Education, China
(20101333110013).

226 JOURNAL OF COMPUTERS, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jcp.7.1.226-234

for detecting various attack types. But it needs to know
the total number of attack profiles injected into the rating
database of the recommender system before detecting,
which is difficult to estimate in practice. Bryan et al. [13]
proposed a detection algorithm, which is called UnRAP,
to identify the attack profiles by introducing the variance
adjusted mean square residue. This algorithm can detect
random attack and average attack successfully, but it can
not detect bandwagon attack. Hurley et al. [14] designed
supervised and unsupervised Neyman-Pearson detectors
based on statistical detection theory. These detectors can
only detect the attack profiles which have the specific
distributions. He et al. [15] used rough set theory to
detect attack profiles. They simply take the feature values
of user profiles as the condition attributes of the decision
table to perform the operations of reducing data and
generating rules. This method can detect most of the
attack profiles, but the precision is low. Burke et al. [16-
18] trained three supervised classifiers (i.e. KNN, C4.5
and SVM) to detect the attacks by extracting the features
of user profiles. Of the three classifiers, SVM has the best
detection performance. To effectively identify the various
attack profiles in practice, which are constructed by
various attack models at various attack sizes and filler
sizes, the training set of SVM needs to contain enough
attack samples. Although this operation can ensure that
the classifier has the capability of detecting most of the
attack profiles in the recommender system, the
classifier’s precision is poor due to the fact that too many
genuine profiles are misclassified as attack profiles. In
our previous work, we presented an improved PCA-based
detection algorithm by introducing the normal cloud
model theory and explored its effectiveness when
detecting profile injection attacks with small attack sizes
[19][20]. In [21], we proposed an anomaly detection
algorithm based on analyzing rating distribution
characteristics of item over rating time series and we
showed our algorithm to be more effective at detecting
target items than the method described in [22].

In this paper, we propose a meta-learning-based
approach to improve the precision of detecting profile
injection attacks. Our contributions mainly include:

(1) We propose an algorithm to create diverse base-
level training sets;

(2) We present a meta-learning-based detection
algorithm to improve the overall performance of
attack detection;

(3) We conduct simulation experiments on different-
scale MovieLens datasets. The experimental
results show that the proposed approach can not
only hold a high recall, but also effectively
improve the precision of the detection.

II. THEORETICAL FOUNDATION

Meta-learning is an ensemble learning approach. The
underlying idea of this approach is based on relearning
the existed knowledge to boost overall predictive
effectiveness. The meta-classifier (or level-1 model) tries
to acquire how the outputs of the base-classifiers (or

level-0 models) should be combined to obtain the final
classification [23].

Stacked Generalization [24] is one of the most
commonly used meta-learning methods. The details of
this method are given as follows.

Given a dataset {(,) | 1, 2,..., }n ny n N S x , where

ny is the class value and nx is a vector representing the

attribute values of the nth instance, N is the number of
instances in S , this method randomly splits the dataset

into J almost equal parts 1{ ,..., }JS S . jS and

()j
j

  S S S are defined to be the test and training set

for the jth fold of a J-fold cross-validation. ()jS is used

to train K classification algorithms 1{ ,..., }KA A to

generate K classification models 1{ ,..., }KM M

respectively, where 1{ ,..., }KA A are called level-0

algorithms, 1{ ,..., }KM M are called level-0 models or

base-classifiers.
For each instance jx in jS , let 1{ (),..., ()}j K jM Mx x

denote the predictions of the models 1{ ,..., }KM M on

jx , then, all the predictive results create a new dataset:

1{(, (), , ()) | 1, , }meta j j K jy j L   S M Mx x (1)

where L is the number of instances in metaS . metaS is

called level-1 training set or meta-level training set.

metaS is used to train a learning algorithm to generate a

classification model metaM , where metaM is called

level-1 model or meta-classifier, the learning algorithm is
called level-1 generalization algorithm.

Given a new instance q, the level-0 models produce a
vector 1((),..., ())Kq qM M . This vector is input to the

level-1 model metaM , whose output is the final predictive

result for q.

III. META-LEARNING-BASED APPROACH FOR ATTACK

DETECTION

To facilitate the discussions in this section, we
introduce some symbols: I is the set of items in the
recommender system, x is a rating vector in a user profile
and (,..., ,...,)1 irating rating ratingx I , where

 ,...,i min maxrating rating rating ,  ,1 1ny   is

the class value of the nth instance, where -1 represents a
genuine profile and 1 represents an attack profile.

() SVM ()k kf x x denotes the prediction of the kth

classifier SVMk on x.

The framework of the meta-learning-based approach
for detecting profile injection attacks is depicted in Figure
1. The detection model of meta-learning is in the dashed
box. This model contains two training processes which
are base-level training and meta-level training. Both
levels use SVM as their learning algorithms. The rating
database and the attack profiles are input to the proposed
algorithm for creating the base-level training sets.

JOURNAL OF COMPUTERS, VOL. 7, NO. 1, JANUARY 2012 227

© 2012 ACADEMY PUBLISHER

1{ (),..., ()}Kf fx x , which are the predictions of the K

base-classifiers 1{SVM ,...,SVM }K on x, are input to

SVMmeta . The final predictive results of the test set are

generated by SVMmeta .

Figure 1. Framework of the meta-learning-based approach for detecting profile injection attacks

A. Construction of Base-level Classifiers

To improve the predictive quality of the meta-level
model, the base-classifiers have to be diverse [25].
Stacked Generalization uses the strategy of cross-
validation to create the base-training sets. Although this
strategy can create different base-training sets, serious
skew may be introduced to these sets between the attack
profiles and the genuine profiles. In the skewed training
sets, the training samples can not accurately reflect the
data distributions of the entire space and the classifiers
trained from these sets would be weak [26]. To balance
the proportion of the training samples between attack
profiles and genuine profiles, we propose an algorithm to
create the diverse base-level training sets through
flexible combinations of various attack models at various
attack sizes and filler sizes.

Let  1A %,..., %Pa a denote P different attack

sizes,  1B %,..., %Rb b denote R different filler sizes,

 1C ,..., Wc c denote W different attack models and

targeti denote the target item. Let quad (%, %, ,)targeta b c i

denote the set of attack profiles which are constructed by
attack model c at attack size of %a across filler size of

%b and their target item is targeti . Let getTargetItem(I)

be a function to randomly select an item from I . Let
T {(,) | 1, 2, , }n ny n N  x denote the rating database

of the recommender system, where N is the number of
user profiles in T which dose not contain attack profiles.
Let K P R  denote the number of base-training sets
and Z denote the set of base-training sets. The
algorithm for creating the base-training sets is described
as follows:

Algorithm 1 Flexible method for creating the base-
training sets
Input: A, B, C, P ,R ,W, T, I, itarget, K
Output: Z

1:Z← 

2:Mark← 

3:For k = 1 to K Do
4: TAttack Profile← 

5: TGenuine Profile← 
6: flag←0
7: For p = 1 to P Do
8: For r = 1 to R Do
9: For w = 1 to W Do

10: itarget←getTargetItem(I)
11: T←T  {(ye, xe)| xe (a%, b%, c, itarget)}

/* Insert attack profiles into the rating database */
12: TAttack Profile←TAttack Profile 

{(ye, xe′)| xe′ is xe after features extraction
of T}

/* Create samples of attack profiles */
13: If(((p,r,w)Mark) and (flag < W)) Then

14: TGenuine Profile←TGenuine Profile 
{(yn, xn′)| xn′ is xn after features extraction

of T}
/* Create samples of genuine profiles */

15: Mark←Mark  {(p,r,w)}
16: flag←flag+1
17: End If
18: T←T-{(ye, xe)| xe (a%, b%, c, itarget)}
19: End For
20: End For
21: End For
22: Z←Z  {TAttack Profile  TGenuine Profile}
23:End For
24:Return Z
In the stage of features extraction for user profiles, we

use the detection attributes described in [17] to extract 13
features as follows:

(1) Six generic features are WDMA, RDMA, WDA,
Length Variance, DegSim (k=450) and DegSim′
(k=2, d=963) respectively. These features
attempt to make an attack profile look different
from a genuine profile through capturing some of
the characteristics.

(2) Seven attack model features are FMD (random
attack, push), FAC (random attack, push), FMD

228 JOURNAL OF COMPUTERS, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

(bandwagon attack, push), FAC (bandwagon
attack, push), FMV (average attack, push), FMD
(average attack, push) and PV (average attack,
push) respectively. These features are designed
to recognize the characteristics of known attack
models.

Let { (),..., ()}1 13h hV Vx x denote the feature values of

hx in a base-training set. The kth base-training set is:

z {(, (),..., ()) | , , }1 13 1k h h hy V V h H  x x (2)

where H is the number of samples in zk .

All the base-training sets are as follows:

1Z {z , ,z }K  . (3)

The base-level SVMs learn the base-training sets
respectively in Z to generate the base-classifiers

1{SVM ,...,SVM }K .

In Algorithm 1, the base-training sets still contain
enough samples of attack profiles in order to effectively
identify the various attack profiles. That is to say, we do
not attempt to reduce the misclassifications of the base-
classifiers, but to create the diverse base-training sets
under the condition that the recommender system is
attacked by various attack types. These base-training sets
can increase the diversities of the base-classifiers, as well
as reduce the correlations of the misclassifications.
Furthermore, the predictive capability of the meta-level
can be improved by using these diverse base-classifiers.

B. Construction of Meta-level Classifier

To create the meta-training set, we set K=1 in
Algorithm 1 to create a base-training set:

1 13z {(, (),..., ()) | 1,..., }l l ly V V l L x x (4)

where L is the number of samples in z.
The set z is input to the base-classifiers

1{SVM ,...,SVM }K , whose outputs are used as the meta-

training set:

1z {(, (),..., ()) | 1,..., }meta l l K ly f f l L x x . (5)

We still select SVM as the learning algorithm of the
meta-level. SVM has a good generalization performance
and it can find a decision surface that optimally separates
the instances into two classes based on the Structural
Risk Minimization Principle. The decision function is as
follows [27]:

1

() (,)
M

i i i

i

f sign y a K b


 
 
 
 
x x x (6)

where, M is the number of training samples, x is the
vector of a test sample, ix and iy denote the vector

and class value of the ith training sample, (,)iK x x is a

kernel function, ia and b are the parameters of the

model. ia can be learned by solving following

quadratic programming problem:

1 1 1

1
max () (,)

2

M M M

i i j i j i j

i i j

Q a a a a y y K
  

   x x

1
. . 0, 0 , , ,1

M

i i ii
s t a y a C i M


        . (7)

Since the outputs of the base-classifiers are binary, a
lot of input data of the meta-level are reduplicative. The
special advantages of SVM are that SVM is only
sensitive to the data on the boundary and it only uses the
support vectors to predict the class value for a new
instance. The existence of the reduplicative data does not
affect the classification performance of this algorithm.

In the end, the meta-level SVM learns zmeta to

generate the meta-classifier SVMmeta .

C. Meta-learning-based Algorithm for Attack Detection

Based on the constructed classifiers

1{SVM ,...,SVM }K and SVMmeta , we present an

algorithm to detect profile injection attacks.
Let T {(,) | 1,..., }test q qy q Q x denote the test set,

where Q is the number of user profiles in Ttest and qy

is unseen to the classifiers. Let Tresult denote the set of

the final detection results. The algorithm for detecting
profile injection attacks is described as follows:

Algorithm 2 The meta-learning-based algorithm for
attacks detection
Input: Ttest
Output: Tresult

1:Tresult ← 

2:Ttest′← 
3:Ttest′← {(yq, xq′)| xq′ is xq after features extraction

of Ttest}
4:For q=1 to Q Do
5: For k=1 to K Do
6: fk(xq) ← SVMk(xq′)

/*Generate the outputs of the base-classifiers */
7: End For
8: fmeta(xq) ← SVMmeta(f1(xq),…,fK(xq))

/* Generate the output of the meta-classifier */
9: Tresult ← Tresult  {fmeta(xq)}

10:End For
11:Return Tresult
In Algorithm 2, the base-classifiers firstly generate

their classification results. Then, the meta-classifier
integrates these results and outputs the final predictions
for the test set. Since each base-classifier is obtained
using different knowledge, the hypothesis space is
explored differently. Thus, the correlations of the
misclassifications are effectively reduced. The
combination in the meta-level performs better than the
base-classifier and it also performs better than the simple
voting-based ensemble method. In our experiments
below, we show support for this intuition.

IV. EXPERIMENTS AND EVALUATIONS

JOURNAL OF COMPUTERS, VOL. 7, NO. 1, JANUARY 2012 229

© 2012 ACADEMY PUBLISHER

A. Experimental Data and Settings

We select two different-scale MovieLens1 datasets as
the experimental data in this paper:

(1) MovieLens 100K dataset. This dataset consists of
100,000 ratings on 1,682 movies by 943 users.
All ratings are integer values between 1 and 5,
where 1 is the lowest (disliked) and 5 is the
highest (most liked). Each user in this dataset has
rated at least 20 movies. We partition the dataset
in half. The first half is used as the parameter T
in Algorithm 1 to create base-training sets. To
create each test set, the second half is injected
with various attack profiles.

(2) MovieLens 1M dataset. This dataset consists of
1,000,209 ratings on 3,900 movies by 6,040
users. All ratings are integer values between 1
and 5, where 1 is the lowest (disliked) and 5 is
the highest (most liked). We randomly select
1,000 user profiles from this dataset as the
parameter T in Algorithm 1 to create base-
training sets. To create each test set, we
randomly select 1,000 user profiles to form a
new set from the remaining dataset and then
inject various attack profiles into this new set.

In the stage of training, we set A={1%, 2%, 5%, 10%},
B={1%, 3%, 5%, 10%, 25%}, C={random attack,
bandwagon attack, average attack} in Algorithm 1 to
create the base-training sets. Then, we combine these
sets with the methods described in section III.A and
section III.B to generate the base-classifiers and the
meta-classifier. These classifiers are generated using
libsvm2.

To create the test sets, the attack profiles, which are
constructed by the attack models of random, bandwagon
and average attack at filler sizes of 3% and 5% across
attack sizes of 1%, 2%, 5% and 10%, are individually
injected into the second half of MovieLens 100K dataset
and the second 1,000 user profiles of MovieLens 1M

dataset described above. We randomly select 50 movies
as the target items for each test. Each of these movies is
attacked individually and the average is reported for all
experiments. So, the final metric values in section IV.C
and section IV.D are the average values of these
experiments.

We only detect the push attack in this paper. Through
changing the ratings of the target item from maximum to
minimum, we can use the same method to detect the
nuke attack.

B. Evaluation Metrics

To measure the detection performance, we use the
standard measurements of recall and precision [18]:

Recall
TP

TP FN



, (8)

Precision
TP

TP FP



 (9)

where, TP is the number of attack profiles correctly
detected, FP is the number of genuine profiles
misclassified as attack profiles, FN is the number of
attack profiles misclassified as genuine profiles.

C. Experimental Results and Analysis on MovieLens
100K Test Sets

To verify the effectiveness of the proposed approach,
the test sets are detected individually by three detection
method which are Algorithm 2 (called Meta SVM), the
method of a single SVM (called single SVM) in [17] and
the voting method (called Voting SVM) which
ensembles the outputs of the base-classifiers through
majority voting method [28].

The detection results of these three methods on the
MovieLens 100K test sets are shown in Table Ⅰ, Table
Ⅱ, Figure 2 and Figure 3.

TABLE Ⅰ.

RECALL ON MOVIELENS 100K TEST SETS FOR VARIOUS ATTACK MODELS
 AT FILLER SIZE=3% ACROSS VARIOUS ATTACK SIZES

Attack Model Random Attack Bandwagon Attack Average Attack

Attack Size 1% 2% 5% 10% 1% 2% 5% 10% 1% 2% 5% 10%

Single SVM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Voting SVM 0.98 0.98 0.99 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00

Meta SVM 0.99 0.99 1.00 1.00 1.00 0.99 0.99 0.99 0.98 0.99 0.99 0.99

TABLE Ⅱ.

RECALL ON MOVIELENS 100K TEST SETS FOR VARIOUS ATTACK MODELS
 AT FILLER SIZE=5% ACROSS VARIOUS ATTACK SIZES

Attack Model Random Attack Bandwagon Attack Average Attack

Attack Size 1% 2% 5% 10% 1% 2% 5% 10% 1% 2% 5% 10%

Single SVM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Voting SVM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99

Meta SVM 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99

1http://www.grouplens.org/node/73
2http://www.csie.ntu.edu.tw/~cjlin/libsvm

230 JOURNAL OF COMPUTERS, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Random Attack(Filler Size=3%)

Attack Size(%)

P
re

c
is

io
n

Single SVM

Voting SVM

Meta SVM

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Bandwagon Attack(Filler Size=3%)

Attack Size(%)

P
re

c
is

io
n

Single SVM

Voting SVM

Meta SVM

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average Attack(Filler Size=3%)

Attack Size(%)

P
re

c
is

io
n

Single SVM

Voting SVM

Meta SVM

(a) (b) (c)

Figure 2. Precision on MovieLens 100K test sets for various attack models at filler size=3% across various attack sizes

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Random Attack(Filler Size=5%)

Attack Size(%)

P
re

c
is

io
n

Single SVM

Voting SVM

Meta SVM

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Bandwagon Attack(Filler Size=5%)

Attack Size(%)

P
re

c
is

io
n

Single SVM

Voting SVM

Meta SVM

1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average Attack(Filler Size=5%)

Attack Size(%)
P

re
c
is

io
n

Single SVM

Voting SVM

Meta SVM

(a) (b) (c)

Figure 3. Precision on MovieLens 100K test sets for various attack models at filler size=5% across various attack sizes

As shown in Table Ⅰ and Table Ⅱ, most recalls of
Meta SVM are between 0.99 and 1. These results, which
are similar to the results of Single SVM and Voting
SVM, keep at a high level. This is easy to explain, since
each base-classifier itself can detect most of the attack
profiles, the integration of these classifiers can still own
this capability.

In terms of the attack effects on recommendations, it
is discovered that the average attack is more powerful
than others [3][4]. However, as shown in Table Ⅰ and
Table Ⅱ, Meta SVM is able to effectively identify
average attacks at various filler sizes across attack sizes
and the recall can reach 0.99. The reason for these high
recalls is that the useful classification information of the
supervised classifier focuses on the training set where we
had injected enough attack samples.

Figure 2 and Figure 3 show that the precision of Meta
SVM has been significantly improved compared to the

precision of Single SVM and Voting SVM. At 1% attack
size, the average precision of Meta SVM increases by 6.6
percentage points and 1.7 percentage points compared to
the average precision of Single SVM and Voting SVM
respectively. At 10% attack size, the average precision of
Meta SVM reaches 0.91 while the average precisions of
Single SVM and Voting SVM are 0.58 and 0.85
respectively. These results illustrate the success of Meta
SVM in reducing the misclassifications.

D. Experimental Results and Analysis on MovieLens
1M Test Sets

The detection results of the three methods (i.e. Single
SVM, Voting SVM and Meta SVM) on the MovieLens
1M test sets are shown in Table Ⅲ, Table Ⅳ, Figure 4
and Figure 5.

TABLE Ⅲ.

 RECALL ON MOVIELENS 1M TEST SETS FOR VARIOUS ATTACK MODELS
 AT FILLER SIZE=3% ACROSS VARIOUS ATTACK SIZES

Attack Model Random Attack Bandwagon Attack Average Attack

Attack Size 1% 2% 5% 10% 1% 2% 5% 10% 1% 2% 5% 10%

Single SVM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Voting SVM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99

Meta SVM 0.97 0.98 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99

JOURNAL OF COMPUTERS, VOL. 7, NO. 1, JANUARY 2012 231

© 2012 ACADEMY PUBLISHER

TABLE Ⅳ.

RECALL ON MOVIELENS 1M TEST SETS FOR VARIOUS ATTACK MODELS
AT FILLER SIZE=5% ACROSS VARIOUS ATTACK SIZES

Attack Model Random Attack Bandwagon Attack Average Attack

Attack Size 1% 2% 5% 10% 1% 2% 5% 10% 1% 2% 5% 10%

Single SVM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Voting SVM 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Meta SVM 0.98 0.97 0.97 0.95 0.95 0.98 1.00 1.00 0.99 1.00 1.00 0.99

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Random Attack(Filler Size=3%)

Attack Size(%)

P
re

c
is

io
n

Single SVM

Voting SVM

Meta SVM

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Bandwagon Attack(Filler Size=3%)

Attack Size(%)

P
re

c
is

io
n

Single SVM

Voting SVM

Meta SVM

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average Attack(Filler Size=3%)

Attack Size(%)

P
re

c
is

io
n

Single SVM

Voting SVM

Meta SVM

(a) (b) (c)

Figure 4. Precision on MovieLens 1M test sets for various attack models at filler size=3% across various attack sizes

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Random Attack(Filler Size=5%)

Attack Size(%)

P
re

c
is

io
n

Single SVM

Voting SVM

Meta SVM

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Bandwagon Attack(Filler Size=5%)

Attack Size(%)

P
re

c
is

io
n

Single SVM

Voting SVM

Meta SVM

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average Attack(Filler Size=5%)

Attack Size(%)

P
re

c
is

io
n

Single SVM

Voting SVM

Meta SVM

(a) (b) (c)

Figure 5. Precision on MovieLens 1M test sets for various attack models at filler size=5% across various attack sizes

As shown in Table Ⅲ, Table Ⅳ, Figure 4 and Figure 5,

the recalls and precisions of Meta SVM on MovieLens
1M test sets, whose scale are larger than the scale of
MovieLens 100K test sets, still keep at a high level.

In Table Ⅲ and Table Ⅳ, most recalls of Meta SVM
are 0.99 and the minimum value has reached 0.95. These
recalls are slightly lower than the recalls of Single SVM
and Voting SVM. However, we believe that Meta SVM
is more practical than the other two detection methods.
Blew, we show the explanations for this viewpoint. In a
recommender system, a group of attack profiles is
particularly harmful against the recommendation results
while the attack effects of several attack profiles is very
limited [7][10]. In the worst case, the recall of Meta
SVM only drops by 0.05 percentage points compared to
the recall of Single SVM. Meta SVM can detect most of
the attack profiles under the condition of holding high
precisions while Single SVM and Voting SVM improve
their recalls through increasing the misclassifications.

In Figure 4 and Figure 5, the precisions of Meta SVM
increase with increasing of attack size, take Figure 4(a)
for example, when the attack sizes are 1%, 2%, 5%, 10%,
the precisions of Meta SVM are 0.4, 0.6, 0.81 and 0.92.
These trends are also shown in Figure 2 and Figure 3.
This is not hard to explain, with increasing of attack size,
more attack profiles are detected while the number of
misclassified genuine profiles keeps the same. These
illustrate that Meta SVM has a good stability when
detecting the attacks at large attack sizes.

The precision curves of Voting SVM are closer to the
curves of Meta SVM in Figure 4 and Figure 5 than the
curves in Figure 2 and Figure 3. This illustrates that the
classification performance of Voting SVM is improved
on the large-scale dataset. However, the precisions of
Meta SVM are always higher than the precisions of
Single SVM and Voting SVM. At 1% attack size, the
average precision of Meta SVM increases by 3
percentage points and 0.2 percentage points compared to

232 JOURNAL OF COMPUTERS, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

the average precision of Single SVM and Voting SVM
respectively. At 10% attack size, while the average
precisions of Single SVM and Voting SVM are 0.58 and
0.85 respectively, the average precision of Meta SVM
reaches 0.94 higher than the average precision 0.91 in
Figure 2 and Figure 3. These results illustrate that Meta
SVM can effectively detect the attack profiles not only
on a small-scale dataset but also on a large-scale dataset
with a high precision.

V. CONCLUSIONS AND FUTURE WORK

The detection of profile injection attacks is an
important research area in the recommender system. We
have made some beneficial explorations and attempts in
this area. We propose an algorithm to create the diverse
base-level training sets through flexible combinations of
various attack types. Using these sets, we construct the
diverse base-level classifiers to reduce the correlations of
the misclassifications. Through relearning the results of
the base-level classifiers, a meta-classifier is constructed.
Based on base-level and meta-level classifiers, we
propose a meta-learning-based detection algorithm which
could effectively detect profile injection attacks. The
experimental results on the different-scale datasets prove
that the proposed approach can not only hold a high
recall, but also effectively improve the precision.

In the future, we will study the more appropriate meta-
learning strategies to improve the detection performance
for profile injection attacks in collaborative
recommender systems.

ACKNOWLEDGMENT

This work is partially supported by the Natural
Science Foundation of Hebei Province, China
(F2011203219) and the Special Fund for Fast Sharing of
Science Paper in Net Era by CSTD of Ministry of
Education, China (20101333110013).

REFERENCES

[1] I. Bartolini, Z. Zhang, and D. Papadias, “Collaborative
filtering with personalized skylines,” IEEE Transactions
on Knowledge and Data Engineering, vol.23(2), pp.190-
203, February 2011, doi:10.1109/TKDE.2010.86.

[2] R. Burke, B. Mobasher, C. Williams, and R. Bhaumik,
“Detecting profile injection attacks in collaborative
recommender systems,” In Proceedings of the 8th IEEE
International Conference on E-Commerce Technology and
the 3rd IEEE International Conference on Enterprise
Computing, E-Commerce, and E-Services (CEC/EEE’06),
June 2006, doi:10.1109/CEC-EEE.2006.34.

[3] S. K. Lam, and J. Riedl, “Shilling recommender systems
for fun and profit,” In Proceedings of the 13th
international conference on World Wide Web (WWW'04),
pp.393-402, May 2004, doi:10.1145/988672.988726.

[4] R. Burke, B. Mobasher, and R. Bhaumik, “Limited
knowledge shilling attacks in collaborative filtering
systems,” In Proceedings of the 3rd IJCAI Workshop in
Intelligent Techniques for Personalization (ITWP’05),
August 2005, doi:10.1.1.135.2204.

[5] R. Burke, B. Mobasher, R. Bhaumik, and C. Williams,
“Segment-Based injection attacks against collaborative
filtering recommender systems,” In Proceedings of the
International Conference on Data Mining (ICDM 2005),
pp. 577-580, November 2005,
doi:10.1109/ICDM.2005.127.

[6] M. O’mahony, N. Hurley, N. Kushmerick, and G.
Silvestre, “Collaborative recommendation: a robustness
analysis,” ACM Transactions on Internet Technology,
vol.4(4), pp.344-377, November 2004,
doi:10.1145/1031114.1031116.

[7] B. Mehta, and W. Nejdl, “Attack resistant collaborative
filtering,” In Proceedings of the 31st annual international
ACM SIGIR conference on Research and development in
information retrieval (SIGIR’08), pp.75-82, July 2008,
doi:10.1145/1390334.1390350.

[8] P.-A. Chirita, W. Nejdl, and C. Zamfir, “Preventing
shilling attacks in online recommender systems,” In
Proceedings of the 7th annual ACM international
workshop on Web information and data management
(WIDM ’05), pp.67-74, November 2005,
doi:10.1145/1097047.1097061.

[9] X.-F. Su, H.-J. Zeng, and Z. Chen, “Finding group shilling
in recommendation system,” Special interest tracks and
posters of the 14th international conference on World
Wide Web (WWW'05), pp.960-961, May 2005,
doi:10.1145/1062745.1062818.

[10] B. Mehta, T. Hofmann, and P. Fankhauser, “Lies and
propaganda: detecting spam users in collaborative
filtering,” In Proceedings of the 12th international
conference on Intelligent user interfaces (IUI’07), pp.14-
21, January 2007, doi:10.1145/1216295.1216307.

[11] B. Mehta, “Unsupervised shilling detection for
collaborative filtering,” In Proceedings of the 22nd
national conference on Artificial intelligence (AAAI'07),
pp.1402-1407, July 2007.

[12] B. Mehta, and W. Nejdl, “Unsupervised strategies for
shilling detection and robust collaborative filtering,” User
Modeling and User-Adapted Interaction, vol.19(1-2),
pp.65-79, 2009, doi:10.1007/s11257-008-9050-4.

[13] K. Bryan, M. O’Mahony, and P. Cunningham,
“Unsupervised retrieval of attack profiles in collaborative
recommender systems,” In Proceedings of the 2008 ACM
conference on Recommender systems (RecSys’08),
pp.155-162, October 2008, doi:10.1145/1454008.1454034.

[14] N. Hurley, Z. Cheng, and M. Zhang, “Statistical attack
detection,” In Proceedings of the third ACM conference
on Recommender systems (RecSys’09), pp.149-156,
October 2009, doi:10.1145/1639714.1639740.

[15] F. He, X. Wang, and B. Liu, “Attack detection by rough
set theory in recommendation system,” IEEE International
Conference on Granular Computing, pp.692-695, August
2010, doi:10.1109/GrC.2010.130.

[16] R. Burke, B. Mobasher, C. Williams, and R. Bhaumik,
“Classification features for attack detection in
collaborative recommender systems,” In Proceedings of
the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining (KDD’06), pp.542-
547, August 2006, doi:10.1145/1150402.1150465.

[17] C. A.Williams, B. Mobasher, and R. Burke, “Defending
recommender systems: detection of profile injection
attacks,” Service Oriented Computing and Applications,
vol.1(3), pp.157-170, 2007, doi:10.1007/s11761-007-
0013-0.

[18] B. Mobasher, R. Burke, R. Bhaumik, and C. Williams,
“Towards trustworthy recommender systems: an analysis
of attack models and algorithm robustness,” ACM

JOURNAL OF COMPUTERS, VOL. 7, NO. 1, JANUARY 2012 233

© 2012 ACADEMY PUBLISHER

Transactions on Internet Technology, vol.7(4), October
2007, doi:10.1145/1278366.1278372.

[19] Z. Fuzhi, J. Dongyan, C. Jinbo, “An improved PCA attack
detection algorithm based on normal cloud model,”
Journal of Computational Information Systems, vol.6(6),
pp. 1959-1966, 2010.

[20] Z. Fuzhi; J. Dongyan, C. Jinbo, “A user profile injection
attack detection algorithm based on normal cloud model
and PCA,” ICIC Express Letters, vol.5(4A), pp. 925-930,
2011.

[21] X. Yuchen, L. Qiang; Z. Fuzhi, “User profile attack
anomaly detection algorithm based on time series
analysis,” Journal of Information and Computational
Science, vol.7(11), pp. 2201-2206, 2010.

[22] R. Bhaumik, C. Williams, B. Mobasher, R. Burke,
“Securing collaborative filtering against malicious attacks
through anomaly detection,” In Proceedings of the 4th
workshop on intelligent techniques for web
personalization (ITWP'06), July 2006.

[23] Z. Lan, J. Gu, Z. Zheng, R. Thakur, and S. Coghlan, “A
study of dynamic meta-learning for failure prediction in
large-scale systems,” Journal of Parallel and Distributed
Computing archive, vol.70(6), pp.630-643, June 2010,
doi:10.1109/ICPP.2008.17.

[24] D. H. Wolpert, “Stacked generalization,” Neural Networks,
vol.5(2), pp.241-259, 1992, doi:10.1.1.56.1533.

[25] P. Kordík, J. Koutník, J. Drchal, O. Kovářík, M. Čepek,
and M. Šnorek, “Meta-learning approach to neural

network optimization,” Neural Networks, vol.23(4),
pp.568-582, May 2010, doi:10.1016/j.neunet.2010.02.003.

[26] M. Wasikowski, X.-W. Chen, “Combating the small
sample class imbalance problem using feature selection,”
IEEE Transactions on Knowledge and Data Engineering,
vol.22(10), pp.1388-1400, October 2010,
doi:10.1109/TKDE.2009.187.

[27] Y. Fu, H. Yan, J. Li, and R. Xiang, “Robust facial features
localization on rotation arbitrary multi-view face in
complex background,” Journal of Computers, vol.6(2),
pp.337-342, February 2011, doi:10.4304/jcp.6.2.337-342.

[28] C.-F. Tsai, Y.-C. Linc, D. C.Yen, and Y.-M. Chen,
“Predicting stock returns by classifier ensembles,” Applied
Soft Computing, vol.11(2), pp.2452-2459, 2011,
doi:10.1016/j.asoc.2010.10.001.

Fuzhi Zhang was born in 1964. Currently, he is a professor
and PhD supervisor in School of Information Science and
Engineering, Yanshan University, Qinhuangdao, China. His
research interests include intelligent information processing,
network and information security, and service-oriented
computing.

Quanqiang Zhou was born in 1985. Currently, he is a PhD
student in School of Information Science and Engineering,
Yanshan University, Qinhuangdao, China. His research
interests include intelligent information processing and
personalization.

234 JOURNAL OF COMPUTERS, VOL. 7, NO. 1, JANUARY 2012

© 2012 ACADEMY PUBLISHER

