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Abstract—Flash memory is a non-volatile storage device that 
offers lots of superiority features. However, it has two 
characteristics namely: 1) Out-place updating and 2) 
Cleaning process that affects its performance as an efficient 
storage sub-system. Both characteristics influence the access 
time requirement in enabling the continuity of data storing 
and updating. In this paper, we propose an efficient data 
allocation scheme that takes into account the data 
popularity as the main indicator in making the allocation 
decision. Then, we unveil the importance of the allocation 
scheme in the block cleaning algorithm process. The 
simulation studies have shown that the integration between 
the block cleaning algorithm and the proposed data 
allocation scheme has significant impact on the cleaning 
process performance in terms of the number of block 
erasure operation and the number of active block 
requirements.  
 
Index Terms—flash memory, cleaning, algorithm, allocation, 
simulation 

I.  INTRODUCTION 

Flash memory is a non-volatile storage device that 
offers superior features. Not only does it allow fast data 
access and has solid-state reliability, it is also small in 
size, light weight, emits zero noise, consumes less power 
and is more resistant to shock compared to other types of 
storage [1], [2], [3], [4], and [27]. It is popularly used in 
secured digital (SD), compact flash (CF) and personal 
computer memory cards international association 
(PCMCIA) cards. Flash memory is also extensively 
included in most electronic gadgets such MP3-players, 
PDAs (personal digital assistants), mobile phones and 
digital cameras, just to name a few.  

However, two characteristics of flash memory namely 
1) Out-place updating, and 2) Cleaning process, bring 
about several challenges concerning data management. 
Updating existing data by overwriting at the same 
physical location is strictly prohibited since it is a time 
consuming process. Therefore, the out-place policy was 
suggested [5], [6], and [7]. This policy works by storing 

the updated data in a new location, while the original data 
is set as garbage1. However, when frequent updating 
occurs, the amounts of garbage increases and 
simultaneously decreases the amount of free space. Due 
to that problem, the cleaning process is necessary to 
ensure the continuity of data storing and updating. The 
cleaning process is commenced when the free size 
reaches a certain threshold of 20% – 35% of the total 
memory size, or it can also be commenced periodically 
[8]. In flash memory, the cleaning process is 
implemented by an erasing function and carried out on a 
block unit. However, the block may contain valid data 
currently being use by certain applications. Thus, any 
valid data residing in the block being cleaned must be 
copied out into other blocks. In particular, Douglis et al, 
[4] shown that the cleaning process and the block 
utilization level (i.e. the ratio between the valid data size 
and the block size) substantially impacts device access 
performance, energy consumption and block endurance.  

Several block cleaning algorithms and data allocation 
schemes exist in the literature [6], [8], [9], [10], [13], 
[14], [18], [24], and [25]. The block cleaning algorithm 
determines the victim block to be cleaned with the lowest 
cleaning cost. We refer the cleaning cost to the access 
time required for valid data copying and block erasing. 
Conversely, data allocation deals with the problem of 
allotting the accessed data into a particular location in the 
memory array. According to Gal and Toledo [7], the right 
combination between the allocation scheme and the 
cleaning algorithm can improve flash memory cleaning 
process performance and also the block endurance. The 
main objective of the efficient data allocation in flash 
memory is to minimize the amount of active blocks 
required in realizing data storing and updating. When the 
amount of active blocks is minimized, the number of 
victim blocks needed during the cleaning process is 
reduced. However, the coordination between both 
processes in flash memory is not given much attention by 
most researchers. This paper proposes an allocation 
scheme called frequency-based (FB) scheme, and 
combines it with the existing block cleaning algorithms. 
By using a tracing file collected from real-world I/O 

                                                           
1Garbage is a dead data and shall not be used again. 
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systems as the workload and using the comprehensive 
simulations, we show that the amount of victim blocks 
can be reduced. Moreover, the proposed FB scheme 
performs better than the existing allocation scheme in 
terms of active block requirements, number of cleaning 
operations and cleaning cost.  

The remainder of this paper is organized as follows. 
Section II discusses about the background of flash 
memory and related works. Section III provides detailed 
explanations about the proposed allocation scheme. The 
performance of the scheme is then evaluated in Section 
IV. Finally, this paper concludes with Section V. 

II.  BACKGROUND AND RELATED WORKS 

There are two types of flash memory in the market: 1) 
NAND-flash, and 2) NOR-flash [11]. In this paper, we 
limit our focus to NAND-flash type and will simply refer 
to it as flash memory. 

A.  Flash memory characteristics 
Flash memory is a block and cell units based storage 

device (Fig. 1). Data is stored in cell units where each cell 
is partitioned into two areas, namely, data and spare. The 
data area is used to store the actual data, while the spare 
area stores the assisting information for the data area 
(such as bad block identification, cell and block data 
structure, out-bound data and error-correction code 
(ECC)). A group of cells is called a block. According to 
the present production practices, the cell size is fixed 
from 512-Bytes to 4-Kilobytes, while the block size is 
between 4 and 128-Kilobytes [12]. 
 

 
Figure 1: Flash memory blocks and cells layout. 

Flash memory offers three kinds of access functions, 
called, 1) Read, 2) Write/program, and 3) Erase with 
asymmetric access time (see Table I). The read and write 
functions are carried out in the cell units, while erase is 
performed in block units. Updating the existing data in 
flash memory is performed via out-place policy rather 

than in-place updating. The updated data is stored into a 
new cell while its original cell is set as garbage. 
Therefore, as shown in Fig. 2, the cells in flash memory 
are separated into three categories namely, 1) Free, 2) 
Valid, and 3) Invalid. A free cell is an empty cell ready to 
store new or updated data. A valid cell contains the recent 
version of the data while an invalid cell contains an 
obsolete or “dead” data. As pointed out by Chou and Liu 
[13], blocks in the memory array can be categorized as 
either active or inactive. An active block refers to block 
that contains valid cells while blocks containing either 
free or invalid cells are referred to as inactive. 

TABLE I.   
FLASH MEMORY PROPERTIES 

Notation Specification Value 
p Cell size 2 KB 
b Block size 128 KB 
K Cells per block 64 
B Number of blocks 8192 
Rt Read access time in µs (10-6) 25 µs 
Wt Write/program access time 200 µs 
Et Erase access time in ms (10-3) 1.5 ms 

 

Power consumption (Volts) 2.7 – 3.6 
Size (h X w X d) (mm) 12 x 20 x 1.2
Noise ~ 0 db 
Block endurance (erase and write) 100 K 

 

B.  Cleaning process in flash memory  
As illustrated in Fig. 2, the cleaning process in flash 

memory is realized in three steps. Firstly, a victim block 
is determined. Then, all valid data residing in the block 
are identified and copied out into free cells in other 
blocks. Finally, the victim block is erased.  
 

 
Figure 2: The three phases in cleaning process. 

Several block cleaning algorithms that ensuring the 
wear-leveling policy have been proposed [1], [3], [7], [8], 
[9], [10], [15], [16], [19], and [25]. Two main goals of the 
algorithm are minimize the cleaning cost and wear down 
all blocks evenly. Wu and Zwaenepoel [20] proposed a 
simple algorithm called the Greedy (GR). The GR 
algorithm selects a single victim block with the lowest 
utilization level each time the cleaning process is 
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performed. Kawaguchi et al., [6] proposed cost-benefit 
(CB) algorithm where active block with a maximum 
value resulting from (1) is elected for cleaning.  

 ((a x (1 – u))/2u)   (1) 

The elapsed time from last data invalidation is 
represented by a while u refers to block utilization level. 
Chiang and Chang [8] proposed the cost age time (CAT) 
algorithm to select victim blocks and the dynamic data 
clustering (DAC) reorganization technique to lessen 
number of block erasures. Active blocks that have 
minimum value resulting from (2) are chosen as the 
victim blocks.  

 (u/1 – u) x (1/a) x e (2) 

Then, the valid data are re-organized into new blocks 
according to their updating frequency. Moreover, this 
algorithm considers the wear-leveling issue by 
considering the number of times the block has been 
erased (denoted by e) where blocks with fewest erasure 
counts have priority. Han et al. [17] proposed the cost age 
time with age sort (CATA) algorithm that combines 
between the CAT and the age-sort algorithm which is 
inherited from the log-file structure (LFS) [10]. The 
blocks that maximize (3) are chosen for erasure. 

 (1 – u/1 + u) x a x 1/e (3) 

Kwon et al. [21] and [22] proposed the EF-Greedy and S-
Greedy algorithms by extending the GR algorithm. The 
victim blocks are selected based on the GR algorithm and 
the valid data residing in the blocks are copied into new 
blocks using the predicted inter-update (PIU) time and 
the swapped-out time (SOT) information. Moreover, the 
wear-leveling policy is considered in both algorithms. 

C.  Data allocation in flash memory 
Data allocation in flash memory deals with the 

problem of deciding the block location due to out-place 
updating policy characteristic. The allocation scheme that 
requires lowest amount of active block will minimize the 
probability of blocks to be erased during the cleaning 
process. Several data allocation schemes with the aim of 
minimizing the amount of active blocks have been 
proposed in [13] and [14]. The details of the existing data 
allocation schemes are summarized in Table II.  

TABLE II.   
DATA ALLOCATION SCHEMES IN FLASH MEMORY 

Schemes Method Parameter 
 First Come First Serve 
(FCFS) On-line Appearance position (t) 

First Re-Arrival First Serve 
(FRFS) Off-line Re-appearance position (r) 

Online First Re-Arrival First 
Serve (OFRFS) On-line 

Prediction of previous data 
appearance position 
history 

Hybrid Online (HO) On-line Hybrid between OFRFS 
and FCFS 

Best Match (BestM) Off-line 
Length between the 
appearance  time and first 
re-appear  time 

 

Two categories of data allocation schemes in flash 
memory are: 1) On-line, and 2) Off-line. The on-line 
scheme maps each data that appears in an access pattern 
(AP) into a free cell in a proper block at the time the data 
is accessed. The AP refers to a string of data involved in 
the storing and updating processes since both functions 
affect the cell state. On the contrary, the off-line scheme 
delays the allocation until all information in the AP is 
analyzed and the scheme results in minimum number of 
active blocks to be allocated. However, it needs 
knowledge of the entire information of the data in the AP. 
Thus, it is not suitable for time constraint applications. 
Moreover, the issue regarding the wear-leveling policy 
has been neglected in most allocation schemes. For 
instance, the block condition (such as the erasure count) 
is not taken into consideration when performing the 
allocation. 

To increase the cleaning performance, however, there 
is no collusion between the data allocation scheme and 
the cleaning algorithm at the initial stage of the I/O 
operations. The data allocation schemes focus on 
minimizing the active block requirement by increasing 
the automatic cleaning process. Conversely, the cleaning 
algorithms try to reduce the semi-automatic cleaning. The 
automatic cleaning is being commenced when a particular 
active block turns into inactive state. Since, there is no 
valid data copying process, the block can be erased in the 
background during execution of the current operations 
(read or write) from/into the memory array. On the other 
hand, the semi-automatic cleaning is commenced when 
the memory array free spaces reach a certain threshold 
level. It is applied exclusively for the existing active 
blocks in the memory array with least utilization. Since 
the blocks contain valid data, the current operation to the 
memory array is temporarily halted. It is resuming back 
when the cleaning ended and the access time required is 
inconsistent. Equation (4) below shows the function used 
to clean n active blocks with difference utilization level.  

 (1 – u/1 + u) x a x 1/Et (4) 

Due to these facts, we are motivated to combine the data 
allocation scheme and block cleaning algorithm in order 
to guarantee the cleaning process performance. We 
propose an efficient data allocation step that considers the 
distribution pattern of the data in the AP and the block 
condition when performing the allocation.  

III. EFFICIENT DATA ALLOCATION SCHEME IN FLASH 
MEMORY 

A.  Data accessing architecture in flash memory 
Fig. 3 illustrates the basic data allocation architecture 

in flash memory. The architecture consists of two main 
components, namely: 1) Data access screening, and 2) 
Allocation algorithm. The data access screening 
percolates two common accessing types in the memory 
array, either data storing (write or update) or data 
retrieving (read). Contrary, the allocation algorithm 
performs the allocation procedure for the accessed data, 
either writing new data or updating existing data. 
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Figure 3: Data allocation architecture in flash memory. 

The allocation algorithm is the main part of the 
architecture. There are three procedures in the allocation 
algorithm, which are: 1) Interpreter, 2) Allocator, and 3) 
Cleaner. The interpreter elucidates the condition of the 
accessed data as being either popular or unpopular. The 
allocator is responsible for mapping the accessed data 
into a free cell in a particular block. Firstly, the allocator 
will generate the block ID. Then, it will map the accessed 
data into a first free cell in the block ID. After storing the 
data, the cell state where the data is stored is changed into 
valid state. For the data updating process, the updated 
data is stored into a new free cell while the cell 
containing the original data is set to an invalid state. The 
cleaner refers to the cleaning process that will be initiated 
automatically by the system software. If the block in the 
memory array turns from active to inactive, the block is 
erased automatically. Otherwise, the cleaning algorithm 
is invoked when a certain threshold pertaining to device 
free space is reached.  

B.  Frequency-based (FB) scheme 
We present the FB scheme that takes into account the 

frequency of the data in the AP and the block 
circumstances when performing the allocation. The FB 
scheme is managed by the frequency() mechanism in the 
interpreter procedure. The appearance of data in the AP is 
autonomous because it is independently accessed by the 
users. Since its appearance is solely influenced by user 
access behaviors, the information regarding the particular 
data within a particular access interval in the AP is 
insufficient. Entirely depending on previous access 
information is not enough to establish the popularity of 
the data. The information gathered may become the final 
(data may appear only once in the AP). Besides, 
particular data may appear frequently at certain intervals 
within the AP (for instance, beginning, middle or ending 
parts of the AP).  

For example, as illustrated in Fig. 4, data b only 
appears once at t and it may be the final appearance. 
However, after the p interval access, the data may appear 
again and again. Therefore, the accurate approach to 
determine the data popularity is by continuously 
calculating its appearance frequency throughout the AP. 
The reason is the current frequency can be used as an 

estimate of the probability of specific data being accessed 
in the AP. Data with higher frequency is more likely to be 
accessed than data with lower frequency. Therefore, in 
the FB allocation scheme, the allocation for each data is 
according to its current appearance frequency. The data 
that has particular range of frequency are stored into 
different blocks in the memory array. The intuition of 
using the appearance frequency in storing the data is that 
we want to ensure particular blocks are not in the active 
state for the whole allocation process, which is a problem 
found in the FCFS scheme. We try to ensure that the 
blocks turn into inactive state as early as possible and 
they can be cleaned without the need to wait for the usual 
cleaning process. Therefore, when a particular turns into 
an inactive state (where it previous state is active) earlier 
and when the cleaning process is required, the number of 
active blocks involving in the cleaning process could be 
reduced. Hence, the cleaning cost required for copying 
the valid data could be minimized.  
 

 
Figure 4: The inconstant data appearance in the AP. 

Unlike the existing allocation schemes, firstly, the FB 
allocation scheme partitions the B blocks in the memory 
array into three clusters, namely, 1) Cold (denoted by 
Fcold), 2) Warm (denoted by Fwarm), and 3) Hot (denoted 
by Fhot). The cold block specifically stores the first 
appearance of each unique data in the AP while the hot 
block cluster stores the regularly appearing data. The 
remaining blocks are allocated for the warm cluster. We 
use the relative standard deviation of each data (denoted 
by R(pi))  to classify the frequency of the data in the AP 
into the three main clusters. It is employed since it can 
forecast the regularity of the data that fall into a specific 
period of access time interval. Equation (5) shows the 
function that calculates the R(pi):    

 R(pi) = 100 x s(pi) / x(pi) (5) 

where s(pi) is the standard deviation of data pi while the 
mean value is denoted by x(pi). The R value for each data 
in the AP is expressed as a percentage representation. 
After obtaining the R(pi) values, the minimum and the 
maximum among the evaluated values are determined in 
order to find the range of the access interval. The 
minimum value indicated by RMIN reveals the data that 
emerge frequently while the maximum value referred to 
as RMAX, reveals data that appear infrequently in the AP. 
Before that, the middle of the R(pi), denoted by Rmedian is 
determined. Regularly appearing data are situated in the 
range 0 ≤ R(pi) < RMIN while the data that appears 
irregularly fall in the range Rmedian ≤ R(pi) ≤ RMAX. For the 
middle regularity, the data relative standard deviation fall 
in the range RMIN ≤ R(pi) < Rmedian. 

Then, by taking the average of the regularity of 
appearance of the data in the AP, the blocks in the 
memory array are partitioned according to the following 
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fractions; Fcold = 25%, Fhot = 55% and the remaining 20% 
are allocated for Fwarm. The sequence of these partitions in 
the memory array is in sequential order. In the FB 
scheme, we will allocate the first appearance of each 
unique data in the AP into the cold block cluster. For the 
second and the further appearance, the data is stored into 
the warm and hot block clusters according to their 
appearance frequency in the AP.   

C. FB scheme illustration 
Assume the AP is a, b, c, d, a, b, c, b, a, a, d, b, d, a, d, 

d, and number of blocks and cells (B and K are 4). The 
blocks are denoted as b0, b1, b2 and b3. A single block is 
allocated for both Fcold and Fwarm while the remaining two 
blocks are allocated for Fhot. Thus, the block ID for Fcold 
and Fwarm is b0 and b1, respectively, while b2 and b3 are 
allocated for Fhot. The first and the second appearance of 
each unique data in the AP are allocated into the Fcold and 
Fwarm blocks. We assume the popular data with an 
appearance frequency of three times or more (y ≥ 3). Fig. 
5 gives an example of FB allocation scheme. 
 

 
Figure 5: Example of the FB scheme where B and K are 4 

From (a) to (p), data in the AP is allocated according 
to its present frequency. The first four data in the AP are 
the first appearance in the AP, therefore, from (a) to (d), 
the data are stored sequentially into the first free cell in 
block b0. Block b0 turns into active and it is inserted into 
the list and the active block now is set to 1. In (e), data a 
re-appears for the second times and it is allocated into the 
first cell (c0) in block b1 while it first appearance in block 
b0 is set to invalid. Since block b1 turns into active state, 
active block now is increased to 2. Both in (f) and (g), the 
data appear for the second time and are stored into the 
free cell in block b1, while their first appearances are set 
to invalid. In (h), data b reappears for the third time and is 
stored into the first free cell in the first block in the Fhot 
cluster. Again, since block b2 turns into active state and 
then inserted into the list, the active block is increased to 
3. Next, when data d reappears for the second time in (k), 
it is stored into the first free cell in the available blocks in 
cluster Fwarm. At the moment, cell c3 in block b1 is free 

and the data is stored into the cell. When its previous 
appearance (first appearance) in cell c3 at block b0 
changes into invalid state, block b0 turns into inactive 
state. The block is erased and its ID is removed from the 
active block list. Thus, the amount decreases to 2. In (m), 
the active block amount is increased back to 3 because 
block b3 is used to store the third appearance of data d in 
the AP when block b2 is fully occupied. The block ID is 
inserted into the list and the subsequent data in the AP, 
where their appearance is greater than 3 is stored 
sequentially in the block. At the end, the maximum 
number of active blocks required to store the data in the 
AP is 3.  

IV.  EXPERIMENTAL SETUP AND RESULT 

A.  Simuation model and parameters. 
We evaluate the PB scheme by means of computer 

simulation. The performance of the PB scheme is 
compared with the existing allocation schemes FCFS, 
FRFS, OFRFS, HO and BestM in terms of the amount of 
active block requirement. This simulation model was 
programmed using the CSIM discrete-event simulation 
software [23]. The actual technical specifications of the 
experimental environment are summarized in the Table 
III. 

TABLE III.   
SIMULATION ENVIRONMENT AND EVALUATION PARAMETERS 

Configuration Specification 

Hardware 
CPU: Intel Pentium IV (Dual Core) 1.6 GHz 
RAM : 4 Gbytes 
HARD DISK:  120 Gbytes 

Operating System Microsoft Windows XP Professional 

Simulation tools 

CSIM 18   
Programming tool: Borland C++ V. 5.02 
Compiler: Borland C++ IDE (cppbc5) 
Components:   

1. Processes 
2. Facilities 
3. Storages 

Flash memory 
specification As shown in Table I.  

 
Three distinct components in CSIM, called, 1) Process, 

2) Facility and 3) Storage are utilized in simulating the 
actual I/O operations in the flash memory system. The 
process component is a necessary component used to start 
the simulation. The facility is responsible to model the 
process request service from within the simulation. The 
request is accessed through an input file. Thus, to make it 
simpler, we adopt the M/M/1 queue, a single queue and a 
single server approach in serving the accessed file data in 
the AP. To make the simulation executed on a real flash 
memory device, we employ the storage component in 
CSIM. Since the blocks and cells can be represented in 
two dimensional arrays, we use the storage sets procedure 
and initialize the array of storages statement as 
storage_set(flash, “set”, K, B). Parameter B represents 
number of blocks, while parameter K represents number 
of cells per block. The individual cell unit is accessed as 
an element of array.  
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The tracing file downloaded from Flash-Memory 
Research Group, National Taiwan University [26] as the 
workload in the experiments. The tracing file was 
recorded from a real system running I/O operations in 
disk sub-systems.  The characteristic and the description 
of the tracing file are given in Table IV. The files were 
collected over 30 consecutive days using a personal 
computer running several general applications. The 
applications include Web browser (KKman, Firefox), 
P2P software, Windows Media Player, PowerPoint, 
Word, Acrobat Reader, and Outlook. In order to clarify 
the information displayed in Table IV, assume G = {1, 1, 
4, 5, 2, 1, 2, 4, 5, 5} to be a sample of the AP. The size of 
sample (N) is 10, whereas the number of unique data (n) 
is equals to 4. 

TABLE IV.   
TRACING FILE ATTRIBUTES 

Data Sample Size 
 (N) 

Data 
(n) 

Lowest 
frequency 

Highest 
frequency 

A set 1 45258 12948 1 4780 
set 2 296182 103021 1 11228 

 

B.  Experiment results 
The primary performance metric in this analysis is the 

amount of active blocks required in realizing the data 
storing and updating processes for the accessed data in 
the AP. The lowest amount of active blocks corresponds 
to a lower overhead for the cleaning process since the 
number of blocks involved in is minimized. Fig. 7 
illustrates the evaluation result for the amount of active 
blocks required for the tracing file. The relationship 
between the access time of the data in the tracing files 
during the I/O operation and the average number of active 
block in realizing the storing and updating the data are 
presented in the figures.  

As can be seen in the figures, the FCFS performs 
inferior as compared to other existing online allocation 
algorithms. On the other hand, the BestM results in the 
lowest amount of active blocks required for tracing all the 
files. For the tracing file, we found the average number of 
requested active blocks in realizing the updating process 
for FB scheme is lower than the existing online allocation 
algorithms, the FCFS, the OFRFS, and the HO. We use 
the frequency of appearance for each data that appears in 
the AP as the main measurement in determining the  
locations in the memory array. 

In general, the FB scheme requires less active blocks 
than the probability-based (PB) allocation scheme, where 
the gap for both schemes does not see so obvious. The PB 
scheme allocates the accessed data in the AP according to 
the popularity factor. The popularity of the data in this 
scheme follows the Zipf’s distribution Law. For example, 
the gap between both algorithms is very small at the 
initial stage of the access time (almost similar). However, 
in the middle of the access, both algorithms consume 
more blocks than the HO at 12.01 pm (see Fig. 7a) and 
12:56 pm (see Fig 7b). Then, the amount of active blocks 
begin to decrease when the access time increases and the 
gap between both FB and PB has become more obvious 

at the end of the access pattern. On average, the FB 
requires approximately 8% less active blocks than PB 
scheme. 
 

 
a) Set 1 

 
b) Set 2 

Figure 6: The average number of active blocks for different allocation 
schemes on Data A 

C.  PB scheme with block cleaning algorithms 
We emphasize the importance of combining the FB 

allocation scheme with the existing cleaning algorithm in 
serving the accessed I/O operations. Efficient 
management between both procedures will achieve the 
goals of the cleaner in guaranteeing the performance of 
flash memory as storage sub-systems. The cleaning costs 
required for both conditions are totally different.  

There are two categories of cleaning process in flash 
memory: 1) Automatic, and 2) Semi-automatic. The 
automatic cleaning is associated with the allocation 
scheme while the semi-automatic is employed by the 
block cleaning algorithm. Although the automatic 
cleaning requires constant access time (Et), the cost is 
associated with the efficiency of the data allocation 
scheme. The allocation scheme that can cluster the 
invalid data into a similar block is able to quickly turn an 
active block into inactive state. Thus the block can be 
erased in the background without requiring any copying 
cost and delaying the current I/O operations. Therefore, if 
many automatic cleaning occurs during the data 
allocation process, the amount of active blocks needs to 
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be cleaned during the semi-automatic process can be 
reduced. For that reason, the cleaning cost is reduced. 

From the results shown in the Table V through X, 
several features can be summarized. First of all, both off-
line allocation schemes FRFS and BestM require the 
largest amount of automatic cleaning compared to the 
online allocation schemes. For all block cleaning 
algorithms, both FRFS and BestM have similar amount of 
automatic and semi-automatic cleaning, approximately 
85% and 12% on average. Since the allocation on these 
off-line schemes is decided after all accessed data are 
analyzed, the amount of active block involved when the 
cleaning process is initiated is smallest compared to the 
off-line allocation schemes.  

TABLE V.   
ALLOCATIONS  WITH CAT CLEANING ALGORITHM 

Allocation schemes Automatic 
cleaning 

performed (%) 

Semi-automatic 
cleaning 

performed (%) 
FCFS 44 56 

OFRFS 47 53 
HO 52 48 
PB 56 44 
FB 57 43 

FRFS 84 16 
BestM 86 14 

TABLE VI.   
ALLOCATIONS WITH CB CLEANING ALGORITHM 

Allocation schemes Automatic 
cleaning 

performed (%) 

Semi-automatic 
cleaning 

performed (%) 
FCFS 43.5 56.5 

OFRFS 45.5 54.5 
HO 54.3 45.7 
PB 58 42 
FB 53.5 46.5 

FRFS 86.5 13.5 
BestM 86 14 

TABLE VII.   
ALLOCATION WITH GR CLEANING ALGORITHM 

Allocation schemes Automatic 
cleaning 

performed (%) 

Semi-automatic 
cleaning 

performed (%) 
FCFS 42 58 

OFRFS 47.6 52.4 
HO 54 46 
PB 55.6 44.4 
FB 57.5 42.5 

FRFS 85.67 14.33 
BestM 87.5 12.5 

TABLE VIII.   
ALLOCATION WITH CATA CLEANING ALGORITHM 

Allocation schemes Automatic 
cleaning 

performed (%) 

Semi-automatic 
cleaning 

performed (%) 
FCFS 44 56 

OFRFS 46.5 53.5 
HO 54 46 
PB 58.5 41.5 
FB 52.5 47.5 

FRFS 86.8 13.2 
BestM 89.5 10.5 

TABLE IX.   
ALLOCATION WITH EF-GR CLEANING ALGORITHM 

Allocation schemes Automatic 
cleaning 

performed (%) 

Semi-automatic 
cleaning 

performed (%) 
FCFS 41 59 

OFRFS 47.7 52.3 
HO 55.5 44.5 
PB 54.6 45.4 
FB 58.9 41.1 

FRFS 86.5 13.5 
BestM 87.9 12.1 

TABLE X.   
ALLOCATIONS  WITH S-GR CLEANING ALGORITHM 

Allocation schemes Automatic 
cleaning 

performed (%) 

Semi-automatic 
cleaning 

performed (%) 
FCFS 43 57 

OFRFS 49 51 
HO 56.9 43.1 
PB 55.6 44.4 
FB 58.7 41.3 

FRFS 85.1 14.9 
BestM 86.5 13.5 

 
There were slight increases and decreases between 

automatic and semi-automatic cleaning procedures in the 
on-line data allocation schemes, including our proposed 
FB scheme. Roughly, we can discover that there is a huge 
jump in the amount of semi-automatic cleaning for FCFS 
allocation scheme for all victim block selection 
algorithms. Among the on-line allocation schemes, the 
OFRFS records a little distinction between both cleaning 
procedures. The automatic erasure rate for PB and FB is 
between 52% and 59%, while for FCFS, OFRFS and HO, 
the erasure rate is between 38% - 44%, 45% – 48%, and 
46% – 58%, respectively. Next, among the victim block 
selection algorithms, the CB algorithm requires the 
highest amount of block erasures while the EF-GR and S-
GR algorithms (which are enhanced from the GR 
algorithm) record the lowest erasure amounts.  

In all, the off-line allocation scheme requires the 
lowest erasure amount although the amount of automatic 
cleaning is the highest. Our proposed FB allocation 
schemes have shown that block erasures can be 
minimized and the cleaning cost could be reduced in 
comparison to the existing victim block selection 
algorithms. Hence, the analysis has shown and confirmed 
the efficient allocation scheme can minimized the 
cleaning cost requirement and increase the cleaning 
process performance. 

V.  CONCLUSION 

Flash memory is becoming a popular data storage 
device in most electronic mobile devices. Several reasons 
that make it become popular include small size and light 
weight nature, less noise, solid-state reliability, low 
power consumption, and better shock resistant. However, 
it has limitations due to operational characteristic which 
can indirectly affect the performance of its superior 
features.  
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In this paper, the proposed the FB allocation scheme is 
used to reduce the amount of active blocks in realizing 
the storing and updating of accessed data. Our scheme 
takes into account the data appearance frequency in AP 
while performing the allocation decision. The data with 
higher frequency are allocated into a similar cluster of 
blocks. By allocating the data into different cluster of 
blocks, the period for such block to be in the active state 
during the whole allocation process is reduced. The main 
idea of using this approach is to minimize the period of 
each block being in an active state. This can cause the 
block to become inactive earlier, thus minimizing the 
number of active blocks. We also showed the 
combination between data allocation scheme and the 
block cleaning algorithm. By combining both processes, 
there is significant improvement on the cleaning process 
performance. The evaluation performance has shown the 
relationship between both processes is necessary in 
guaranteeing flash memory efficiency as storage sub-
systems. In this research, we perform the allocation 
together with the proposed cleaning process on a single 
memory chip. However, the memory chips can be 
packaged as a single storage device that can hold 
enormous capacity. Therefore, for the future research 
direction, we plan to extend the allocation scheme and the 
cleaning process among the multiple chips. By extending 
the studies, issues on striping can be utilized in order to 
increase the performance of the flash memory. 
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