
Cleaning Process with Efficient Allocation
Scheme Improves Flash Memory Performance

Amir Rizaan Rahiman

Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Serdang, Selangor, MALAYSIA
 Email: amir@fsktm.upm.edu.my

Putra Sumari

School of Computer Sciences, Universiti Sains Malaysia, Penang, MALAYSIA
Email: putras@cs.usm.my

Abstract—Flash memory is a non-volatile storage device that
offers lots of superiority features. However, it has two
characteristics namely: 1) Out-place updating and 2)
Cleaning process that affects its performance as an efficient
storage sub-system. Both characteristics influence the access
time requirement in enabling the continuity of data storing
and updating. In this paper, we propose an efficient data
allocation scheme that takes into account the data
popularity as the main indicator in making the allocation
decision. Then, we unveil the importance of the allocation
scheme in the block cleaning algorithm process. The
simulation studies have shown that the integration between
the block cleaning algorithm and the proposed data
allocation scheme has significant impact on the cleaning
process performance in terms of the number of block
erasure operation and the number of active block
requirements.

Index Terms—flash memory, cleaning, algorithm, allocation,
simulation

I. INTRODUCTION

Flash memory is a non-volatile storage device that
offers superior features. Not only does it allow fast data
access and has solid-state reliability, it is also small in
size, light weight, emits zero noise, consumes less power
and is more resistant to shock compared to other types of
storage [1], [2], [3], [4], and [27]. It is popularly used in
secured digital (SD), compact flash (CF) and personal
computer memory cards international association
(PCMCIA) cards. Flash memory is also extensively
included in most electronic gadgets such MP3-players,
PDAs (personal digital assistants), mobile phones and
digital cameras, just to name a few.

However, two characteristics of flash memory namely
1) Out-place updating, and 2) Cleaning process, bring
about several challenges concerning data management.
Updating existing data by overwriting at the same
physical location is strictly prohibited since it is a time
consuming process. Therefore, the out-place policy was
suggested [5], [6], and [7]. This policy works by storing

the updated data in a new location, while the original data
is set as garbage1. However, when frequent updating
occurs, the amounts of garbage increases and
simultaneously decreases the amount of free space. Due
to that problem, the cleaning process is necessary to
ensure the continuity of data storing and updating. The
cleaning process is commenced when the free size
reaches a certain threshold of 20% – 35% of the total
memory size, or it can also be commenced periodically
[8]. In flash memory, the cleaning process is
implemented by an erasing function and carried out on a
block unit. However, the block may contain valid data
currently being use by certain applications. Thus, any
valid data residing in the block being cleaned must be
copied out into other blocks. In particular, Douglis et al,
[4] shown that the cleaning process and the block
utilization level (i.e. the ratio between the valid data size
and the block size) substantially impacts device access
performance, energy consumption and block endurance.

Several block cleaning algorithms and data allocation
schemes exist in the literature [6], [8], [9], [10], [13],
[14], [18], [24], and [25]. The block cleaning algorithm
determines the victim block to be cleaned with the lowest
cleaning cost. We refer the cleaning cost to the access
time required for valid data copying and block erasing.
Conversely, data allocation deals with the problem of
allotting the accessed data into a particular location in the
memory array. According to Gal and Toledo [7], the right
combination between the allocation scheme and the
cleaning algorithm can improve flash memory cleaning
process performance and also the block endurance. The
main objective of the efficient data allocation in flash
memory is to minimize the amount of active blocks
required in realizing data storing and updating. When the
amount of active blocks is minimized, the number of
victim blocks needed during the cleaning process is
reduced. However, the coordination between both
processes in flash memory is not given much attention by
most researchers. This paper proposes an allocation
scheme called frequency-based (FB) scheme, and
combines it with the existing block cleaning algorithms.
By using a tracing file collected from real-world I/O

1Garbage is a dead data and shall not be used again.

This work was partially supported by the University Sains Malaysia
(USM) research university (RU) grant under no. 1001/PKOMP/811094.

Manuscript received January 1, 2011; revised June 1, 2011; accepted
July 1, 2011.

810 JOURNAL OF COMPUTERS, VOL. 7, NO. 3, MARCH 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jcp.7.3.810-818

systems as the workload and using the comprehensive
simulations, we show that the amount of victim blocks
can be reduced. Moreover, the proposed FB scheme
performs better than the existing allocation scheme in
terms of active block requirements, number of cleaning
operations and cleaning cost.

The remainder of this paper is organized as follows.
Section II discusses about the background of flash
memory and related works. Section III provides detailed
explanations about the proposed allocation scheme. The
performance of the scheme is then evaluated in Section
IV. Finally, this paper concludes with Section V.

II. BACKGROUND AND RELATED WORKS

There are two types of flash memory in the market: 1)
NAND-flash, and 2) NOR-flash [11]. In this paper, we
limit our focus to NAND-flash type and will simply refer
to it as flash memory.

A. Flash memory characteristics
Flash memory is a block and cell units based storage

device (Fig. 1). Data is stored in cell units where each cell
is partitioned into two areas, namely, data and spare. The
data area is used to store the actual data, while the spare
area stores the assisting information for the data area
(such as bad block identification, cell and block data
structure, out-bound data and error-correction code
(ECC)). A group of cells is called a block. According to
the present production practices, the cell size is fixed
from 512-Bytes to 4-Kilobytes, while the block size is
between 4 and 128-Kilobytes [12].

Figure 1: Flash memory blocks and cells layout.

Flash memory offers three kinds of access functions,
called, 1) Read, 2) Write/program, and 3) Erase with
asymmetric access time (see Table I). The read and write
functions are carried out in the cell units, while erase is
performed in block units. Updating the existing data in
flash memory is performed via out-place policy rather

than in-place updating. The updated data is stored into a
new cell while its original cell is set as garbage.
Therefore, as shown in Fig. 2, the cells in flash memory
are separated into three categories namely, 1) Free, 2)
Valid, and 3) Invalid. A free cell is an empty cell ready to
store new or updated data. A valid cell contains the recent
version of the data while an invalid cell contains an
obsolete or “dead” data. As pointed out by Chou and Liu
[13], blocks in the memory array can be categorized as
either active or inactive. An active block refers to block
that contains valid cells while blocks containing either
free or invalid cells are referred to as inactive.

TABLE I.
FLASH MEMORY PROPERTIES

Notation Specification Value
p Cell size 2 KB
b Block size 128 KB
K Cells per block 64
B Number of blocks 8192
Rt Read access time in µs (10-6) 25 µs
Wt Write/program access time 200 µs
Et Erase access time in ms (10-3) 1.5 ms

Power consumption (Volts) 2.7 – 3.6
Size (h X w X d) (mm) 12 x 20 x 1.2
Noise ~ 0 db
Block endurance (erase and write) 100 K

B. Cleaning process in flash memory
As illustrated in Fig. 2, the cleaning process in flash

memory is realized in three steps. Firstly, a victim block
is determined. Then, all valid data residing in the block
are identified and copied out into free cells in other
blocks. Finally, the victim block is erased.

Figure 2: The three phases in cleaning process.

Several block cleaning algorithms that ensuring the
wear-leveling policy have been proposed [1], [3], [7], [8],
[9], [10], [15], [16], [19], and [25]. Two main goals of the
algorithm are minimize the cleaning cost and wear down
all blocks evenly. Wu and Zwaenepoel [20] proposed a
simple algorithm called the Greedy (GR). The GR
algorithm selects a single victim block with the lowest
utilization level each time the cleaning process is

JOURNAL OF COMPUTERS, VOL. 7, NO. 3, MARCH 2012 811

© 2012 ACADEMY PUBLISHER

performed. Kawaguchi et al., [6] proposed cost-benefit
(CB) algorithm where active block with a maximum
value resulting from (1) is elected for cleaning.

 ((a x (1 – u))/2u) (1)

The elapsed time from last data invalidation is
represented by a while u refers to block utilization level.
Chiang and Chang [8] proposed the cost age time (CAT)
algorithm to select victim blocks and the dynamic data
clustering (DAC) reorganization technique to lessen
number of block erasures. Active blocks that have
minimum value resulting from (2) are chosen as the
victim blocks.

 (u/1 – u) x (1/a) x e (2)

Then, the valid data are re-organized into new blocks
according to their updating frequency. Moreover, this
algorithm considers the wear-leveling issue by
considering the number of times the block has been
erased (denoted by e) where blocks with fewest erasure
counts have priority. Han et al. [17] proposed the cost age
time with age sort (CATA) algorithm that combines
between the CAT and the age-sort algorithm which is
inherited from the log-file structure (LFS) [10]. The
blocks that maximize (3) are chosen for erasure.

 (1 – u/1 + u) x a x 1/e (3)

Kwon et al. [21] and [22] proposed the EF-Greedy and S-
Greedy algorithms by extending the GR algorithm. The
victim blocks are selected based on the GR algorithm and
the valid data residing in the blocks are copied into new
blocks using the predicted inter-update (PIU) time and
the swapped-out time (SOT) information. Moreover, the
wear-leveling policy is considered in both algorithms.

C. Data allocation in flash memory
Data allocation in flash memory deals with the

problem of deciding the block location due to out-place
updating policy characteristic. The allocation scheme that
requires lowest amount of active block will minimize the
probability of blocks to be erased during the cleaning
process. Several data allocation schemes with the aim of
minimizing the amount of active blocks have been
proposed in [13] and [14]. The details of the existing data
allocation schemes are summarized in Table II.

TABLE II.
DATA ALLOCATION SCHEMES IN FLASH MEMORY

Schemes Method Parameter
 First Come First Serve
(FCFS) On-line Appearance position (t)

First Re-Arrival First Serve
(FRFS) Off-line Re-appearance position (r)

Online First Re-Arrival First
Serve (OFRFS) On-line

Prediction of previous data
appearance position
history

Hybrid Online (HO) On-line Hybrid between OFRFS
and FCFS

Best Match (BestM) Off-line
Length between the
appearance time and first
re-appear time

Two categories of data allocation schemes in flash
memory are: 1) On-line, and 2) Off-line. The on-line
scheme maps each data that appears in an access pattern
(AP) into a free cell in a proper block at the time the data
is accessed. The AP refers to a string of data involved in
the storing and updating processes since both functions
affect the cell state. On the contrary, the off-line scheme
delays the allocation until all information in the AP is
analyzed and the scheme results in minimum number of
active blocks to be allocated. However, it needs
knowledge of the entire information of the data in the AP.
Thus, it is not suitable for time constraint applications.
Moreover, the issue regarding the wear-leveling policy
has been neglected in most allocation schemes. For
instance, the block condition (such as the erasure count)
is not taken into consideration when performing the
allocation.

To increase the cleaning performance, however, there
is no collusion between the data allocation scheme and
the cleaning algorithm at the initial stage of the I/O
operations. The data allocation schemes focus on
minimizing the active block requirement by increasing
the automatic cleaning process. Conversely, the cleaning
algorithms try to reduce the semi-automatic cleaning. The
automatic cleaning is being commenced when a particular
active block turns into inactive state. Since, there is no
valid data copying process, the block can be erased in the
background during execution of the current operations
(read or write) from/into the memory array. On the other
hand, the semi-automatic cleaning is commenced when
the memory array free spaces reach a certain threshold
level. It is applied exclusively for the existing active
blocks in the memory array with least utilization. Since
the blocks contain valid data, the current operation to the
memory array is temporarily halted. It is resuming back
when the cleaning ended and the access time required is
inconsistent. Equation (4) below shows the function used
to clean n active blocks with difference utilization level.

 (1 – u/1 + u) x a x 1/Et (4)

Due to these facts, we are motivated to combine the data
allocation scheme and block cleaning algorithm in order
to guarantee the cleaning process performance. We
propose an efficient data allocation step that considers the
distribution pattern of the data in the AP and the block
condition when performing the allocation.

III. EFFICIENT DATA ALLOCATION SCHEME IN FLASH
MEMORY

A. Data accessing architecture in flash memory
Fig. 3 illustrates the basic data allocation architecture

in flash memory. The architecture consists of two main
components, namely: 1) Data access screening, and 2)
Allocation algorithm. The data access screening
percolates two common accessing types in the memory
array, either data storing (write or update) or data
retrieving (read). Contrary, the allocation algorithm
performs the allocation procedure for the accessed data,
either writing new data or updating existing data.

812 JOURNAL OF COMPUTERS, VOL. 7, NO. 3, MARCH 2012

© 2012 ACADEMY PUBLISHER

Figure 3: Data allocation architecture in flash memory.

The allocation algorithm is the main part of the
architecture. There are three procedures in the allocation
algorithm, which are: 1) Interpreter, 2) Allocator, and 3)
Cleaner. The interpreter elucidates the condition of the
accessed data as being either popular or unpopular. The
allocator is responsible for mapping the accessed data
into a free cell in a particular block. Firstly, the allocator
will generate the block ID. Then, it will map the accessed
data into a first free cell in the block ID. After storing the
data, the cell state where the data is stored is changed into
valid state. For the data updating process, the updated
data is stored into a new free cell while the cell
containing the original data is set to an invalid state. The
cleaner refers to the cleaning process that will be initiated
automatically by the system software. If the block in the
memory array turns from active to inactive, the block is
erased automatically. Otherwise, the cleaning algorithm
is invoked when a certain threshold pertaining to device
free space is reached.

B. Frequency-based (FB) scheme
We present the FB scheme that takes into account the

frequency of the data in the AP and the block
circumstances when performing the allocation. The FB
scheme is managed by the frequency() mechanism in the
interpreter procedure. The appearance of data in the AP is
autonomous because it is independently accessed by the
users. Since its appearance is solely influenced by user
access behaviors, the information regarding the particular
data within a particular access interval in the AP is
insufficient. Entirely depending on previous access
information is not enough to establish the popularity of
the data. The information gathered may become the final
(data may appear only once in the AP). Besides,
particular data may appear frequently at certain intervals
within the AP (for instance, beginning, middle or ending
parts of the AP).

For example, as illustrated in Fig. 4, data b only
appears once at t and it may be the final appearance.
However, after the p interval access, the data may appear
again and again. Therefore, the accurate approach to
determine the data popularity is by continuously
calculating its appearance frequency throughout the AP.
The reason is the current frequency can be used as an

estimate of the probability of specific data being accessed
in the AP. Data with higher frequency is more likely to be
accessed than data with lower frequency. Therefore, in
the FB allocation scheme, the allocation for each data is
according to its current appearance frequency. The data
that has particular range of frequency are stored into
different blocks in the memory array. The intuition of
using the appearance frequency in storing the data is that
we want to ensure particular blocks are not in the active
state for the whole allocation process, which is a problem
found in the FCFS scheme. We try to ensure that the
blocks turn into inactive state as early as possible and
they can be cleaned without the need to wait for the usual
cleaning process. Therefore, when a particular turns into
an inactive state (where it previous state is active) earlier
and when the cleaning process is required, the number of
active blocks involving in the cleaning process could be
reduced. Hence, the cleaning cost required for copying
the valid data could be minimized.

Figure 4: The inconstant data appearance in the AP.

Unlike the existing allocation schemes, firstly, the FB
allocation scheme partitions the B blocks in the memory
array into three clusters, namely, 1) Cold (denoted by
Fcold), 2) Warm (denoted by Fwarm), and 3) Hot (denoted
by Fhot). The cold block specifically stores the first
appearance of each unique data in the AP while the hot
block cluster stores the regularly appearing data. The
remaining blocks are allocated for the warm cluster. We
use the relative standard deviation of each data (denoted
by R(pi)) to classify the frequency of the data in the AP
into the three main clusters. It is employed since it can
forecast the regularity of the data that fall into a specific
period of access time interval. Equation (5) shows the
function that calculates the R(pi):

 R(pi) = 100 x s(pi) / x(pi) (5)

where s(pi) is the standard deviation of data pi while the
mean value is denoted by x(pi). The R value for each data
in the AP is expressed as a percentage representation.
After obtaining the R(pi) values, the minimum and the
maximum among the evaluated values are determined in
order to find the range of the access interval. The
minimum value indicated by RMIN reveals the data that
emerge frequently while the maximum value referred to
as RMAX, reveals data that appear infrequently in the AP.
Before that, the middle of the R(pi), denoted by Rmedian is
determined. Regularly appearing data are situated in the
range 0 ≤ R(pi) < RMIN while the data that appears
irregularly fall in the range Rmedian ≤ R(pi) ≤ RMAX. For the
middle regularity, the data relative standard deviation fall
in the range RMIN ≤ R(pi) < Rmedian.

Then, by taking the average of the regularity of
appearance of the data in the AP, the blocks in the
memory array are partitioned according to the following

JOURNAL OF COMPUTERS, VOL. 7, NO. 3, MARCH 2012 813

© 2012 ACADEMY PUBLISHER

fractions; Fcold = 25%, Fhot = 55% and the remaining 20%
are allocated for Fwarm. The sequence of these partitions in
the memory array is in sequential order. In the FB
scheme, we will allocate the first appearance of each
unique data in the AP into the cold block cluster. For the
second and the further appearance, the data is stored into
the warm and hot block clusters according to their
appearance frequency in the AP.

C. FB scheme illustration
Assume the AP is a, b, c, d, a, b, c, b, a, a, d, b, d, a, d,

d, and number of blocks and cells (B and K are 4). The
blocks are denoted as b0, b1, b2 and b3. A single block is
allocated for both Fcold and Fwarm while the remaining two
blocks are allocated for Fhot. Thus, the block ID for Fcold
and Fwarm is b0 and b1, respectively, while b2 and b3 are
allocated for Fhot. The first and the second appearance of
each unique data in the AP are allocated into the Fcold and
Fwarm blocks. We assume the popular data with an
appearance frequency of three times or more (y ≥ 3). Fig.
5 gives an example of FB allocation scheme.

Figure 5: Example of the FB scheme where B and K are 4

From (a) to (p), data in the AP is allocated according
to its present frequency. The first four data in the AP are
the first appearance in the AP, therefore, from (a) to (d),
the data are stored sequentially into the first free cell in
block b0. Block b0 turns into active and it is inserted into
the list and the active block now is set to 1. In (e), data a
re-appears for the second times and it is allocated into the
first cell (c0) in block b1 while it first appearance in block
b0 is set to invalid. Since block b1 turns into active state,
active block now is increased to 2. Both in (f) and (g), the
data appear for the second time and are stored into the
free cell in block b1, while their first appearances are set
to invalid. In (h), data b reappears for the third time and is
stored into the first free cell in the first block in the Fhot
cluster. Again, since block b2 turns into active state and
then inserted into the list, the active block is increased to
3. Next, when data d reappears for the second time in (k),
it is stored into the first free cell in the available blocks in
cluster Fwarm. At the moment, cell c3 in block b1 is free

and the data is stored into the cell. When its previous
appearance (first appearance) in cell c3 at block b0
changes into invalid state, block b0 turns into inactive
state. The block is erased and its ID is removed from the
active block list. Thus, the amount decreases to 2. In (m),
the active block amount is increased back to 3 because
block b3 is used to store the third appearance of data d in
the AP when block b2 is fully occupied. The block ID is
inserted into the list and the subsequent data in the AP,
where their appearance is greater than 3 is stored
sequentially in the block. At the end, the maximum
number of active blocks required to store the data in the
AP is 3.

IV. EXPERIMENTAL SETUP AND RESULT

A. Simuation model and parameters.
We evaluate the PB scheme by means of computer

simulation. The performance of the PB scheme is
compared with the existing allocation schemes FCFS,
FRFS, OFRFS, HO and BestM in terms of the amount of
active block requirement. This simulation model was
programmed using the CSIM discrete-event simulation
software [23]. The actual technical specifications of the
experimental environment are summarized in the Table
III.

TABLE III.
SIMULATION ENVIRONMENT AND EVALUATION PARAMETERS

Configuration Specification

Hardware
CPU: Intel Pentium IV (Dual Core) 1.6 GHz
RAM : 4 Gbytes
HARD DISK: 120 Gbytes

Operating System Microsoft Windows XP Professional

Simulation tools

CSIM 18
Programming tool: Borland C++ V. 5.02
Compiler: Borland C++ IDE (cppbc5)
Components:

1. Processes
2. Facilities
3. Storages

Flash memory
specification As shown in Table I.

Three distinct components in CSIM, called, 1) Process,

2) Facility and 3) Storage are utilized in simulating the
actual I/O operations in the flash memory system. The
process component is a necessary component used to start
the simulation. The facility is responsible to model the
process request service from within the simulation. The
request is accessed through an input file. Thus, to make it
simpler, we adopt the M/M/1 queue, a single queue and a
single server approach in serving the accessed file data in
the AP. To make the simulation executed on a real flash
memory device, we employ the storage component in
CSIM. Since the blocks and cells can be represented in
two dimensional arrays, we use the storage sets procedure
and initialize the array of storages statement as
storage_set(flash, “set”, K, B). Parameter B represents
number of blocks, while parameter K represents number
of cells per block. The individual cell unit is accessed as
an element of array.

814 JOURNAL OF COMPUTERS, VOL. 7, NO. 3, MARCH 2012

© 2012 ACADEMY PUBLISHER

The tracing file downloaded from Flash-Memory
Research Group, National Taiwan University [26] as the
workload in the experiments. The tracing file was
recorded from a real system running I/O operations in
disk sub-systems. The characteristic and the description
of the tracing file are given in Table IV. The files were
collected over 30 consecutive days using a personal
computer running several general applications. The
applications include Web browser (KKman, Firefox),
P2P software, Windows Media Player, PowerPoint,
Word, Acrobat Reader, and Outlook. In order to clarify
the information displayed in Table IV, assume G = {1, 1,
4, 5, 2, 1, 2, 4, 5, 5} to be a sample of the AP. The size of
sample (N) is 10, whereas the number of unique data (n)
is equals to 4.

TABLE IV.
TRACING FILE ATTRIBUTES

Data Sample Size
 (N)

Data
(n)

Lowest
frequency

Highest
frequency

A set 1 45258 12948 1 4780
set 2 296182 103021 1 11228

B. Experiment results
The primary performance metric in this analysis is the

amount of active blocks required in realizing the data
storing and updating processes for the accessed data in
the AP. The lowest amount of active blocks corresponds
to a lower overhead for the cleaning process since the
number of blocks involved in is minimized. Fig. 7
illustrates the evaluation result for the amount of active
blocks required for the tracing file. The relationship
between the access time of the data in the tracing files
during the I/O operation and the average number of active
block in realizing the storing and updating the data are
presented in the figures.

As can be seen in the figures, the FCFS performs
inferior as compared to other existing online allocation
algorithms. On the other hand, the BestM results in the
lowest amount of active blocks required for tracing all the
files. For the tracing file, we found the average number of
requested active blocks in realizing the updating process
for FB scheme is lower than the existing online allocation
algorithms, the FCFS, the OFRFS, and the HO. We use
the frequency of appearance for each data that appears in
the AP as the main measurement in determining the
locations in the memory array.

In general, the FB scheme requires less active blocks
than the probability-based (PB) allocation scheme, where
the gap for both schemes does not see so obvious. The PB
scheme allocates the accessed data in the AP according to
the popularity factor. The popularity of the data in this
scheme follows the Zipf’s distribution Law. For example,
the gap between both algorithms is very small at the
initial stage of the access time (almost similar). However,
in the middle of the access, both algorithms consume
more blocks than the HO at 12.01 pm (see Fig. 7a) and
12:56 pm (see Fig 7b). Then, the amount of active blocks
begin to decrease when the access time increases and the
gap between both FB and PB has become more obvious

at the end of the access pattern. On average, the FB
requires approximately 8% less active blocks than PB
scheme.

a) Set 1

b) Set 2

Figure 6: The average number of active blocks for different allocation
schemes on Data A

C. PB scheme with block cleaning algorithms
We emphasize the importance of combining the FB

allocation scheme with the existing cleaning algorithm in
serving the accessed I/O operations. Efficient
management between both procedures will achieve the
goals of the cleaner in guaranteeing the performance of
flash memory as storage sub-systems. The cleaning costs
required for both conditions are totally different.

There are two categories of cleaning process in flash
memory: 1) Automatic, and 2) Semi-automatic. The
automatic cleaning is associated with the allocation
scheme while the semi-automatic is employed by the
block cleaning algorithm. Although the automatic
cleaning requires constant access time (Et), the cost is
associated with the efficiency of the data allocation
scheme. The allocation scheme that can cluster the
invalid data into a similar block is able to quickly turn an
active block into inactive state. Thus the block can be
erased in the background without requiring any copying
cost and delaying the current I/O operations. Therefore, if
many automatic cleaning occurs during the data
allocation process, the amount of active blocks needs to

JOURNAL OF COMPUTERS, VOL. 7, NO. 3, MARCH 2012 815

© 2012 ACADEMY PUBLISHER

be cleaned during the semi-automatic process can be
reduced. For that reason, the cleaning cost is reduced.

From the results shown in the Table V through X,
several features can be summarized. First of all, both off-
line allocation schemes FRFS and BestM require the
largest amount of automatic cleaning compared to the
online allocation schemes. For all block cleaning
algorithms, both FRFS and BestM have similar amount of
automatic and semi-automatic cleaning, approximately
85% and 12% on average. Since the allocation on these
off-line schemes is decided after all accessed data are
analyzed, the amount of active block involved when the
cleaning process is initiated is smallest compared to the
off-line allocation schemes.

TABLE V.
ALLOCATIONS WITH CAT CLEANING ALGORITHM

Allocation schemes Automatic
cleaning

performed (%)

Semi-automatic
cleaning

performed (%)
FCFS 44 56

OFRFS 47 53
HO 52 48
PB 56 44
FB 57 43

FRFS 84 16
BestM 86 14

TABLE VI.
ALLOCATIONS WITH CB CLEANING ALGORITHM

Allocation schemes Automatic
cleaning

performed (%)

Semi-automatic
cleaning

performed (%)
FCFS 43.5 56.5

OFRFS 45.5 54.5
HO 54.3 45.7
PB 58 42
FB 53.5 46.5

FRFS 86.5 13.5
BestM 86 14

TABLE VII.
ALLOCATION WITH GR CLEANING ALGORITHM

Allocation schemes Automatic
cleaning

performed (%)

Semi-automatic
cleaning

performed (%)
FCFS 42 58

OFRFS 47.6 52.4
HO 54 46
PB 55.6 44.4
FB 57.5 42.5

FRFS 85.67 14.33
BestM 87.5 12.5

TABLE VIII.
ALLOCATION WITH CATA CLEANING ALGORITHM

Allocation schemes Automatic
cleaning

performed (%)

Semi-automatic
cleaning

performed (%)
FCFS 44 56

OFRFS 46.5 53.5
HO 54 46
PB 58.5 41.5
FB 52.5 47.5

FRFS 86.8 13.2
BestM 89.5 10.5

TABLE IX.
ALLOCATION WITH EF-GR CLEANING ALGORITHM

Allocation schemes Automatic
cleaning

performed (%)

Semi-automatic
cleaning

performed (%)
FCFS 41 59

OFRFS 47.7 52.3
HO 55.5 44.5
PB 54.6 45.4
FB 58.9 41.1

FRFS 86.5 13.5
BestM 87.9 12.1

TABLE X.
ALLOCATIONS WITH S-GR CLEANING ALGORITHM

Allocation schemes Automatic
cleaning

performed (%)

Semi-automatic
cleaning

performed (%)
FCFS 43 57

OFRFS 49 51
HO 56.9 43.1
PB 55.6 44.4
FB 58.7 41.3

FRFS 85.1 14.9
BestM 86.5 13.5

There were slight increases and decreases between

automatic and semi-automatic cleaning procedures in the
on-line data allocation schemes, including our proposed
FB scheme. Roughly, we can discover that there is a huge
jump in the amount of semi-automatic cleaning for FCFS
allocation scheme for all victim block selection
algorithms. Among the on-line allocation schemes, the
OFRFS records a little distinction between both cleaning
procedures. The automatic erasure rate for PB and FB is
between 52% and 59%, while for FCFS, OFRFS and HO,
the erasure rate is between 38% - 44%, 45% – 48%, and
46% – 58%, respectively. Next, among the victim block
selection algorithms, the CB algorithm requires the
highest amount of block erasures while the EF-GR and S-
GR algorithms (which are enhanced from the GR
algorithm) record the lowest erasure amounts.

In all, the off-line allocation scheme requires the
lowest erasure amount although the amount of automatic
cleaning is the highest. Our proposed FB allocation
schemes have shown that block erasures can be
minimized and the cleaning cost could be reduced in
comparison to the existing victim block selection
algorithms. Hence, the analysis has shown and confirmed
the efficient allocation scheme can minimized the
cleaning cost requirement and increase the cleaning
process performance.

V. CONCLUSION

Flash memory is becoming a popular data storage
device in most electronic mobile devices. Several reasons
that make it become popular include small size and light
weight nature, less noise, solid-state reliability, low
power consumption, and better shock resistant. However,
it has limitations due to operational characteristic which
can indirectly affect the performance of its superior
features.

816 JOURNAL OF COMPUTERS, VOL. 7, NO. 3, MARCH 2012

© 2012 ACADEMY PUBLISHER

In this paper, the proposed the FB allocation scheme is
used to reduce the amount of active blocks in realizing
the storing and updating of accessed data. Our scheme
takes into account the data appearance frequency in AP
while performing the allocation decision. The data with
higher frequency are allocated into a similar cluster of
blocks. By allocating the data into different cluster of
blocks, the period for such block to be in the active state
during the whole allocation process is reduced. The main
idea of using this approach is to minimize the period of
each block being in an active state. This can cause the
block to become inactive earlier, thus minimizing the
number of active blocks. We also showed the
combination between data allocation scheme and the
block cleaning algorithm. By combining both processes,
there is significant improvement on the cleaning process
performance. The evaluation performance has shown the
relationship between both processes is necessary in
guaranteeing flash memory efficiency as storage sub-
systems. In this research, we perform the allocation
together with the proposed cleaning process on a single
memory chip. However, the memory chips can be
packaged as a single storage device that can hold
enormous capacity. Therefore, for the future research
direction, we plan to extend the allocation scheme and the
cleaning process among the multiple chips. By extending
the studies, issues on striping can be utilized in order to
increase the performance of the flash memory.

ACKNOWLEDGMENT

The authors wish to thank the reviewers for their
constructive comments and suggestions helped to
improve this paper. We would also like to thank
University Putra Malaysia and University Sains Malaysia
for providing technical assistance.

REFERENCES

[1] L. Chang, and T. Kuo, “An efficient management scheme
for large-scale flash-memory storage systems,”
Proceedings of the 2004 ACM Symposium on Applied
Computing, SAC '04, Nicosia, Cyprus, pp. 862-868, 2004.

[2] M. Breeuwsma, M.d. Jongh, C. Klaver, R.v.d. Knijff, and
M. Roeloffs, “Forensic data recovery from flash memory,”
Journal of Small Scale Digital Device Forensics, vol. 1,
pp. 1-17, June 2007.

[3] G. Lawton, “Improved flash memory grows in
popularity,” Computer, vol. 39, pp. 16–18, January 2006.

[4] F. Douglis, R. Caceres, F. Kaashoek, K. Li, B. Marsh, and
J.A. Tauber, “Storage alternatives for mobile computers,”
Proc. 1st Symp. Operating Systems Design and
Implementation (OSDI), Monterey, CA, USA, pp. 25 – 37,
November 1994.

[5] Memory Technology Devices, http://www.linux-
mtd.infradead.org/doc/nand.html.

[6] A. Kawaguchi, S. Nishioka, and H. Motoda, “A flash-
memory based file system,” Proceedings of 1995 USENIX
Annual Technical Conference, pp. 155-164, 1995.

[7] E. Gal and S. Toledo, “A transactions flash file system for
microcontrollers,” Proceedings of the 2005 USENIX
Annual Technical Conference, pp. 89-104, 2005.

[8] M.L. Chiang and R.C. Chang, “Cleaning policies in mobile
computers using flash memory, “Journal of Systems and
Software, vol. 48, pp. 213-231, November 1999.

[9] L.-P. Chang, “On efficient wear leveling for large-scale
flash-memory storage systems,” Proceedings of the 2007
ACM symposium on Applied computing, Seoul, Korea,
pp. 1126 -1130. 2007.

[10] M. Rosenblum and J. K. Ousterhout, “The design and
implementation of a log-structured file system”, ACM
Transactions on Computer Systems, vol. 10. pp. 26-52,
1992.

[11] NAND vs. NOR flash technology,
http://www2.electronicproducts.com/NAND_vs_NOR_flas
h_technology-article-FEBMSY1-FEB2002.aspx.

[12] K9K8G08U1A & K9F4G08U0A_Data Sheet for 512M Bit
and 1G Bit NAND Flash Memory SAMSUNG.

[13] L.-F. Chou and P. Liu, “Efficient allocation algorithms for
flash file systems,” 11th International Conference on
Parallel and Distribution Systems, pp. 634-641, 2005.

[14] P. Liu, C.–H. Chuang, and J.–J. Wu, “Block-based
allocation algorithms for flash memory in embedded
systems”, PaCT 2007, pp. 569–578, 2007.

[15] Chang, L.P. Kuo, T.W. and Lo, S. W. “Real-time garbage
collection for flash-memory storage systems of real-time
embedded systems,” ACM Transactions on Embedded
Computing Systems, vol 3. pp. 837 – 863. 2004.

[16] Chang, Y.H. Hsieh, J.W. and Kuo, T.W. “Endurance
enhancement of flash-memory storage systems: An
efficient static wear leveling design,” Proceedings of 44th
ACM/IEEE Design Automation Conference (DAC 2007),
pp. 212 – 217. 2007.

[17] L.-Z. Han, Y. Ryu, T.-S. Chung, M. Lee, and S. Hong, “An
intelligent garbage collection algorithm for flash memory
storages,” ICCSA 2006, pp. 1019-1027, 2006.

[18] Chang, L.P. and Kuo, T.W. “Efficient management for
large-scale flash memory storage systems with resource
conservation. ACM Transactions on Storage, vol. 1. pp.
381 – 418, 2005.

[19] Lee, C. Baek, S.H. and Park, K.H. “A hybrid flash file
system based on NOR and NAND flash memories for
embedded devices,” IEEE Transactions on Computers.
vol. 57, no. 7, pp. 1002 – 1008, 2008.

[20] Wu, M. and Zwanepoel, W. “eNVy: a non-volatile, main
memory storage system,” Proceedings of the 6th
International Conference on Architectural Support for
Programming language and Operating Systems, Oct. 5 – 7,
San Jose, California, pp. 86 –97, 1994.

[21] Kwon, O. Lee, J. and Koh, K. “EF-Greedy: a novel
garbage collection policy for flash memory based
embedded systems,” Proceedings of International
Conference on Computational Science (ICCS 2007),
Beijing, China, pp. 913 – 920, 2007.

[22] Kwon, O., Ryu, Y. and Koh, K. “An efficient garbage
collection policy for flash memory based swap systems,”
Proceedings of International Conference on Computer
Science and Applications (ICCSA 2007), Oct. 24-26, pp.
213 – 223, 2007.

[23] CSIM Users’ Guide,
http://www.cstp.umkc.edu/public/courses/cs522/notes/csim
_users_doc.pdf.

[24] Lee, S.W., Moon, B., Park, C., Kim, J.M. and Kim, S.W.
“A case for flash memory SSD in enterprise database
applications,” Proceedings of 28th ACM SIGMOD/PODS
International Conference on Management of Data /
Principles of Database Systems, Vancouver, BC, Canada,
pp. 1075 – 1086, 2008.

JOURNAL OF COMPUTERS, VOL. 7, NO. 3, MARCH 2012 817

© 2012 ACADEMY PUBLISHER

[25] Jang, K.H. and Han, T.H. “Efficient garbage collection
policy and block management method for NAND flash
memory,” Proceedings of 2nd International Conference on
Mechanical and Electronics Engineering (ICMEE2010),
Aug. 1-3, Kyoto, Japan. pp. V1-327-V1-331, 2010.

[26] A trace of application executions over Windows XP,
http://newslab.csie.ntu.edu.tw/~flash/index.php?SelectedIt
em=Traces.

[27] Caulfield, A., Grupp, L., and Swanson, S. “Gordon: An
Improved Architecture for Data-Intensive Applications,”
IEEE Micro, vol. 30, pp. 121 – 130, 2010.

A.R. Rahiman received the B.S degree
in Computer Science from University
Putra Malaysia (UPM) in 2000 and the
M.Sc and Ph. D degrees in Computer
Science from University Teknologi
Malaysia (UTM), and University Sains
Malaysia (USM), Malaysia in 2004 and
2011, respectively. Currently, he is
lecturer at Faculty of Computer Science

and Information Technology, UPM. His research interests
include multimedia applications, e-learning solution, flash-
based storage systems, and multimedia storage systems.

P. Sumari received the M.Sc. and Ph.D
degrees in 1997 and 2000 from Liverpool
University England. Join USM and
attached to the School of Computer
Science USM Penang in 2000. Currently
he is Associate Professor at Multimedia
Research Group (MRG) and his research
interests are image/video compression,
storage and retrieval, image

watermarking, image cryptography, video on demand system,
and multimedia storage server.

818 JOURNAL OF COMPUTERS, VOL. 7, NO. 3, MARCH 2012

© 2012 ACADEMY PUBLISHER

