
Adaptive Capacity Sharing through Probabilistic
Controlled Placement

Xianju Yang

National University of Defense Technology, Changsha, China
Email: xianjuyang@nudt.edu.cn

Peixiang Yan

National University of Defense Technology, Changsha, China
Email: peixiangyan@gmail.com

Jiang Jiang

National University of Defense Technology, Changsha, China
Email: jiangjiang@nudt.edu.cn

Minxuan Zhang

National University of Defense Technology, Changsha, China
Email: mxzhang@nudt.edu.cn

Abstract—As capacity demands vary among simultaneously
executed threads in chip multiprocessors, dynamically
managing cache resources according to the run-time
demands is effective to improve L2 cache performance.
Differed from existing dynamic cache management schemes
based on LRU replacement policy, we propose an adaptive
capacity sharing mechanism based on a global reuse
replacement policy. This mechanism adopts decoupled tag
and data arrays, and partitions the data arrays into private
and shared regions. Capacity sharing is accomplished by
determining whether to place the incoming data into the
private data region or into the shared data region, which is
controlled by probabilities. Our mechanism includes: (1) A
VMON monitor to predict run-time capacity demands. (2) A
PCS algorithm to determine the probabilities. (3) A
probabilistic controlled placement scheme to enforce
capacity sharing. We evaluated our mechanism with a full
system simulation of an 8-core CMP and used parallel
programs from PARSEC benchmark suite. We found that
with the same total L2 cache capacity, our mechanism
exceeds the conventional private cache managed by LRU
policy, the private cache without sharing managed by reuse
replacement policy, and an existing adaptive sharing scheme
based on LRU policy.

Index Terms—Chip Multiprocessors, Capacity Sharing,
Reuse Replacement.

I. INTRODUCTION

Leveraging the ever broadening speed gap between
processor and memory, performance of on-chip cache
hierarchy is significant for further improvement of system
performance. Development of CMP (Chip Multi-
processors) imposes great stress on L2 cache hierarchy,
as multiple threads are simultaneously executed. In CMP,
L2 caches are usually organized in private or shared

styles. With the same capacity, private cache organization
has advantages of low access latency, flexible scalability
and convenient performance isolation, while shared cache
organization is benefit from large available capacity and
simple consistency maintenance. As capacity demands
vary greatly among programs and within programs,
private cache organization suffers from limited available
capacity, and shared cache organization confronts with
malignant interference. Addressing these problems,
capacity sharing [1]-[7] and partitioning [8]-[11]
techniques become hot topics recently. We focus on
capacity sharing based on private cache organization in
this paper.

Existing capacity sharing mechanisms are based on
LRU replacement policy. However, LRU policy is
challenged by global replacement policies [12]-[14] in L2
caches. LRU policy picks out victims inside cache sets
based on temporal locality and the locality of L2 accesses
is weakened by the filter of L1 caches. Global
replacement strategies are less restricted by the temporal
locality within sets. Reuse replacement proposed in ref.
[13] records the reuse counts of each data entry and
sequentially search a data entry with zero reuse counts for
eviction. As reuse replacement policy offers better
resource utilization compared with LRU policy, we use
reuse replacement to manage private L2 caches.

Based on reuse replacement policy, we propose a
probabilistic controlled sharing mechanism, named PCS.
PCS specifies part of data arrays as private and others as
shared, and it employs probability to determine the
frequency to place incoming data into the shared data
region. We assign high probabilities to cores with stress
capacity demands and dynamically adjust these
probabilities according to the monitored memory
demands. The main components of PCS mechanism are:

1236 JOURNAL OF COMPUTERS, VOL. 7, NO. 5, MAY 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jcp.7.5.1236-1243

• A VMON monitor. Using a buffer to track
recently evicted blocks of each core, run-time
capacity demands are predicted by counting the
number of cache access hits in the buffer.

• A PCS algorithm. According to the capacity
demands predicted by VMON, PCS algorithm
decides whether to promote or demote
probabilities of each core.

• A probabilistic controlled placement scheme.
Cores with higher probabilities will obtain more
resources.

In our experiments, PARSEC benchmark suite [15] is
used. PCS reduces the average L2 cache miss rate by
43.05% upon a conventional private LRU policy
managed cache, by 8.70% upon a private reuse
replacement policy managed cache, and by 16.42% upon
an existing adaptive sharing mechanism.

The remainder of this paper is organized as follows.
Section II illustrates PCS mechanism and section III
introduces its implementation. We discuss our
experimental methodology in section IV and present our
results in section V. Section VI describes the related work
and section VII concludes the paper.

II. PROBABILISTIC CONTROLLED SHARING MECHNISM

A. Architectural Support
An 8-core CMP platform with private L2 caches

managed by reuse replacement policy is depicted in Fig.
1. Dynamically allocating data entries to tag entries, tag
and data entries are decoupled and linked by bi-
directional pointers. The tag arrays are expanded as the
total number of tag entries is larger than that of data
entries. We partition the data arrays into private regions P
and shard regions S, and then link all S to form a shared
data region sData. Besides, PCS contains a VMON and a
DAE (Data Access Engine). VMON monitors the run-
time capacity demands and DAE decides which data
region to access (P or sData).

Shown in Fig. 1, each tag entry includes tag, status,
address of the corresponding data entry d_ptr and data
region flag s. Excepting data, each data entry contains
reuse count reuse, address of the tag entry t_ptr and valid
bit v. For data entries in S, core identification id is
appended. When one core occurs a L2 cache access, its
tag array is searched and compared first. If the accessed
tag entry is valid, the corresponding data entry is
accessed using d_ptr and s. Otherwise, we search a data
entry for eviction in P or sData according to Prob.

B. VMON Monitor
Memory demands of cores change not only among

different programs, but also from one frame to another in
the same program. Evaluation of run-time demands is of
great importance to efficiently manage cache resources.
Existing monitoring schemes [5][8][9] are accomplished
by monitoring the tag array based on LRU replacement
policy. These schemes are not appropriate for PCS based
on reuse replacement policy mainly in two aspects. One
is that existing schemes will get more complex and

expensive when applying to PCS, as PCS varies ways in
tag sets. The other one is that monitoring from the tag
array cannot exactly reflect capacity demands, as PCS
dynamically allocated data entries to tag entries. A new
monitoring scheme named VMON is proposed in this
paper. VMON uses a buffer to track recently evicted data
blocks for each core. If one core has more hits in this
buffer, it will benefit more from increasing capacity.

In VMON, a buffer VTag is used to record tags of
recently evicted blocks for each core. Performance gain
for increasing capacity can be evaluated by the number of
accesses that missed in L2 cache but hits in VTag.
Suppose tags of recently evicted G blocks are recorded in
VTag. When a L2 access misses in core i , check if it hits
in VTagi and counts the number of hits in register
VTagHitsi during time interval T. Ideally, VTagHitsi is the
reduced L2 misses of core i when increasing its capacity
by G. If Accessi states the number of L2 accesses in core i,
then the performance gain MGi can be calculated as
shown in (1).

i

i
i Access

VTagHitsMG = (1)

Cores with higher performance gain usually have
higher capacity demands. However, VMON cannot
evaluate performance lose for decreasing capacity. As
PCS does not impose capacity decrease on cores with low
capacity demands, but weaken their capability to use the
shared resources, we simply treat cores with low
performance gain as with low capacity demands, and
believe it will have slightly influence on performance.

C. Probabilistic Controlled Sharing Algorithm
PCS implements dynamic capacity sharing among

cores by controlling the frequency to place incoming data
into the shared region. More placements in the shared
data region, more capacity will be obtained. The

Figure 1. Architectural support for PCS mechanism.

JOURNAL OF COMPUTERS, VOL. 7, NO. 5, MAY 2012 1237

© 2012 ACADEMY PUBLISHER

placement frequency is determined by an evicting
probability of shared resources, which is the probability
to evict a data entry from the shared data region for the
incoming data. For cores with higher capacity demands,
we assign them higher evicting probabilities to obtain
more shared resources. These probabilities are
dynamically promoted or demoted according to the
memory demands monitored by VMON.

Define Prob as the evicting probability of each core.
Probability sharing algorithm is described in Fig.2, where
{Prob1, …, ProbK} are different levels of probabilities
listed from low to high, {Probc} is the current evicting
probability for each core, Dec_Th and Inc_Th are
thresholds to downgrade and upgrade probabilities
respectively. These thresholds are measured by the
percentage deviating from average MG, since MG
fluctuates heavenly with different programs. If MG of one
core is beyond the AMG by Inc_Th, the evicting
probability of that core is promoted. On the other hand, if
MG of one core is below the AMG by Dec_Th, the
evicting probability of that core is demoted.

III. IMPLEMENTATION

A. Framework
Shown in Fig. 3, PCS requires software and hardware

cooperation, as PCS algorithm is implemented by OS,
capacity demands monitor and capacity sharing
enforcement is performed by hardware. Each time
interval, VMON collects information and sends it to OS.
Then, OS calculates new evicting probabilities Probc for
each core and writes them into DAE. Finally, DAE

accomplishes adaptive capacity sharing by
probabilistically placing blocks into the shared data
region.

B. Probability Controlled Placement
To enforce adaptive capacity sharing, DAE builds a

probability generator PG for each core. When a L2 cache
miss occurs and a data entry need to be evicted for core i,
PGi is launched to get a probability Pri. If Pri is not larger
than Probc

i, then the incoming block will be placed into
sData, otherwise placed into P. To utilize private
resources, incoming blocks will not be placed into sData
until P is full. Fig. 4 depicts the cache access flow in PCS
mechanism.

However, it is impractical to implement completely
probabilistic controlled placement, since PG for each core
is expensive. Instead, we use private-to-shared ratios PSR
to approximate probabilities. According to the PSR
assigned to each core, we place incoming blocks into the
private and shared data region in turn. Suppose
Probc

i=si/(pi+si), then PSRi=si/pi. We place the first si
incoming blocks into sData, the next pi incoming blocks
into P, and so on.

IV. METHODOLOGY

We use Virtutech Simics [16] to conduct our
experiments, and simulate an 8-core CMP platform with
sparc-v9 instruction set and solaris 10. A probability
controlled PCS mechanism (PS-Reuse) and a PSR
controlled PCS mechanism (PSR-Reuse) are simulated.
To evaluate them, we also simulate a LRU managed
private cache organization (P-LRU), a reuse replacement
managed private cache organization (P-Reuse) and an
existing LRU managed sharing mechanism (PS-LRU)
proposed in ref. [5]. Table I shows the basic
configurations of and different L2 cache mechanisms.
Total miss rate and throughput is used to evaluate L2

Figure 3. Description of PCS algorithm.

Figure 4. Framework of PCS mechanism.

Figure 2. L2 cache access flow for core i.

1238 JOURNAL OF COMPUTERS, VOL. 7, NO. 5, MAY 2012

© 2012 ACADEMY PUBLISHER

cache and system performance. If MRi and IPCi state miss
rate and IPC of core i respectively, these metrics can be
calculated as follows:

 ∑
−

=

=
1#

0#
1 Cores

i
isum MR

Cores
MR (2)

 ∑
−

=

=
1#

0

Cores

i
isum IPCIPC (3)

The average access latency of P-LRU is 12 cycles
evaluated by Cacti [17] under 45nm technology. If a L2
cache access hits remote cores, we do not access memory
but copy from the hit core. The average access latency for
remote hits is 18 cycles. Assume sequential tag-data
access is used for low power, the latencies of P-Reuse,
PS-Reuse and PSR-Reuse are set as the same as P-LRU.

In our experiments, the PARSEC 2.1 benchmark suite
is used. Table II describes the function of these programs
except dedup, which is excluded as it cannot run

normally due to compatibility. All programs use simlarge
input sets and have 8 threads running concurrently. Each
core runs the first 200 million instructions to skip initial
stage and warm up cache hierarchies, and then runs the
next 200 million instructions for evaluation. In all, about
3.2 billion instructions are executed for 8 cores.

V. RESULT

A. Performance Analysis
The L2 cache miss rate and total IPC of PS-Reuse and

PSR-Reuse are compared with that of P-LRU, PS-LRU
and P-Reuse. In PS-Reuse and PSR-Reuse, the private
data size is 1024 entries, the upgrade and downgrade
thresholds are both 50%, the time interval is 10 million
instructions, and VMON has 256 entries for each core by
default.

Fig. 5(a) compares the L2 cache miss rates of P-LRU,
PS-LRU, P-Reuse, PS-Reuse and PSR-Reuse. Label s1 to

TABLE II.
SIMULATION CONFIGURATION

Common

System 1 chip, 8 cores

Core Single-issue, in-order, no-branch-predictor

L1 I/D 32KB, 2-way, LRU, 64B/line, 1 cycle

Coherence Snoop based MESI protocol

Main Memory 250 cycles

Different L2 Cache Mechanisms

P-LRU Traditional private cache, LRU, 126KB/core, 2048
entries/core, 2-way, 64B/line, 12/18 cycles

PS-LRU Capacity sharing based on P-LRU, 1 way of each core
for share, 12/18 cycles

P-Reuse
Private V-Way cache, reuse replacement, 4096 tag
entries/core, 2048 data entries/core, 64B/line, 12/18
cycles

PS-Reuse
Our mechanism, sharing on P-Reuse, 64B/line, 12/18
cycles, probability controlled with step length 0.1 and
default 0.5

PSR-Reuse
Oure mechanism, sharing on P-Reuse, 64B/line, 12/18
cycles, PSR controlled with probabilities {1/3, 1/2, 3/4}
and default 1/2

TABLE I.
PARSEC PROGRAMS

Label Program Descriptions

s1 blackscholes Calculate portfolio price using Black-
Scholes PDE

s2 bodytrack Computer vision, tracks 3D pose of
human body

s3 canneal Synthetic chip design, routing

s4 facesim Physics simulation, models a human face

s5 ferret Pipelined audio, image and video
searches

s6 fluidanimate Physics simulation, animation of fluids

s7 freqmine Data mining application

s8 raytrace Computer animation application

s9 streamcluster Kernel to solve the online clustering
problem

s10 swaptions Computers portfolio prices using Monte-
Carlo simulation

s11 vips Image processing, image transformations

s12 x264 H.264 video encoder

(a) L2 Miss rate (b) IPC

Figure 5. Performance comparisons of different L2 cache mechanisms.

JOURNAL OF COMPUTERS, VOL. 7, NO. 5, MAY 2012 1239

© 2012 ACADEMY PUBLISHER

s12 represents applications and label G is the geometric
average value. The average miss rates of these five
mechanisms are 2.95%, 2.01%, 1.84%, 1.57% and 1.68%
respectively. Conclusions of these simulation results are
as following.

• Expanding capacity sharing on private
organization can improve cache performance.
The average L2 miss rate of PS-Reuse is reduced
by 46.78% compared with P-LRU and by 14.67%
compared with P-Reuse. The average L2 miss rate
of PSR-Reuse is reduced by 43.05% compared
with P-LRU and by 8.70% compared with P-
Reuse.

• Mechanisms with reuse replacement policy gain
better performance than mechanisms with LRU
replacement policy. Compared with PS-LRU, PS-
Reuse reduces the average L2 miss rate by 21.89%,
and PSR-Reuse reduces the average L2 miss rate
by 16.42%.

• PS-Reuse outperforms PSR-Reuse in L2 cache
miss rate, as PS-Reuse adopts a more flexible
random placement scheme.

The simulation results also demonstrate that reduction
in L2 cache miss rates can also improve system
performance. IPCs of P-LRU, PS-LRU, P-Reuse, PS-
Reuse and PSR-Reuse are depicted in Fig. 5(b). Their
average IPC are 2.609, 2.84, 2.946, 3.141 and 3.066
respectively. The average IPC of PS-Reuse is improved
by 20.39% upon P-LRU, 10.60% upon PS-LRU, and
6.62% upon P-Reuse. The average IPC of PSR-Reuse is
improved by 17.52% upon P-LRU, 7.77% upon PS-LRU,
and 4.07% upon P-Reuse.

B. Parameters Sensitivity
Probability levels, upgrade and downgrade thresholds,

private data size, time intervals and VMON size are five
parameters in PCS. Based on the default settings of PSR-
Reuse, we change one parameter at a time to observe its
effects on L2 miss rate.

1) Probability Levels: Standing for the opportunity to
place incoming data into the shared data region, the
probability of each core changes from 0 to 1 ideally and
must be set according to the capacity demands. If
probabilities are too high to beyond demands, blocks in
the private data region will become dead blocks as
incoming blocks are mostly placed into the shared region
and private blocks are rarely evicted. Otherwise, if
probabilities are too low to below demands, cores with
stress capacity demands are unable to obtain enough

resources. In our experiments, we randomly select
probabilities from [1/3, 2/5, 1/2, 3/5, 2/3, 3/4] to form
eight different cases and observed their influences on L2
miss rates. Probabilities are all initialized to 1/2 with
equal opportunities to use private and shared resources.
Shown in Fig. 6, it is hard to decide the optimize setting
of probability levels as memory demands vary greatly.
Generally, applications with large demand differences
among cores are benefit from coarse probability levels,
and applications with small demand differences prefer
fine probability levels.

2) Upgrade and Downgrade Thresholds: Upgrade and
downgrade thresholds influence the adjustments of
probabilities. If the upgrade threshold is too low or the
downgrade threshold is too high, probabilities tend to be
high which will cause frequent utilization of the shared
resources and induce aggravation of interferences among
cores. Otherwise, if the upgrade threshold is too high or
the downgrade threshold is too low, probabilities tend to
be low which will cause infrequent utilization of the
shared resources and cause difficulties in obtaining
enough capacity. We observe the effects of upgrade and
downgrade thresholds by changing them from 30% to
70%. It can be seen from Fig. 7(a) and Fig. 7(b) that both
upgrade and downgrade thresholds should be moderate.
In our experiments, upgrade threshold of 40% gain better
average performance. Downgrade threshold does not
affect much relative to upgrade threshold.

3) Private Data Size: Private data size is related to the
amounts of resources for sharing. Maintaining the total
size of L2 cache, the smaller the private data region, the

Figure 6. Effects of different levels of probability on L2 miss rate.

TABLE III.
EFFECTS OF ENTRIES IN VMON ON L2 MISS RATE (%)

No.(entries) s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 G

32 1.09 1.74 1.90 1.72 1.70 1.52 1.22 1.18 2.58 1.37 3.93 2.02 1.83

64 1.14 1.67 1.50 1.73 1.63 1.53 1.22 1.19 2.39 1.36 3.97 1.95 1.77

128 1.15 1.66 1.53 1.59 1.71 1.51 1.31 1.21 2.61 1.38 3.96 2.00 1.80

256 1.15 1.67 1.52 1.64 1.72 1.62 1.29 1.13 2.58 1.37 3.97 1.94 1.80

1240 JOURNAL OF COMPUTERS, VOL. 7, NO. 5, MAY 2012

© 2012 ACADEMY PUBLISHER

larger the shared data region. Proper size of private
region relies on the differences of capacity demands
among cores. Applications with large demand differences
are benefit from large shared region, and applications
with little demand differences will prefer large private
region. We compare private data size settings of 512,
1024 and 1536 entries in Fig. 8. s5, s8 and s11 get better
performance with 512 private entries, s3, s6 and s7 get
better performance with 1024 private entries, and other
applications prefer 1536 private entries.

4) Time Intervals: Time intervals should set
moderately as large time intervals will affect the
adaptability to variable memory demands, and small time
intervals do not have sufficient time to collect reliable
statistics. We compare L2 miss rates under different time
intervals of 1, 2, 3, 4, 5, 10, 15 and 20 million
instructions, shown in Fig. 9. The optimize time intervals
for each program is different, and time intervals of 10
million instructions has slightly better average
performance.

5) VMON Size: Recording recently evicted blocks to
predict capacity demands, VMON should have enough
space to hold these blocks. However, VMON size is not
bigger better for two reasons. When VMON is big
enough, more hits in VMON cannot gain better
performance for increasing capacity, as allocation of data
entries to a tag set is limited by the tag size. The other

one is that bigger VMON will induce greater area
overhead. Changing the VMON size among 32, 64, 128
and 256 entries for each core, table III shows their effects
on L2 miss rates. The setting with 64 entries achieves
better performance than other settings in our experiments.
Although the optimize settings of VMON size vary with
applications, their effects on L2 miss rate are small.

C. Storage Overhead
Expanding sharing mechanism on P-Reuse, PS-Reuse

attaches a s flag in each tag entry, an id field in each
shared data entry, and a Vtag buffer for each core.
Suppose the memory address is 64b, the line size is 64B
and the Vtag size is 64 entries. The storage cost of P-LRU,
P-Reuse and PS-Reuse are about 1126KB, 1306KB and
1324KB respectively. That is, P-Reuse increases the
storage overhead by 15.99% compared with P-LRU, and
PS-Reuse further increases the storage overhead by
1.38% upon P-Reuse.

VI. RELATED WORK

A. Capacity Sharing Techniques
There are mainly two basic ways to expand capacity

sharing based on private cache organization. One is
implemented by migrating blocks among cores [1]-[4]
and the other one is implemented by specifying shared
regions [5]-[7].

Migrating blocs among cores, Chishti et al. [1]
proposes capacity stealing technique for private blocks.
Cores with large capacity demands can place least
recently used private blocks into their neighboring cores.
Chang et al. [2] proposes CC (Cooperative Caching)
mechanism. CC employs cache-to-cache transfers of
clean data, replication-aware data replacement, and
global replacement of inactive data to form an aggregate
“shared” cache. DSR (Dynamic Spill-Receive)
mechanism [4] exploits application-level capacity
demands and SNUG (Set-level Non-Uniformity identifier
and Grouper) [3] exploits set-level capacity demands to
allow blocks migrate from cores with higher demands to
cores with lower demands.

(a) Upgrade thresholds (b) Downgrade thresholds

Figure 7. Effects of thresholds on L2 miss rate.

Figure 9. Effects of private data size on L2 miss rate.

Figure 8. Effects of time intervals on L2 miss rate.

JOURNAL OF COMPUTERS, VOL. 7, NO. 5, MAY 2012 1241

© 2012 ACADEMY PUBLISHER

Partitioning local caches into private and shared region,
Dybdahl et al. [5] uses sharing engine to control the
utilization of shared resources and dynamically adjust the
private capacity, Zhao et al. [7] attempts to provide more
hits into local slice for workloads with no sharing and
supply more sharing resources for workloads with
sufficient sharing.

This paper is the first work to exploit capacity sharing
based on reuse replacement policy. Mechanism propose
in ref. [5] is compared with our work in section V-A.

B. Global Replacement Policies
As LRU replacement policy is limited to picking out

victims inside sets, many researches are dedicated to
exploiting global replacement policies to manage L2
cache resources.

Generational replacement policy proposed in Ref. [12]
divides cache blocks into several priority groups.
Frequently accessed blocks are put into groups with
higher priority and infrequently accessed blocks are put
into groups with lower priority. Generational replacement
policy picks out blocks from the lowest priority groups.

Based on reuse counts, Qureshi et al. [13] proposes
reuse replacement policy. Reuse replacement policy
attaches a reuse counter to each cache block and
maintains a global searching pointer. The reuse counter is
initialized to 0, plused 1 for a cache access hit to that
block, and minused 1 for the searching pointer passes
through that block. When evicting a data entry, reuse
replacement policy circularly searches from the next
position of the global pointer until a block with zero reuse
counts is found.

Rajan et al. [14] separates the L2 cache into SC
(Shepherd Cache) and MC (Main Cache) to emulate
optimal replacement policy. SC adopts FIFO (First In
First Out) replacement policy and guide replacement
operations in MC.

Among them, generational replacement and reuse
replacement are more flexible than SC, as tag and data
entries are decoupled. Considering that generational
replacement is software implemented and confronts with
long latency, we use reuse replacement policy to manage
L2 cache resources.

VII. CONCLUSION

Using reuse replacement strategy to manage private L2
cache resources, we propose a probabilistic sharing
mechanism named PCS. PCS separates tag and data
arrays, and specifies a data region as shared region. All
cores can use resources in the shared data region. PCS
uses probabilities to control the utilization of shared data
resources. Cores with stress demands are assigned higher
probabilities to obtain more shared resources. According
to the run-time capacity demands monitored by a VMON
scheme, these probabilities are adjusted every time
interval. As probability generator is expensive to
implement, we uses alternately placing into private and
shared region according to a specified ratio to
approximate probabilistic controlled placement.
Simulation results with programs from PARSEC

benchmark suit show that, our mechanism reduces the
average L2 miss rate by 43.05% compared with a
conventional LRU managed private cache organization,
by 8.70% compared with a reuse replacement managed
private cache organization, by 16.42% compared with an
existing LRU based capacity sharing mechanism. System
performance is also effectively improved by our
mechanism. We plan to extend this work by balancing tag
set utilization and by developing tag sharing among cores.
Work is also underway in varying private data size with
applications.

ACKNOWLEDGMENT

This work is supported by the National Nature Science
Foundation of China under NSFC No.60970036, No.
60873016 and No.61103011, 863 Project of China under
contract 2009AA01Z124.

REFERENCES

[1] Z. Chishti, M. D. Powell, and T. N. Vijaykumar,
“Optimizing replication, communication, and capacity
allocation in cmps,” in ISCA '05: Proceedings of the 32nd
annual international symposium on Computer
Architecture. Washington, DC, USA: IEEE Computer
Society, 2005, pp. 357--368. doi:10.1109/ISCA.2005.39.

[2] J. Chang and G. S. Sohi, “Cooperative caching for chip
multiprocessors,” in ISCA '06: Proceedings of the 33rd
annual international symposium on Computer
Architecture. Washington, DC, USA: IEEE Computer
Society, 2006, pp. 264--276. doi:10.1109/ISCA.2006.17.

[3] D. Zhan, H. Jiang, and S. Seth, “Exploiting set-level non-
uniformity of capacity demand to enhance cmp cooperative
caching,” in IPDPS'10: Proceedings of the 24th IEEE
International Parallel and Distributed Processing
Symposium, 2010, pp. 1--10. doi:10.1109/IPDPS.2010.
5470441.

[4] M. K. Qureshi, “Adaptive spill-receive for robust high-
performance caching in cmps,” in International
Symposium on High-Performance Computer Architecture,
2009, pp. 45--54. doi:10.1109/HPCA.2009.4798236.

[5] H. Dybdahl and P. Stenstrom, “An adaptive shared/private
nuca cache partitioning scheme for chip multiprocessors,”
in Proceedings of the 2007 IEEE 13th International
Symposium on High Performance Computer Architecture.
Washington, DC, USA: IEEE Computer Society, 2007,
pp. 2--12. doi:10.1109/HPCA.2007.346180.

[6] T. Y. Yeh and G. Reinman, “Fast and fair: data-stream
quality of service,” in CASES '05: Proceedings of the 2005
international conference on Compilers, architectures and
synthesis for embedded systems. New York, NY, USA:
ACM, 2005, pp. 237--248. doi:10.1145/1086297.1086328.

[7] L. Zhao, R. Iyer, M. Upton, and D. Newell, “Towards
hybrid last level caches for chip-multiprocessors,”
SIGARCH Comput. Archit. News, vol. 36, pp. 56--63, May
2008. doi:10.1145/1399972.1399982.

[8] G. E. Suh, L. Rudolph, and S. Devadas, “Dynamic
partitioning of shared cache memory,” J. Supercomput.,
vol. 28, pp. 7--26, April 2004. doi:10.1023/B:SUPE.
0000014800.27383.8f.

[9] M. K. Qureshi and Y. N. Patt, “Utility-based cache
partitioning: A low-overhead, high-performance, runtime
mechanism to partition shared caches,” in MICRO 39:
Proceedings of the 39th Annual IEEE/ACM International
Symposium on Microarchitecture. Washington, DC, USA:

1242 JOURNAL OF COMPUTERS, VOL. 7, NO. 5, MAY 2012

© 2012 ACADEMY PUBLISHER

IEEE Computer Society, 2006, pp. 423--432. doi:10.1109/
MICRO.2006.49.

[10] S. Kim, D. Chandra, and Y. Solihin, “Fair cache sharing
and partitioning in a chip multiprocessor architecture,” in
PACT '04: Proceedings of the 13th International
Conference on Parallel Architectures and Compilation
Techniques. Washington, DC, USA: IEEE Computer
Society, 2004, pp. 111--122. doi:10.1109/PACT.2004.15.

[11] R. Iyer, “Cqos: a framework for enabling qos in shared
caches of CMP platforms,” in ICS '04: Proceedings of the
18th annual international conference on Supercomputing.
New York, NY, USA: ACM, 2004, pp. 257--266.
doi:10.1145/1006209.1006246.

[12] E. G. Hallnor and S. K. Reinhardt, “A fully associative
software-managed cache design,” SIGARCH Comput.
Archit. News, vol. 28, no. 2, pp. 107--116, May 2000.
doi:10.1145/342001.339660.

[13] M. K. Qureshi, D. Thompson, and Y. N. Patt, “The v-way
cache: Demand based associativity via global
replacement,” in ISCA '05: Proceedings of the 32nd annual
international symposium on Computer Architecture.
Washington, DC, USA: IEEE Computer Society, 2005, pp.
544--555. doi:10.1109/ISCA.2005.52.

[14] K. Rajan and G. Ramaswamy, “Emulating optimal
replacement with a shepherd cache,” in MICRO 40:
Proceedings of the 40th Annual IEEE/ACM International
Symposium on Microarchitecture. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 445--454.
doi:10.1109/MICRO.2007.14.

[15] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec
benchmark suite: characterization and architectural
implications,” in PACT '08: Proceedings of the 17th
international conference on Parallel architectures and
compilation techniques. New York, NY, USA: ACM,
2008, pp. 72--81. doi:10.1145/1454115.1454128.

[16] P. S. Magnusson, M. Christensson, J. E. and et al.,
“Simics: A full system simulation platform,” Computer,
vol. 35, pp. 50--58, 2002. doi:10.1109/2.982916.

[17] N. Muralimanohar and R. Balasubramonian, “Cacti 6.0: A
tool to understand large caches,” University of Utah and
Hewlett Packard Laboratories, Tech. Rep., 2009.

Xianju Yang was born in Hunan
province of China in 1980. He received
the M.S. degree from National
University of Defense Technology in
2005. Now he is a Ph.D. candidate. His
research interests include micro-
processor design and microelectronics.

Peixiang Yan was born in Hunan
province of China in 1981. Now she is a
Ph.D. candidate. Her research interests
include microprocessor design and
micro-electronics.

Jiang Jiang was born in Yunnan province of China. Now he is
an associate professor in National University of Defense
Technology. His research interests include computer
architecture, microprocessor design, ASIC design and FPGA
acceleration.

Minxuan Zhang was born in Hunan province of China in 1954.
Now he is a professor in National University of Defense
Technology. His research interests include computer
architecture, microprocessor design, low power and ASIC
design.

JOURNAL OF COMPUTERS, VOL. 7, NO. 5, MAY 2012 1243

© 2012 ACADEMY PUBLISHER

