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Abstract—As capacity demands vary among simultaneously 
executed threads in chip multiprocessors, dynamically 
managing cache resources according to the run-time 
demands is effective to improve L2 cache performance. 
Differed from existing dynamic cache management schemes 
based on LRU replacement policy, we propose an adaptive 
capacity sharing mechanism based on a global reuse 
replacement policy. This mechanism adopts decoupled tag 
and data arrays, and partitions the data arrays into private 
and shared regions. Capacity sharing is accomplished by 
determining whether to place the incoming data into the 
private data region or into the shared data region, which is 
controlled by probabilities. Our mechanism includes: (1) A 
VMON monitor to predict run-time capacity demands. (2) A 
PCS algorithm to determine the probabilities. (3) A 
probabilistic controlled placement scheme to enforce 
capacity sharing. We evaluated our mechanism with a full 
system simulation of an 8-core CMP and used parallel 
programs from PARSEC benchmark suite. We found that 
with the same total L2 cache capacity, our mechanism 
exceeds the conventional private cache managed by LRU 
policy, the private cache without sharing managed by reuse 
replacement policy, and an existing adaptive sharing scheme 
based on LRU policy. 
 
Index Terms—Chip Multiprocessors, Capacity Sharing, 
Reuse Replacement. 
 

I.  INTRODUCTION 

Leveraging the ever broadening speed gap between 
processor and memory, performance of on-chip cache 
hierarchy is significant for further improvement of system 
performance. Development of CMP (Chip Multi-
processors) imposes great stress on L2 cache hierarchy, 
as multiple threads are simultaneously executed. In CMP, 
L2 caches are usually organized in private or shared 

styles. With the same capacity, private cache organization 
has advantages of low access latency, flexible scalability 
and convenient performance isolation, while shared cache 
organization is benefit from large available capacity and 
simple consistency maintenance. As capacity demands 
vary greatly among programs and within programs, 
private cache organization suffers from limited available 
capacity, and shared cache organization confronts with 
malignant interference. Addressing these problems, 
capacity sharing [1]-[7] and partitioning [8]-[11] 
techniques become hot topics recently. We focus on 
capacity sharing based on private cache organization in 
this paper.  

Existing capacity sharing mechanisms are based on 
LRU replacement policy. However, LRU policy is 
challenged by global replacement policies [12]-[14] in L2 
caches. LRU policy picks out victims inside cache sets 
based on temporal locality and the locality of L2 accesses 
is weakened by the filter of L1 caches. Global 
replacement strategies are less restricted by the temporal 
locality within sets. Reuse replacement proposed in ref. 
[13] records the reuse counts of each data entry and 
sequentially search a data entry with zero reuse counts for 
eviction. As reuse replacement policy offers better 
resource utilization compared with LRU policy, we use 
reuse replacement to manage private L2 caches. 

Based on reuse replacement policy, we propose a 
probabilistic controlled sharing mechanism, named PCS. 
PCS specifies part of data arrays as private and others as 
shared, and it employs probability to determine the 
frequency to place incoming data into the shared data 
region. We assign high probabilities to cores with stress 
capacity demands and dynamically adjust these 
probabilities according to the monitored memory 
demands. The main components of PCS mechanism are: 
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• A VMON monitor. Using a buffer to track 
recently evicted blocks of each core, run-time 
capacity demands are predicted by counting the 
number of cache access hits in the buffer. 

• A PCS algorithm. According to the capacity 
demands predicted by VMON,   PCS algorithm 
decides whether to promote or demote 
probabilities of each core. 

• A probabilistic controlled placement scheme.   
Cores with higher probabilities will obtain more 
resources. 

In our experiments, PARSEC benchmark suite [15] is 
used. PCS reduces the average L2 cache miss rate by 
43.05% upon a conventional private LRU policy 
managed cache, by 8.70% upon a private reuse 
replacement policy managed cache, and by 16.42% upon 
an existing adaptive sharing mechanism. 

The remainder of this paper is organized as follows. 
Section II illustrates PCS mechanism and section III 
introduces its implementation. We discuss our 
experimental methodology in section IV and present our 
results in section V. Section VI describes the related work 
and section VII concludes the paper. 

II.  PROBABILISTIC CONTROLLED SHARING MECHNISM 

A.  Architectural Support 
An 8-core CMP platform with private L2 caches 

managed by reuse replacement policy is depicted in Fig. 
1. Dynamically allocating data entries to tag entries, tag 
and data entries are decoupled and linked by bi-
directional pointers. The tag arrays are expanded as the 
total number of tag entries is larger than that of data 
entries. We partition the data arrays into private regions P 
and shard regions S, and then link all S to form a shared 
data region sData. Besides, PCS contains a VMON and a 
DAE (Data Access Engine). VMON monitors the run-
time capacity demands and DAE decides which data 
region to access (P or sData). 

Shown in Fig. 1, each tag entry includes tag, status, 
address of the corresponding data entry d_ptr and data 
region flag s. Excepting data, each data entry contains 
reuse count reuse, address of the tag entry t_ptr and valid 
bit v. For data entries in S, core identification id is 
appended. When one core occurs a L2 cache access, its 
tag array is searched and compared first. If the accessed 
tag entry is valid, the corresponding data entry is 
accessed using d_ptr and s. Otherwise, we search a data 
entry for eviction in P or sData according to Prob. 

B.  VMON Monitor 
Memory demands of cores change not only among 

different programs, but also from one frame to another in 
the same program. Evaluation of run-time demands is of 
great importance to efficiently manage cache resources. 
Existing monitoring schemes [5][8][9] are accomplished 
by monitoring the tag array based on LRU replacement 
policy. These schemes are not appropriate for PCS based 
on reuse replacement policy mainly in two aspects. One 
is that existing schemes will get more complex and 

expensive when applying to PCS, as PCS varies ways in 
tag sets. The other one is that monitoring from the tag 
array cannot exactly reflect capacity demands, as PCS 
dynamically allocated data entries to tag entries. A new 
monitoring scheme named VMON is proposed in this 
paper. VMON uses a buffer to track recently evicted data 
blocks for each core. If one core has more hits in this 
buffer, it will benefit more from increasing capacity. 

In VMON, a buffer VTag is used to record tags of 
recently evicted blocks for each core. Performance gain 
for increasing capacity can be evaluated by the number of 
accesses that missed in L2 cache but hits in VTag. 
Suppose tags of recently evicted G blocks are recorded in 
VTag. When a L2 access misses in core i , check if it hits 
in VTagi and counts the number of hits in register 
VTagHitsi during time interval T. Ideally, VTagHitsi is the 
reduced L2 misses of core i when increasing its capacity 
by G. If Accessi states the number of L2 accesses in core i, 
then the performance gain MGi can be calculated as 
shown in (1). 
 

i

i
i Access

VTagHitsMG =  (1) 

Cores with higher performance gain usually have 
higher capacity demands. However, VMON cannot 
evaluate performance lose for decreasing capacity. As 
PCS does not impose capacity decrease on cores with low 
capacity demands, but weaken their capability to use the 
shared resources, we simply treat cores with low 
performance gain as with low capacity demands, and 
believe it will have slightly influence on performance. 

C.  Probabilistic Controlled Sharing Algorithm 
PCS implements dynamic capacity sharing among 

cores by controlling the frequency to place incoming data 
into the shared region. More placements in the shared 
data region, more capacity will be obtained. The 

Figure 1.  Architectural support for PCS mechanism. 
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placement frequency is determined by an evicting 
probability of shared resources, which is the probability 
to evict a data entry from the shared data region for the 
incoming data. For cores with higher capacity demands, 
we assign them higher evicting probabilities to obtain 
more shared resources. These probabilities are 
dynamically promoted or demoted according to the 
memory demands monitored by VMON. 

Define Prob as the evicting probability of each core. 
Probability sharing algorithm is described in Fig.2, where 
{Prob1, …, ProbK} are different levels of probabilities 
listed from low to high, {Probc} is the current evicting 
probability for each core, Dec_Th and Inc_Th are 
thresholds to downgrade and upgrade probabilities 
respectively. These thresholds are measured by the 
percentage deviating from average MG, since MG 
fluctuates heavenly with different programs. If MG of one 
core is beyond the AMG by Inc_Th, the evicting 
probability of that core is promoted. On the other hand, if 
MG of one core is below the AMG by Dec_Th, the 
evicting probability of that core is demoted. 

III.  IMPLEMENTATION 

A.  Framework 
Shown in Fig. 3, PCS requires software and hardware 

cooperation, as PCS algorithm is implemented by OS, 
capacity demands monitor and capacity sharing 
enforcement is performed by hardware. Each time 
interval, VMON collects information and sends it to OS. 
Then, OS calculates new evicting probabilities Probc for 
each core and writes them into DAE. Finally, DAE 

accomplishes adaptive capacity sharing by 
probabilistically placing blocks into the shared data 
region.  

B.  Probability Controlled Placement 
To enforce adaptive capacity sharing, DAE builds a 

probability generator PG for each core. When a L2 cache 
miss occurs and a data entry need to be evicted for core i, 
PGi is launched to get a probability Pri. If Pri is not larger 
than Probc

i, then the incoming block will be placed into 
sData, otherwise placed into P. To utilize private 
resources, incoming blocks will not be placed into sData 
until P is full. Fig. 4 depicts the cache access flow in PCS 
mechanism. 

However, it is impractical to implement completely 
probabilistic controlled placement, since PG for each core 
is expensive. Instead, we use private-to-shared ratios PSR 
to approximate probabilities. According to the PSR 
assigned to each core, we place incoming blocks into the 
private and shared data region in turn. Suppose 
Probc

i=si/(pi+si), then PSRi=si/pi. We place the first si 
incoming blocks into sData, the next pi incoming blocks 
into P, and so on. 

IV.  METHODOLOGY 

We use Virtutech Simics [16] to conduct our 
experiments, and simulate an 8-core CMP platform with 
sparc-v9 instruction set and solaris 10. A probability 
controlled PCS mechanism (PS-Reuse) and a PSR 
controlled PCS mechanism (PSR-Reuse) are simulated. 
To evaluate them, we also simulate a LRU managed 
private cache organization (P-LRU), a reuse replacement 
managed private cache organization (P-Reuse) and an 
existing LRU managed sharing mechanism (PS-LRU) 
proposed in ref. [5]. Table I shows the basic 
configurations of and different L2 cache mechanisms. 
Total miss rate and throughput is used to evaluate L2 

Figure 3.  Description of PCS algorithm. 

Figure 4.  Framework of PCS mechanism. 

Figure 2.  L2 cache access flow for core i. 
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cache and system performance. If MRi and IPCi state miss 
rate and IPC of core i respectively, these metrics can be 
calculated as follows: 

 ∑
−

=

=
1#

0#
1 Cores

i
isum MR

Cores
MR  (2) 

 ∑
−

=

=
1#

0

Cores

i
isum IPCIPC  (3) 

The average access latency of P-LRU is 12 cycles 
evaluated by Cacti [17] under 45nm technology. If a L2 
cache access hits remote cores, we do not access memory 
but copy from the hit core. The average access latency for 
remote hits is 18 cycles. Assume sequential tag-data 
access is used for low power, the latencies of P-Reuse, 
PS-Reuse and PSR-Reuse are set as the same as P-LRU. 

In our experiments, the PARSEC 2.1 benchmark suite 
is used. Table II describes the function of these programs 
except dedup, which is excluded as it cannot run 

normally due to compatibility. All programs use simlarge 
input sets and have 8 threads running concurrently. Each 
core runs the first 200 million instructions to skip initial 
stage and warm up cache hierarchies, and then runs the 
next 200 million instructions for evaluation. In all, about 
3.2 billion instructions are executed for 8 cores. 

V.  RESULT 

A.  Performance Analysis 
The L2 cache miss rate and total IPC of PS-Reuse and 

PSR-Reuse are compared with that of P-LRU, PS-LRU 
and P-Reuse. In PS-Reuse and PSR-Reuse, the private 
data size is 1024 entries, the upgrade and downgrade 
thresholds are both 50%, the time interval is 10 million 
instructions, and VMON has 256 entries for each core by 
default. 

Fig. 5(a) compares the L2 cache miss rates of P-LRU, 
PS-LRU, P-Reuse, PS-Reuse and PSR-Reuse. Label s1 to 

TABLE II.   
SIMULATION CONFIGURATION 

Common 

System 1 chip, 8 cores 

Core Single-issue, in-order, no-branch-predictor 

L1 I/D 32KB, 2-way, LRU, 64B/line, 1 cycle 

Coherence Snoop based MESI protocol 

Main Memory 250 cycles 

Different L2 Cache Mechanisms 

P-LRU Traditional private cache, LRU, 126KB/core, 2048 
entries/core, 2-way, 64B/line, 12/18 cycles 

PS-LRU Capacity sharing based on P-LRU, 1 way of each core 
for share, 12/18 cycles 

P-Reuse 
Private V-Way cache, reuse replacement, 4096 tag 
entries/core, 2048 data entries/core, 64B/line, 12/18 
cycles 

PS-Reuse 
Our mechanism, sharing on P-Reuse, 64B/line, 12/18 
cycles, probability controlled with step length 0.1 and 
default 0.5 

PSR-Reuse 
Oure mechanism, sharing on P-Reuse, 64B/line, 12/18 
cycles, PSR controlled with probabilities {1/3, 1/2, 3/4} 
and default 1/2 

TABLE I.   
PARSEC PROGRAMS 

Label Program Descriptions 

s1 blackscholes Calculate portfolio price using Black-
Scholes PDE 

s2 bodytrack Computer vision, tracks 3D pose of 
human body 

s3 canneal Synthetic chip design, routing 

s4 facesim Physics simulation, models a human face 

s5 ferret Pipelined audio, image and video 
searches 

s6 fluidanimate Physics simulation, animation of fluids 

s7 freqmine Data mining application 

s8 raytrace Computer animation application 

s9 streamcluster Kernel to solve the online clustering 
problem 

s10 swaptions Computers portfolio prices using Monte-
Carlo simulation 

s11 vips Image processing, image transformations 

s12 x264 H.264 video encoder 

(a) L2 Miss  rate (b) IPC 

Figure 5.  Performance comparisons of different L2 cache mechanisms. 
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s12 represents applications and label G is the geometric 
average value. The average miss rates of these five 
mechanisms are 2.95%, 2.01%, 1.84%, 1.57% and 1.68% 
respectively. Conclusions of these simulation results are 
as following. 

• Expanding capacity sharing on private 
organization can improve cache performance.   
The average L2 miss rate of PS-Reuse is reduced 
by 46.78% compared with P-LRU and by 14.67% 
compared with P-Reuse.  The average L2 miss rate 
of PSR-Reuse is reduced by 43.05% compared 
with P-LRU and by 8.70% compared with P-
Reuse. 

• Mechanisms with reuse replacement policy gain 
better performance than mechanisms with LRU 
replacement policy.  Compared with PS-LRU, PS-
Reuse reduces the average L2 miss rate by 21.89%, 
and PSR-Reuse reduces the average L2 miss rate 
by 16.42%. 

• PS-Reuse outperforms PSR-Reuse in L2 cache 
miss rate, as PS-Reuse adopts a more flexible 
random placement scheme. 

The simulation results also demonstrate that reduction 
in L2 cache miss rates can also improve system 
performance. IPCs of P-LRU, PS-LRU, P-Reuse, PS-
Reuse and PSR-Reuse are depicted in Fig. 5(b). Their 
average IPC are 2.609, 2.84, 2.946, 3.141 and 3.066 
respectively. The average IPC of PS-Reuse is improved 
by 20.39% upon P-LRU, 10.60% upon PS-LRU, and 
6.62% upon P-Reuse. The average IPC of PSR-Reuse is 
improved by 17.52% upon P-LRU, 7.77% upon PS-LRU, 
and 4.07% upon P-Reuse. 

B.  Parameters Sensitivity 
Probability levels, upgrade and downgrade thresholds, 

private data size, time intervals and VMON size are five 
parameters in PCS. Based on the default settings of PSR-
Reuse, we change one parameter at a time to observe its 
effects on L2 miss rate. 

1)   Probability Levels: Standing for the opportunity to 
place incoming data into the shared data region, the 
probability of each core changes from 0 to 1 ideally and 
must be set according to the capacity demands. If 
probabilities are too high to beyond demands, blocks in 
the private data region will become dead blocks as 
incoming blocks are mostly placed into the shared region 
and private blocks are rarely evicted. Otherwise, if 
probabilities are too low to below demands, cores with 
stress capacity demands are unable to obtain enough 

resources. In our experiments, we randomly select 
probabilities from [1/3, 2/5, 1/2, 3/5, 2/3, 3/4] to form 
eight different cases and observed their influences on L2 
miss rates. Probabilities are all initialized to 1/2 with 
equal opportunities to use private and shared resources. 
Shown in Fig. 6, it is hard to decide the optimize setting 
of probability levels as memory demands vary greatly. 
Generally, applications with large demand differences 
among cores are benefit from coarse probability levels, 
and applications with small demand differences prefer 
fine probability levels. 

2)  Upgrade and Downgrade Thresholds: Upgrade and 
downgrade thresholds influence the adjustments of 
probabilities. If the upgrade threshold is too low or the 
downgrade threshold is too high, probabilities tend to be 
high which will cause frequent utilization of the shared 
resources and induce aggravation of interferences among 
cores. Otherwise, if the upgrade threshold is too high or 
the downgrade threshold is too low, probabilities tend to 
be low which will cause infrequent utilization of the 
shared resources and cause difficulties in obtaining 
enough capacity. We observe the effects of upgrade and 
downgrade thresholds by changing them from 30% to 
70%. It can be seen from Fig. 7(a) and Fig. 7(b) that both 
upgrade and downgrade thresholds should be moderate. 
In our experiments, upgrade threshold of 40% gain better 
average performance. Downgrade threshold does not 
affect much relative to upgrade threshold. 

3)  Private Data Size: Private data size is related to the 
amounts of resources for sharing. Maintaining the total 
size of L2 cache, the smaller the private data region, the 

Figure 6.  Effects of different levels of probability on L2 miss rate. 

TABLE III.   
EFFECTS OF ENTRIES IN VMON ON L2 MISS RATE (%) 

No.(entries) s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 G 

32 1.09 1.74 1.90 1.72 1.70 1.52 1.22 1.18 2.58 1.37 3.93 2.02 1.83 

64 1.14 1.67 1.50 1.73 1.63 1.53 1.22 1.19 2.39 1.36 3.97 1.95 1.77 

128 1.15 1.66 1.53 1.59 1.71 1.51 1.31 1.21 2.61 1.38 3.96 2.00 1.80 

256 1.15 1.67 1.52 1.64 1.72 1.62 1.29 1.13 2.58 1.37 3.97 1.94 1.80 
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larger the shared data region. Proper size of private 
region relies on the differences of capacity demands 
among cores. Applications with large demand differences 
are benefit from large shared region, and applications 
with little demand differences will prefer large private 
region. We compare private data size settings of 512, 
1024 and 1536 entries in Fig. 8. s5, s8 and s11 get better 
performance with 512 private entries, s3, s6 and s7 get 
better performance with 1024 private entries, and other 
applications prefer 1536 private entries. 

4)  Time Intervals: Time intervals should set 
moderately as large time intervals will affect the 
adaptability to variable memory demands, and small time 
intervals do not have sufficient time to collect reliable 
statistics. We compare L2 miss rates under different time 
intervals of 1, 2, 3, 4, 5, 10, 15 and 20 million 
instructions, shown in Fig. 9. The optimize time intervals 
for each program is different, and time intervals of 10 
million instructions has slightly better average 
performance. 

5)  VMON Size: Recording recently evicted blocks to 
predict capacity demands, VMON should have enough 
space to hold these blocks. However, VMON size is not 
bigger better for two reasons. When VMON is big 
enough, more hits in VMON cannot gain better 
performance for increasing capacity, as allocation of data 
entries to a tag set is limited by the tag size. The other 

one is that bigger VMON will induce greater area 
overhead. Changing the VMON size among 32, 64, 128 
and 256 entries for each core, table III shows their effects 
on L2 miss rates. The setting with 64 entries achieves 
better performance than other settings in our experiments. 
Although the optimize settings of VMON size vary with 
applications, their effects on L2 miss rate are small. 

C.  Storage Overhead 
Expanding sharing mechanism on P-Reuse, PS-Reuse 

attaches a s flag in each tag entry, an id field in each 
shared data entry, and a Vtag buffer for each core. 
Suppose the memory address is 64b, the line size is 64B 
and the Vtag size is 64 entries. The storage cost of P-LRU, 
P-Reuse and PS-Reuse are about 1126KB, 1306KB and 
1324KB respectively. That is, P-Reuse increases the 
storage overhead by 15.99% compared with P-LRU, and 
PS-Reuse further increases the storage overhead by 
1.38% upon P-Reuse. 

VI.  RELATED WORK 

A.  Capacity Sharing Techniques 
There are mainly two basic ways to expand capacity 

sharing based on private cache organization. One is 
implemented by migrating blocks among cores [1]-[4] 
and the other one is implemented by specifying shared 
regions [5]-[7]. 

Migrating blocs among cores, Chishti et al. [1] 
proposes capacity stealing technique for private blocks. 
Cores with large capacity demands can place least 
recently used private blocks into their neighboring cores. 
Chang et al. [2] proposes CC (Cooperative Caching) 
mechanism. CC employs cache-to-cache transfers of 
clean data, replication-aware data replacement, and 
global replacement of inactive data to form an aggregate 
“shared” cache. DSR (Dynamic Spill-Receive) 
mechanism [4] exploits application-level capacity 
demands and SNUG (Set-level Non-Uniformity identifier 
and Grouper) [3] exploits set-level capacity demands to 
allow blocks migrate from cores with higher demands to 
cores with lower demands. 

(a) Upgrade thresholds (b) Downgrade thresholds 

Figure 7.  Effects of thresholds on L2 miss rate. 

Figure 9.  Effects of private data size on L2 miss rate. 

Figure 8.  Effects of time intervals on L2 miss rate. 
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Partitioning local caches into private and shared region, 
Dybdahl et al. [5] uses sharing engine to control the 
utilization of shared resources and dynamically adjust the 
private capacity, Zhao et al. [7] attempts to provide more 
hits into local slice for workloads with no sharing and 
supply more sharing resources for workloads with 
sufficient sharing. 

This paper is the first work to exploit capacity sharing 
based on reuse replacement policy. Mechanism propose 
in ref. [5] is compared with our work in section V-A. 

B.  Global Replacement Policies 
As LRU replacement policy is limited to picking out 

victims inside sets, many researches are dedicated to 
exploiting global replacement policies to manage L2 
cache resources. 

Generational replacement policy proposed in Ref. [12] 
divides cache blocks into several priority groups. 
Frequently accessed blocks are put into groups with 
higher priority and infrequently accessed blocks are put 
into groups with lower priority. Generational replacement 
policy picks out blocks from the lowest priority groups. 

Based on reuse counts, Qureshi et al. [13] proposes 
reuse replacement policy. Reuse replacement policy 
attaches a reuse counter to each cache block and 
maintains a global searching pointer. The reuse counter is 
initialized to 0, plused 1 for a cache access hit to that 
block, and minused 1 for the searching pointer passes 
through that block. When evicting a data entry, reuse 
replacement policy circularly searches from the next 
position of the global pointer until a block with zero reuse 
counts is found. 

Rajan et al. [14] separates the L2 cache into SC 
(Shepherd Cache) and MC (Main Cache) to emulate 
optimal replacement policy. SC adopts FIFO (First In 
First Out) replacement policy and guide replacement 
operations in MC. 

Among them, generational replacement and reuse 
replacement are more flexible than SC, as tag and data 
entries are decoupled. Considering that generational 
replacement is software implemented and confronts with 
long latency, we use reuse replacement policy to manage 
L2 cache resources. 

VII.  CONCLUSION 

Using reuse replacement strategy to manage private L2 
cache resources, we propose a probabilistic sharing 
mechanism named PCS. PCS separates tag and data 
arrays, and specifies a data region as shared region. All 
cores can use resources in the shared data region. PCS 
uses probabilities to control the utilization of shared data 
resources. Cores with stress demands are assigned higher 
probabilities to obtain more shared resources. According 
to the run-time capacity demands monitored by a VMON 
scheme, these probabilities are adjusted every time 
interval. As probability generator is expensive to 
implement, we uses alternately placing into private and 
shared region according to a specified ratio to 
approximate probabilistic controlled placement. 
Simulation results with programs from PARSEC 

benchmark suit show that, our mechanism reduces the 
average L2 miss rate by 43.05% compared with a 
conventional LRU managed private cache organization, 
by 8.70% compared with a reuse replacement managed 
private cache organization, by 16.42% compared with an 
existing LRU based capacity sharing mechanism. System 
performance is also effectively improved by our 
mechanism. We plan to extend this work by balancing tag 
set utilization and by developing tag sharing among cores. 
Work is also underway in varying private data size with 
applications. 
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