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Abstract— In this paper, we investigate the global adaptive
synchronization problem for a class of supply chain complex
networks that have nonlinearly coupled identical nodes and
an asymmetrical coupling matrix. We derive, in particular,
a sufficient condition for global synchronization when the
coupling strength is not excessively large by applying a
suitably chosen adaptive controller and demonstrate the
effectiveness of this theory by numerical examples.

Index Terms— Supply chain, complex networks, synchro-
nization, adaptive, nonlinearly coupled, asymmetrical cou-
pling.

I. INTRODUCTION

There is a great interest in the synchronization of
complex networks in recent years from disciplines as
diverse as the mathematical, physical, biological and
physiological sciences because of the many potential
applications of the phenomenon (see [1], [2] and the
references therein). Loosely speaking, synchronization is
the process in which two or more dynamical systems
adjust a given property of their motion to a common
behavior in the limit of infinite time due to coupling
or forcing [3]. Complex networks that are synchronized,
in particular, have many important real-world applica-
tions such as in the enhancement of communications
security, in seismology and in parallel image processing,
among others [4]- [9]. The synchronization phenomenon
has already been much investigated. The properties of
the invariant manifold, for example, have been used to
describe the synchronization process in [10] and the
synchronization problems and boundedness of linearly
coupled oscillators have been considered in [11] by using
the semi-passivity property. [12] studied local synchro-
nization by introducing a master stability function that
is based on the transverse Lyapunov exponents and [13]
showed how a coupled complex network can be pinned
to a homogenous solution by using a single controller
and proposed an effective approach to adapt the coupling
strength. [14] constructed a novel coupling scheme with
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cooperative and competitive weight couplings to stabi-
lize arbitrarily selected cluster synchronization patterns
in connected networks with identical nodes while [15]
studied the cluster synchronization of dynamical networks
with community structure and nonidentical nodes in the
presence or absence of time delays by feedback control.

A supply chain is a complex network of human agents
(such as manufacturers, retailers and consumers) that in-
teract with each other by completing business transactions
and supply chain analysis is therefore an interdisciplinary
science that spans the subject areas of manufacturing,
transportation, logistics and retailing/marketing (see [16]
and the references therein). Two supply chains are syn-
chronized if the agents could all be coerced to operate in
a mutually supportive and seamless manner and supply
chain synchronization usually starts by ensuring that
every agent knows the exact tasks to be performed (e.g.
storing goods, price marking), the time-frame (e.g. lead
times and deadlines) and the way (e.g. to what operating
specifications) in which to perform those tasks as well
as the results to be expected (e.g. sales quotas, customer
satisfaction ratings).

Most synchronization studies that have been conducted
so far, however, have been focussed on oscillators un-
der linear coupling or bidirectional nonlinear coupling
[13], [17], [18] and [19]. This is unsatisfactory because
unidirectional communication is prevalent in practical
applications such as in radio and television broadcasting
as well as in other forms of sensed information flow that
are typical in schooling and flocking phenomena [20]. A
more detailed analysis of unidirectional communication is
thus in order.

In this paper, we consider complex networks that
are made up of N identical nonlinearly and diffusively
coupled nodes in which every node is an n-dimensional
dynamical system of a supply chain model. The state
equations of this network are

ẋi(t) = f(xi(t))− σ

N∑
i=1

lijh(x
j(t)), i = 1, 2, . . . , N,

(1)
where σ > 0 is the interaction strength between the
various business entities (e.g. manufacturers, customers.
etc.) xi(t) and σ is the coupling strength. xi(t) is n
dimensional due to a number of features relating to the
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business entities in global supply chains such as the
exchange rates, the corporate tax rates, the tariffs, and
the direct export incentives. f(x) is the behavior function
of xi(t) and the diffusive coupling matrix L = [lij ] ∈
RN×N represents the interactions between the different
xi(t)s where lij ≤ 0, i ̸= j and lii =

∑N
j=1,i̸=j lij , and

can be regarded as the graph Laplacian when the coupled
complex network is viewed as a weighted directed graph.
If the nodes i and j are connected, then lij ̸= 0; otherwise
lij = 0 and the diagonal elements of the coupling matrix
L are lii = −

∑N
i=1 lij = −ki, i = 1, 2, ..., N , where

ki denotes the degree of node i. The nonlinear coupling
function h(·) : Rn → Rn could be regarded as the
interaction function of xi(t), which is continuous and
has the form h(xi(t)) = (h1(x

i
1(t)), . . . , hn(x

i
n(t)))

T ,
i = 1, 2, . . . , N . Other criteria for global synchronization
include the projecting of the nonlinear coupling function
onto a linear one with the difference between the two
being a disturbing function. The theoretical values of the
coupling strengths that satisfy these conditions, however,
are usually much larger than are needed in practice [21]
and creates an issue that has to be addressed. In this
paper, we investigate the adaptive synchronization of non-
linearly coupled directional complex networks where we
nontrivially extend the work of [20] in which the coupling
strength is constant. In particular, we derive one sufficient
criterion for global synchronization by constructing an
adaptive coupling strength controller

An outline of this paper is as follows. In Section II,
some necessary definitions and lemmas are given. In
Section III, a sufficient condition for the global adap-
tive synchronization of nonlinearly-coupled systems is
derived. In Section IV, numerical examples are presented
to show the validity of the theoretical analysis. Finally,
we conclude this paper in Section V.

II. PRELIMINARIES

In this section, we present some lemmas and assump-
tions that are required for this paper.

Definition 1: [20] A matrix L = (lij)
N
i,j=1 is said to

belong to class A1 and written as L ∈ A1 if
1) lij ≥ 0, i ̸= j, lii =

∑N
j = 1, j ̸= ilij , i =

1, 2, ..., N
2) L is irreducible.

If L ∈ A1 is symmetrical, then we say that L belongs to
class A2 and write L ∈ A2.

Lemma 1: [20] If L ∈ A1, then rank(L) = N − 1,
i.e. 0 is an eigenvalue of L of multiplicity 1 and all the
nonzero eigenvalues of L have positive real parts.

Lemma 2: [20] If L ∈ A1, then
1) 1 = (1, 1, ..., 1)T is a right eigenvector of L

corresponding to the eigenvalue 0 of multiplicity
1, i.e. A · 1 = 0;

2) If ξ = (ξ1, ξ2, ..., ξN )T is a left eigenvector of L
corresponding to the eigenvalue 0, i.e. ξTL = 0,
then ξi > 0, i = 1, 2, ..., N with multiplicity 1.
We shall assume that

∑N
i=1 ξ

i = 1 throughout this
paper.

Definition 2: [13] If there are positive matrices P =
diag{p1, p2, . . . , pn}, ∆ = diag{δ1, δ2, . . . , δn}, then we
say that f(x, t) ∈ QUAD(P,∆, η) if f satisfies the
following inequality:

(x− y)TP
(
(f(x, t)− f(y, t))−∆(x− y)

)
≤ −η(x− y)T (x− y),

for some η > 0, x, y ∈ Rn and t > 0.
Indeed, the class QUAD(P,∆, η) contains many of the

benchmark chaotic systems such as the Lorenz system,
the Chen system, the Lü system and the unified chaotic
system.

Definition 3: [20] A nonlinear function g(x) : R →
R is said to belong to the acceptable nonlinear coupling
function class and written as g ∈ NCF (γ, β) if there
exist two nonnegative scalers γ and β such that g(ω)−γω
satisfies the Lipschitz condition

|g(ω1)− g(ω2)− γ(ω1 − ω2)| ≤ β|ω1 − ω2|

for any ω1, ω2 ∈ R.
Definition 4: [20] Let ξ = (ξ1, ξ2, . . . , ξN )T be a left

eigenvector of L corresponding to the eigenvalue 0, i.e.
ξTL = 0 and let Ξ = diag{ξ}, In = diag{1n}. If we
define U = Ξ− ξξT , Q = In − 1

N 1n · 1T
n

Then it is clear that −Q ∈ A2 and that if M ∈ Rm×n

is a zero-row-sum matrix, then MQ = M . Thus, we have

xTMy = xTMQy ≤ 1

2

(
xTMMTx+ yTQy

)
. (2)

Lemma 3: [13] If L = [lij ] ∈ A2, then for any two
vectors u = [u1, u2, . . . , un]

T and v = [v1, v2, . . . , vn]
T ,

we have

uTLv =
n∑

i=1

n∑
j=1

uilijvj = −
∑
j>i

aij(ui − uj)(vi − vj).

III. MAIN RESULT

In this paper, we consider network functions with cou-
pling strengths that vary with time and aim to determine
the appropriate coupling strength adaptive laws that will
enable the system to attain complete global synchroniza-
tion. More precisely, complete global synchronization for
the system (1) can be achieved by writing it as

ẋi(t) = f(xi(t))−σ(t)
N∑
i=1

lijh(x
j(t)), i = 1, 2, . . . , N,

(3)
for some adaptive coupling strength controller σ(t) and
by selecting a suitable adaptive law σ̇(t) so that ||xi(t)−
xj(t)|| = 0 as t → ∞ for i, j = 1, 2, ..., N .

Theorem 1: Let f(·) ∈ QUAD(P,∆, ε), L = [lij ] ∈
A1 and hk ∈ NCF (γk, βk) for some βk > 0, k =
1, 2, . . . , ς and βk = 0 for k = ς + 1, ς + 2, . . . , n. Also
let the adaptive coupling strength σ(t) satisfy

σ̇(t) = α

N∑
i=1

ξi(xi(t)− xξ(t))TP (xi(t)− xξ(t)), (4)
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for some adaptive law α > 0 and initial values σ(0) ≥ 0.
If there exist positive scalers θk, k = 1, 2, ..., ς , such that
the inequality

−γk{ΞL}s +
θk
2
ΞLLTΞ +

β2
k

2θk
Q ≤ 0; k = 1, 2, . . . , ς

(5)
holds, where {ΞL}s = {ΞL+LTΞ}/2, then the nonlinear
coupling system (3) can attain global synchronization.

Proof: Let X(t) = (x1(t)T , x2(t)T , . . . , xN (t)T )T ;
F (X(t)) = (f(x1(t))T , f(x2(t))T , . . . , f(xN (t))T )T ;
H(X(t)) = (h(x1(t))T , h(x2(t))T , . . . , h(xN (t))T )T ;
L = L⊗ P . Then system (3) can be written as

X(t) = F (X(t))− σ(t)LH(X(t)). (6)

Now let xξ(t) =
∑N

i=1 ξ
ixi(t) and choose a constant

α > 0 and a Lyapunov function

V (X(t)) =
1

2

N∑
i=1

ξi(xi(t)− xξ(t))TP (xi(t)− xξ(t))

+
1

2αρ
(σ − ρσ(t))2

=
1

2
X(t)TUPX(t) +

1

2αρ
(σ − ρσ(t))2. (7)

where UP = U ⊗ P .
Differentiate the function V (X(t)) along the system

(3) under the control (4) and let ∆ = IN ⊗∆. Then we
have

V̇ (t) =X(t)TUP

(
F (X(t))− σ(t)LH(X(t))

)
− σX(t)TUPX(t) + ρσ(t)X(t)TUPX(t)

=X(t)TUP

(
F (X(t))−∆X(t)

)
+
[
X(t)TUP∆X(t)− σ(t)X(t)TUPLH(X(t))

]
−
[
σX(t)TUPX(t) + ρσ(t)X(t)TUPX(t)

]
=V1(t) + V2(t) + V3(t) (8)

and by noting that f(·) ∈ QUAD(P,∆, ε), U ∈ A2 and
using Lemma 3, we have

V1(t) =X(t)TUP

(
F (X(t))−∆X(t)

)
=−

N∑
i>j

uij

(
xi(t)− sj(t)

)T
P
(
f(xi(t))− f(xj(t))

−∆(xi(t)− xj(t))
)

≤− ε

N∑
i>j

uij

(
xi(t)− sj(t)

)T (
xi(t)− sj(t)

)
=− εX(t)TU ⊗ IX(t) (9)

Let x̃k(t) = (x1
k(t), x

2
k(t), . . . , x

N
k (t))T ,

h̃k(x̃k(t)) = (hk(x
1
k(t)), hk(x

2
k(t)), . . . , hk(x

N
k (t)))T

for k = 1, 2, . . . , n. Since UL = ΞL, which has zero-
row-sum, and hk ∈ NCF (γk, 0) for k = ς + 1, . . . , n,
we have

n∑
k=ς+1

pkx̃
T
k (t)ΞL(h̃k(x̃k(t))− γkx̃k(t)) = 0.

Hence,

V2(t) =X(t)TUP∆X(t)− σ(t)X(t)TUPLH(X(t))

=

n∑
k=1

pkδkx̃k(t)
TUx̃k(t)

− σ(t)

n∑
k=1

pkx̃k(t)
TΞLh̃k(x̃k(t))

=

n∑
k=1

pkx̃k(t)
T
(
δkU − σ(t)γkΞL

)
x̃k(t)

− σ(t)

n∑
k=1

pkx̃k(t)
TΞL

(
h̃k(x̃k(t))− γkx̃k(t)

)
=

n∑
k=1

pkx̃k(t)
T
(
δkU − σ(t)γkΞL

)
x̃k(t)

− σ(t)

ς∑
k=1

pkx̃k(t)
TΞL

(
h̃k(x̃k(t))− γkx̃k(t)

)
(10)

and since ΞL ∈ A1 and hk ∈ NCF (γk, βk), it follows
from Lemma 3 that

ς∑
k=1

pkx̃k(t)
TΞL

(
h̃k(x̃k(t))− γkx̃k(t)

)
=

ς∑
k=1

pkx̃k(t)
TΞLQ

(
h̃k(x̃k(t))− γkx̃k(t)

)
≤1

2

ς∑
k=1

pk

(
θkx̃k(t)

TΞLLTΞx̃k(t)

+
1

θk

(
h̃k(x̃k(t))− γkx̃k(t)

)T
×Q

(
h̃k(x̃k(t))− γkx̃k(t)

))
=
1

2

ς∑
k=1

pk

(
θkx̃k(t)

TΞLLTΞx̃k(t)

− 1

θk

ς∑
j>i

Qij

(
hk(x

j
k(t))− γkx

j
k(t)

− hk(x
i
k(t)) + γkx

i
k(t)

)2)
≤1

2

ς∑
k=1

pk

(
θkx̃k(t)

TΞLLTΞx̃k(t)

− 1

θk

ς∑
j>i

β2
kQij

(
xj
k(t)− xi

k(t)
)2)

=
1

2

ς∑
k=1

pkx̃k(t)
T (θkΞLL

TΞ +
β2
k

θk
Q)x̃k(t). (11)

By combining (10) and (11), therefore, we have

V2(t) ≤
ς∑

k=1

pkx̃k(t)
T
(
δkU + σ(t)(−γkΞL

+
θk
2
ΞLLTΞ +

β2
k

2θk
Q)

)
x̃k(t)
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+

n∑
k=ς+1

pkx̃k(t)
T (δkU − σ(t)γkΞL)x̃k(t)

(12)

and thus

V3(t) = (−σ + ρσ(t))X(t)TUPX(t)

= (−σ + ρσ(t))
n∑

k=1

pk

N∑
i=1

N∑
j=1

xi
k(t)

TUijx
j
k(t)

= (−σ + ρσ(t))
n∑

k=1

pkx̃k(t)
TUx̃k(t). (13)

Now substitute inequalities (9), (12) and (13) into (8) and
we have

V̇ (t) ≤− εX(t)TU ⊗ IX(t)

+
n∑

k=1

pkx̃k(t)
T (δk − σ)Ux̃k(t)

+ σ(t)
ς∑

k=1

pkx̃k(t)
T (ρU − γkΞL

+
θk
2
ΞLLTΞ +

β2
k

2θk
Q)x̃k(t)

+ σ(t)
n∑

k=ς+1

pkx̃k(t)
T (ρU − γkΞL)x̃k(t)

so that by choosing σ and ρ such that δk − σ ≤ 0, ρU −
γkΞL ≤ 0 and ρU − γkΞL+ θk

2 ΞLLTΞ +
β2
k

2θk
Q ≤ 0 in

inequality (5), we have
dV (t)

dt
< 0.

Therefore, we have xi(t) → xξ(t) and σ̇(t) → 0 so that,
by the Cauchy convergence principle, σ(t) converges to
some final coupling strength σ0. The nonlinear coupling
system (3) thus attains global synchronization.

Remark 1: The final coupling strength can therefore be
reduced by making a suitable choice for the value of α,
as is illustrated in the following numerical simulation.

IV. NUMERICAL SIMULATION

In this section, we present some numerical simulation
results that verify the theorem given in the previous sec-
tion. In order to make a fair comparison with the results
of [20], we used the same data set for the simulations.

Consider a network with N = 4 business entities
and a behavior function that is described by the Lorenz
oscillator

ẋi
1 = a(xi

2 − xi
1)

ẋi
2 = bxi

1 − xi
2 + xi

1x
i
3 i = 1, 2, 3, 4,

ẋi
3 = xi

1x
i
2 − cxi

3

(14)

where a = 10, b = 28, c = 8/3.
By referring to the asymmetrical coupling matrix L =

[lij ], we take

L =


1.7058 −0.5913 −0.0195 −1.0950
−0.6145 2.5367 −0.0482 −1.8740
−0.5077 −0.3803 1.3163 −0.4283
−1.6924 −1.0091 −0.3179 3.0194

 (15)

whose left eigenvector corresponding to the eigenvalue 0
is ξ = (0.3977, 0.2226, 0.0852, 0.2945)T . It is clear that
ξTL = 0.

We take the nonlinear functions h(xi(t)) = (h1(x
i
1(t)),

h2(x
i
2(t)) and h3(x

i
3(t)))

T = (0, 3xi
2(t)+sin(xi

2(t)), 0)
T

so that h2(·) ∈ NCF (3, 1), h1(·) = h3(·) = 0 ∈
NCF (0, 0) and choose the initial values

x1(0) = (98.6337,−51.8635, 32.7368)T ,

x2(0) = (23.4057, 2.1466,−100.3944)T ,

x3(0) = (−98.6337, 51.8635,−32.7368)T ,

x4(0) = (−23.4057,−2.1466, 100.3944)T .

The errors between the nodes (which is a measure of
synchronization) are then defined by

E(t) =

√∑
i>j

(xi(t)− xj(t))T (xi(t)− xj(t))/4.

Calculations then show that, by taking θ2 = 3, the
eigenvalues of the matrix −3ΞL+3ΞLLTΞ/2+Q/6 are:
0, −0.2363, −1.2927, −1.1493 and P = diag{1, 1, 1}.

Fig. 1(a) and Fig. 1(b) show the evolution of E(t) and
σ(t) when the Lorenz oscillators are coupled by L with
final coupling strength σ0 = 0.6068 for α = 0.00006.
Fig (1(c)) shows the evolution of E(t) when the Lorenz
oscillators are coupled by L with fixed coupling strength
σ0 = 0.6068.

Fig. 2(a) and Fig. 2(b) show the evolution of E(t) and
σ(t) when the Lorenz oscillators are coupled by L with
final coupling strength σ0 = 0.4844 for α = 0.0001.

Fig. 3 shows the relationship between α and σ0 when
the Lorenz oscillators are coupled by L. As the final
coupling strength is very small, when compared with the
coupling strength of the [20], the method of adaptive
coupling strengths is better for practical applications.

V. CONCLUSION

In this paper, we study the synchronization problem for
a class of coupled supply chain complex networks with
an asymmetrical coupling matrix and nonlinear coupling
functions. By constructing a suitable adaptive controller,
we derive a sufficient condition for global synchronization
in which all the business entities can operate harmo-
niously with stable manufacturing and consumer factors.
Numerical examples then demonstrate the effectiveness of
the theoretical results.
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