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Abstract—Information on subcellular localization of 
proteins plays a vitally important role in molecular cell 
biology, proteomics and drug discovery. In this field, finding 
the most suitable representation for protein sample is one of 
the most crucial procedures. Inspired by the modes of 
pseudo amino acid composition (PAA), cellular automaton 
image (CAI) for protein and the chaos game representation 
(CGR) for DNA sequence, a 20-dimension CGR-walk mode 
for representation of protein sample is proposed. In the 
proposed model, the sequence order effect is discussed and 
manifested with a point of the 20-dimension space. And then, 
the track of protein sample is projected to all of the twenty 
amino acids, in another word, a protein sample is expressed 
by a 20-dimension vector. Followed with the preparation 
work, the proposed mode is applied into four protein 
datasets. The comparison results indicate that the present 
method may at least serve as an alternative to the existing 
predictors in this field. 
 
Index Terms—Chaos game representation model, protein 
sequence, pseudo amino acid composition, fuzzy K-nearest 
neighbor 
 

I.  INTRODUCTION 

For the reason that the attributes of protein sequence 
are closely correlated with its structures, functions and 
roles in biological processes, many scientists analyzed 
subcellular localization of protein sequence in a variety of 
ways. As we know, there are twenty different amino acids 
in protein sequence, and amino acid sequence is closely 
related to the biological function of protein. Its change 
often leads to the change of biological function of protein. 
The closer the genetic relationship is, the smaller the 
difference in amino acid composition between them will 
be [1]. In a sense, the dynamical folding process and 
stable structure, or native conformation, of a protein is 
determined by its primary structure, namely its amino 
acid sequence. Therefore, it is a great challenging and 
interesting issue to obtain the information on protein from 
its arrangement order of amino acid. To deal with the 

issue, the crucial procedure is to formulate the protein 
samples with an effective mathematical expression that 
can truly reflect their intrinsic correlation with the 
attribute to be predicted [2].  

Over the past thirty years, a large number of 
researchers have been studying the feature of protein 
sequence and proposed their representations. Two kinds 
of models are usually used to represent protein sample [2]. 
One is the sequential model, and the other is the discrete 
model. The most straightforward sequential model for a 
protein sample is its entire amino acid sequence. 
However, its application must be aimed at the sequence-
similarity-search-based tools, such as BLAST [3], and 
this approach failed to work when the query protein did 
not have significant sequence similarity to any attribute-
known proteins. As regards to the discrete model, many 
methods have been proposed to represent a protein 
sample. The simplest one is the amino acid (AA) 
composition or AAC presented by Nakashima et al. in 
1986. To avoid completely losing the sequence-order 
information in using the AAC-discrete model, Chou 
proposed some different discrete models, or the so-called 
“pseudo amino acid composition’’ (PseAAC) [4-5]. Xiao 
presented the complexity measure factor mode and 
cellular automaton image (CAI) mode [6-8]. Meanwhile, 
to represent, investigate and visually reveal the patterns 
of DNA sequences, Jeffrey proposed the chaos game 
representation (CGR) for DNA sequences. The 
correlation properties of coding and noncoding DNA 
sequences were studied by Peng et al in their fractal 
landscape or DNA walk model [9, 25]. Because the DNA 
walk model is proposed to study the effects of correlation 
of DNA sequences on long-range correlations, some 
improved models were also proposed for the 
representation of protein [1].  

Since the prediction is influenced together by the 
representation of the protein, the given benchmark dataset, 
the prediction algorithm and evaluation criterion, we will 
continue the research enlightened by modes of pseudo 
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amino acid composition (PseAAC) and chaos game 
representation (CGR) for DNA sequences. In this paper, 
we construct a similar CGR-walk model based on the 
similar HP model for protein sample, and a 20-dimension 
CGR-walk model for representation of protein sample is 
introduced to predict subcelllualr localization. The 
prediction results have been compared with the three 
modes, i.e. amino acid composition, Chou’s PseAAC and 
Xiao’s CAI in follows. 

II.  MATERIALS AND METHODS 

In this section, for experimenting and testifying the 
proposed method on predicting subcellular localization, 
four datasets are listed and followed with three sequential 
representations for the entire amino acid sequence of 
protein sample.  

Table I  
NUMBER OF PROTEINS IN EACH OF THE SUBCELLULAR LOCATIONS FOR 

FOUR DATASETS 
Orga
nism 

Subset Number 
of 
Proteins 

Number of location sites covered 
and entries in each site 

Viru
s 

A 204 7  (26, 11, 12, 6, 83, 10, 56) 
B 180 7  (7, 3, 4, 1, 134, 3, 28) 

plant 
A 265 11  (2, 124, 41, 2, 10, 37, 28, 2, 8, 

6, 5) 

B 406 11  (10, 80, 60, 16, 36, 59, 57, 14, 
32, 23, 19) 

Gpos A 232 5   (3, 117, 47, 1, 64) 
B 220 5  (11, 79, 61, 4, 65) 

Gneg A 653 8  (152, 76, 12 , 6, 186, 6, 103, 
112) 

B 643 8  (210, 20, 4, 1, 345 , 1, 13 , 49) 

A. Dataset 
The four protein datasets are viral [10], plant [11], 

Gram-positive bacterial [12] and Gram-negative bacterial 
[13], respectively, and each one of the datasets consist of 
two subsets shown in Table I. The first dataset is 
classified into 7 subcellular locations with respect to their 
host and virus-infected cells according to the 
experimental annotations. It consists of 384 viral proteins, 
of which (1) 33 are in cytoplasm, (2) 14 in endoplasmic 
reticulum, (3) 16 in extracell, (4) 7 in inner capsid, (5) 
217 in nucleus, (6) 13 in outer capsid, and (7) 84 in 
plasma membrane. According to the experimental 
annotations, the second dataset is classified into 11 
subcellular locations. And it consists of 671 protein 
sequences, of which 12 belong to cell wall, 204 to 
chloroplast, 101 to cytoplasm, 18 to endoplasmic 
reticulum, 46 to extracell, 96 to mitochondrion, 85 to 
nucleus, 16 to peroxisome, 40 to plasma membrane,  29 
to plastid, and 24 to vacuole. The third dataset consists of 
452 Gram-positive bacterial proteins and is classified into 
5 subcellular locations according to the experimental 
annotations. Of the dataset, 14 belong to cell wall, 196 to 
cytoplasm, 108 to extracell, 5 to periplasm and 129 to 
plasma membrane. According to the experimental 
annotations, the last dataset is classified into 8 subcellular 
locations. It consists of 1296, of which 362 in cytoplasm, 
96 in extracell, 16 in fimbrium, 7 in flagellum, 531 in 
inner membrane, 7 in nucleoid, 116 in outer membrane 
and 161 in periplasm. All of above dataset were 

constructed with rigorous cutoff thresholds by Shen and 
Chou (Refer to http: //www.csbio.sjtu.edu.cn/bioinf/). 

B. Representation of Protein Samples 
By extracting different features from protein sequences, 

various discrete modes were proposed, for example, 
amino acid composition (AAC) discrete model, Chou’s 
pseudo amino acid composition (PseAAC) and Xiao’s 
complexity measure factor based on cellular automata 
image. The three concepts of PseAAC have been widely 
used to study various problems in proteins and protein-
related systems, such as predicting enzymes and their 
family/sub-family classification. In this paper, the three 
discrete representations are chosen for the comparison 
with the proposed method, and they are briefly 
formulated as follows. 

(1) AA composition discrete model 
The protein sequence is composed of 20 different 

kinds of native amino acids, namely Alanine (A), 
Arginine (R), Asparagine (N), Aspartic acid (D), 
Cysteine (C), Glutamic acid (E), Glutamine (Q), Glycine 
(G), Histidine (H), Isoleucine (I), Leucine (L), Lysine (K), 
Methionine (M), Phenylalanine (F), Proline (P), Serine 
(S), Threonine (T), Tryptophan (W), Tyrosine (Y) and 
Valine (V). The simplest discrete representation is based 
on the amino acid (AA) composition. The AA 
composition discrete model can be formulated as follows.  

Given a protein sequence P with L amino acid residues,  
1 2 3 1 1i i i LP R R R R R R R− += ⋅⋅⋅ ⋅ ⋅ ⋅                       (1) 

Where R1 represents the first residue, R2 represents the 
second residue, and so forth. According to the AA model, 
the protein P of (1) can be expressed by 

1 2 20( , , , )TP f f f= ⋅⋅⋅                           (2) 
where uf  (u = 1, 2, . . . , 20) are the normalized 
occurrence frequencies of the 20 native amino acids in 
protein P and T is the transposing operator. The AA 
composition discrete model has been widely used for 
predicting the structural class of proteins and their other 
attributes. However, from (2), it is clearly that all of the 
sequence order effects are lost by using the AA 
composition discrete model. This is the main shortcoming 
of the AA composition discrete model. 

 (2) PseAA composition 
To avoid losing the sequence order information 

completely, the concept of pseudo amino acid 
composition (PseAA composition) was proposed first by 
Chou [8], and many efforts have been made in improving 
it [4, 15-17]. According to the typical PseAA 
composition discrete model, the protein P of (1) can be 
formulated as 

1 2 20 20 1 20 2 20( , , , , , , , ) , ( )TP p p p p p p Lλ λ+ + += ⋅⋅ ⋅ ⋅ ⋅ ⋅ <     (3) 
where  
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ω  is the weight factor and kτ  is the kth tier correlation 
factor, which reflects the sequence order correlation 
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among all of the kth most contiguous residues as 
formulated by 

,
1

1 L k

k i i k
i

J
L k

τ
−

+
=

=
− ∑  ( k L< )                (5) 

with  
2 2 21

, 1 1 2 2 3 33 (( ( ) ( )) ( ( ) ( )) ( ( ) ( )) )i i k i k i i k i i k iJ H R H R H R H R H R H R+ + + += − + − + −
   (6) 

where 1( )iH R , 2 ( )iH R , and 3 ( )iH R  are the 
hydrophobicity value, hydrophilicity value and side chain 
mass for the amino acid iR  respectively. Note that before 
substituting the values of hydrophobicity, hydrophilicity, 
and side chain mass into (6), they all are subjected to a 
standard conversion, as described by the following 
equation:  
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                     (7) 

where the symbols 0
1 ( )iH R  and 0

2 ( )iH R  are the original 
hydrophobicity and hydrophilicity values for Ri, and 

0
3 ( )iH R  is the side chain mass for Ri which are shown in 

Appendix A as well as other seven chemical and physical 
properties of amino acid. In (7) the symbol “< >” means 
taking the average of the quantity therein over 20 native 
amino acids, and SD means the corresponding standard 
deviation. The converted values obtained by (7) will have 
a zero mean value over the 20 native amino acids, and 
will remain unchanged if they go through the same 
conversion procedure again. As we can see from (3-7), 
the first 20 components in (3) are associated with the 
conventional amino acid composition of P, whereas the 
remaining components 20 1( ,p +  20 2 ,p +  ⋅ ⋅ ⋅ , 20 )p λ+  are the 
λ  correlation factors that reflect the first tier, second tier, 
and so forth up to the λ th tier sequence order correlation 
patterns. It is these additionalλ factors that approximately 
incorporate the sequence order effects. Note that λ is a 
parameter of integer and that choosing a different integer 
forλ will lead to a dimension different PseACC. λ =5 in 
this study.  

 (3) Complexity measure factor based on cellular 
automata image (CAI) 

It is very difficult to find protein’s characteristic vector 
particularly when the sequence is very long. To cope with 
this situation and contain the lost information of order 
effects, complexity measure factor based on cellular 
automata images was proposed by Xiao [8]. The images 
are derived from the amino acid sequence through the 
space-time evolution of cellular automata. At the first 
step, the 20 amino acids are coded in a binary mode as 

given in Table II, which can reflect the chemical and 
physical properties of an amino acid better, as well as its 
structure and degeneracy. Through the above encoding 
procedure, a protein sequence is transformed to a serial of 
digital signals. For example, the sequence “MASAA...” is 
transformed to “100111100101001 1100111001...”. 

We adopt the circulating boundary condition, with the 
iterative formula given below:  

( , ) ( ( 1, 1), ( 1, ), ( 1, 1))(2 ,2 5 1)
(,1) ( ( 1,5 ), ( 1,1), ( 1,2)) (2 ) (8)

( ,5 ) ( ( 1,5 1), ( 1,5 ), ( 1,1)) (2 )

Di j F Di j Di j Di j i n j L
Di F Di L Di Di i n

Di L F Di L Di L Di i n

= − − − − + ≤ ≤ ≤ ≤ −⎧
⎪ = − − − ≤ ≤⎨
⎪ = − − − − ≤ ≤⎩

 

where, D (1: n, 1: 5L) is a two-dimensional (2D) array to 
present the amino acid sequence image, the first row of 
array D deposit the protein 01 sequence after digital 
coding, F is the iterative rule, n is the iterative time. Data 
derived by the process with the evolving rule is saved in 
the rows starting from the second, and data in each row is 
derived from those in its previous row. 

TABLE II.  
THREE DIFFERENT TYPES FOR CODING AMINO ACIDS 

Type Coding 
Character P L Q H R 
Decimal 1 3 4 5 6 
Binary 00001 00011 00100 00101 00110 

Character S F Y W C 
Decimal 9 11 12 14 15 
Binary 01001 01011 01100 01110 01111 

Character T I M K N 
Decimal 16 18 19 20 21 
Binary 10000 10010 10011 10100 10101 

Character A V D E G 
Decimal 25 26 28 29 30 
Binary 11001 11010 11100 11101 11110 

The evolution rule for image formation must be able to 
obviously distinguish whether the proteins concerned are 
similar to each other or not. With plentiful experiments, 
the 84th rule is found be the best one in serving such a 
purpose among all the 256 kinds of evolving rules. The 
time that the rule evolves determines the width of the 
images. It was found that the image structure is basically 
steady when the time is 100. When the 2D array (matrix) 
was transformed into an image with visualization 
techniques, the predicating subcelluar localization is 
transformed into image recognition. Since the protein 
images are saved in 2D arrays, every row of gene images 
is a 01 sequence. The Ziv-Lempel complexity of these 01 
sequences then is regarded as pseudo amino acid 
composition. Moreover, the Ziv-Lempel complexity of a 
sequence can be measured by the minimal number of 
steps required for its synthesis in a certain process.  

There are 100 complexities if the image has 100 rows, 
and these complexities all can be regarded as pseudo 
amino acid components. However, the best predict 
accuracy can be gained under the first 5 complexities 
used in plentiful experiments. Thus, by following exactly 
the same procedure as [4], a protein can be expressed by 
a vector or a point in a 25 dimensional space; i.e. 

1 2 3 25( , , , , )TX x x x x= L                     (9) 
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where ix  (i=1, 2, ..., 20) are the occurrence frequencies 
of the 20 amino acids in the protein, arranged 
alphabetically according to their single letter codes, jx  
(j=21, 22, ..., 25) are the complexity measure factors for 
the protein sequence, T represents the transpose operator. 

III.  CGR-WALK MODEL FOR THE REPRESENTATION OF 
PROTEIN SAMPLE 

Since each coding sequence in the complete genome of 
an organism can be translated into a protein sequence by 
using the genetic code and the secondary and the space 
structures of a protein are determined by its amino acid 
sequence. In order to discover the correlation among in 
amino acids, we link all protein sequences according to 
the order of the coding sequence, and present a novel 
representation of protein based on CGR-walk model in 
20-dimension.  

The Chaos Game is an algorithm which allows one to 
produce pictures of fractal structures. However, as a 20-D 
image, the “picture” of a protein cannot be viewed. We 
then represent it in 20-D vector. The Chaos Game model 
for obtaining representation of protein sequence still can, 
in simplest form, be proceed as follows:  
 (1). Locate 20 dots in 20-dimensional space. The dots 
must be orthogonally distributing in the space to 
character the points effectively. We call these dots 
vertices. For example, let 1 2 20( , ,..., )c c c  represents the set 
of 20 amino acid (P, L, H, R, F, Y, C, S, Q, W, T, I, M, E, 
N, A, K, G, D, V) which can better reflect the chemical 
and physical properties of an amino acid, the 20 points 
then are denoted as:  

1 2 20( , ,..., )i i i
ic c c c=                          (10) 

where 1i
jc =  when  i j=  and 0i

jc =  when i j≠  
, 1, 2,..., 20i j = .  

 (2). Pick a point as the origin, and mark it as 0CGR , i.e. 
the coordinate of the point is (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0). The moving point then is rolling 
according to the representation of amino acids in the 
protein although its initial position is the initial point. 
 (3). For the given protein sequence shown in (1) with 
length L, every amino acid of the protein sequence 
corresponds to a vertex. In the 20-dimension space, let 

kCGR  denotes the site of the moving point after k times 
rolling and 1 10.4* *( )k k i k iCGR CGR w CGR c− −= + −  
when R k  is ic . Pi

k  denotes the projected length of the ith 
amino acids after k times rolling. The relation between 
these variables is summarized in following. 

1 1

1

P 0.4* *
P

P

i
k i k i k ii

k i
k ik

w CGR c R cis
R cisnot

− −

−

⎧ + −⎪= ⎨
⎪⎩

        (11) 

where 0 0iP = , 
mean( )0.9*( -min )

+
max -min max( )

i
ll l

i
l l l

HH H
w

H H H
= , 

1,2,..., 20i = , 1, 2,...,k L= . 1,2,...,10l = . maxH l and 
minH l are the maxim and minimum of vector 
respectively. H1 represents hydrophobicity; H2 represents 
hydrophilicity;  H3 represents side-chain mass;  H4 
represents pK1 (alpha-COOH); H5 represents pK2 (NH3); 
H6 represents PI; H7 represents average volume of buried 
residue; H8 represents molecular weight; H9 represents 
side chain volume; H10 represents mean polarity. 
 (4). After the moving point has been rolled L times 
according to the given protein sequence, the protein can 
be expressed by a vector or a point in a 20 dimensional 
space, i.e. 

1 2 3 20( , , , , )T
L L L L LP p p p p= L           (12) 

Since the site kCGR  on which the moving point stood 
at time k is related with all of the previous k-1 amino 
acids which would affect those of all amino acids 
followed with the kth amino acid, the vector 

1 2 3( , , ,L L L LP p p p=  ,L  20 )T
Lp is the summation weighted 

projected length of each amino acid. Therefore, LP  
reflects the order effects of the whole protein sequence as 
well as the information of occurrence frequency. This 
effect also will be testified and presented with the 
experimental results in the following section. 

IV.  EXPERIMENTAL METHOD AND STEPS 

A. Prediction Algorithm, Measure and Test Method 
There are many different prediction algorithms 

introduced to address for predicting subcellular 
localization, such as discriminant algorithm [19], neural 
network algorithm [20], genetic algorithm [21], support 
vector machine (SVM) [22], and K-nearest Neighbor 
algorithm [10, 12]. For the reason that the K-nearest 
neighbor (KNN) classifier has good performance and 
simple-to-use feature. Fuzzy K-nearest neighbor classifier 
gains more accuracy than the conventional KNN besides 
having the above merits. Thus, we shall focus on the 
fuzzy K-nearest neighbor algorithm in this paper.  

As regard to the measure for the “nearness” of the 
fuzzy KNN classifier, there are many different definitions, 
such as Euclidean distance, and Mahalanobis distance 
[19]. Although the Mahalanobis distance may give rise to 
high accuracy, it has higher levity than Euclidean 
distance. In this study, we only concern the effects of the 
pseudo amino acid compositions on predicting 
subcellualr localization, not those of distance or 
algorithms. For the simple computation, the Euclidean 
distance is the preferable measure for the experiment with 
fuzzy K-nearest neighbor classifier in this paper. 

For the reason that, in  jackknife test, all the proteins in 
the benchmark dataset will be singled out one-by-one and 
tested by the predictor trained by the remaining protein 
samples, and each protein sample will be in turn moved 
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between the training and testing dataset. The outcome 
obtained by the jackknife cross-validation is always 
unique for a given benchmark dataset. So, the jackknife 
test can exclude the “memory” effect and avoid the 
arbitrariness problem met in the independent dataset test 
and subsampling test. Furthermore, the jackknife test has 
been increasingly and widely used by investigators to 
examine the quality of various predictors. Jackknife test 
then is the ideal one for this study. 

B. Experimental Steps  
Four datasets are parted into two subsets iA  and 

iB ( 1, 2,3,4)i = . There are 204, 265, 232, and 653 
elements in iA ( 1,2,3, 4)i = , respectively. 
Correspondingly, there are 180, 406, 220, and 643 
elements in iB ( 1, 2,3,4)i = , respectively.  

All iA  and iB ( 1,2,3, 4)i =  are the testing datasets 
without distinguishing them as learning dataset or testing 
datasets mentioned in literatures [10-12].  
   Every protein sequence has been expressed as ten 
vectors according to the ten chemical and physical 
properties of amino acid, i.e. Hl ( 1, 2,...,10l = ), by CGR-
walk model as well as AA composition discrete model 
(AA), Chou’s PseAA composition and Xiao’s complexity 
measure factor based on cellular automata image. Then 
the thirteen representations of a protein sequence are 
tested by fuzzy K-nearest neighbor classifier with K=1, 
K=2, ..., K=10 with the test method of jackknife test. The 
classify accuracies are listed and discussed in the next 
section. 

TABLE III.  
COMPARISON RESULTS OF THE JACKKNIFE TEST ON SUBSET A OF VIRAL 

PROTEIN 
k 1 2 3 4 5 6 7 8 9 10
CGRH1 81 78 80 78 78 75 74 73 74 73
CGRH2 83 78 81 78 76 75 76 74 74 74
CGRH3 84 78 78 74 74 74 74 73 72 72
CGRH4 83 79 79 78 77 76 74 74 74 74
CGRH5 83 78 78 78 76 75 75 75 74 75
CGRH6 83 81 80 77 77 74 76 74 75 74
CGRH7 84 79 79 75 75 75 74 73 72 72
CGRH8 83 78 78 75 73 76 73 73 74 74
CGRH9 84 78 79 76 74 77 75 73 73 72

CH10 82 79 81 77 77 77 75 75 73 72
AAC 83 79 79 78 74 74 73 72 73 73
PAA 83 79 79 78 74 74 74 72 73 73
CAI 83 79 79 78 74 74 73 73 73 73
Best.  1 1 1 1 1 1 1 1 1 1

V.  RESULTS AND DISCUSSION  

Given the prediction method and test method described 
in the above sections, the datasets are experimented by 
using fuzzy K-nearest neighbor classifier with different K. 
We will outline the results in detail and followed with the 
discussion in this section.  

TABLE IV. 
COMPARISON RESULTS OF THE JACKKNIFE TEST ON SUBSET B OF VIRAL 

PROTEIN 
k 1 2 3 4 5 6 7 8 9 10
CGRH1 83  81  83  82  83  82  82  81  81 79 
CGRH2 83  83  83  82  82  83  82  81  79 78 

CGRH3 83 84 84 83 83  83  82  82 82 81 
CGRH4 82 84 83 82 83  82  83  82 83 81 
CGRH5 82 81 82 82 82  83  83  82 82 81 
CGRH6 81 83 84 82 83  82  83  81 81 81 
CGRH7 82 83 84 83 84  84  83  82 82 81 
CGRH8 83 84 84 82 83  83  83  82 82 81 
CGRH9 82 83 84 83 84  84  83  82 82 81 

CH10 84 82 83 83 83  83  83  81 81 79 
AAC 83 81 83 82 82  82  83  81 81 81 
PAA 83 81 83 82 82  82  83  81 81 81 
CAI 83 81 83 82 83  82  83  81 81 81 
Best. 1 1 1 1 1  1  1  1 1 1 
Take the subset A of viral proteins as an example, the 

success rates of CGR by using the jackknife cross-
validation test are listed in Table III of which, the second 
row shows the success rates with Hydrophobicity, i.e. H1, 
of the amino acid, the third row shows the success rates 
with Hydrophilicity, i.e. H2, of the amino acid, and so 
forth up to the last chemical and physical properties of 
amino acid. And the success rates of the three 
counterparts, i.e. AAC, PAA and CAI are listed in 
following three rows.  

In this study, we the comparison of success rates are 
compared with fuzzy KNN, and the highest success rates 
of different representations with the same K are shown in 
bold. In the last row of Table III, the sign that the CGR 
mode is able to obtain the highest success rates or not be 
denoted as 1 or 0. With the same work, the success rates 
of the other seven datasets are listed in Table IV-X. 

TABLE V.  
COMPARISON RESULTS OF THE JACKKNIFE TEST ON SUBSET A OF PLANT 

PROTEIN 
k 1 2 3 4 5 6 7 8 9 10
CGRH1 40 40 43 45 47  48  47  47 48 49 
CGRH2 43 42 44 48 46  47  46  45 45 48 
CGRH3 44 44 45 47 49  48  45  46 48 47 
CGRH4 42 42 44 45 48  47  46  46 49 48 
CGRH5 40 41 45 44 47  46  47  48 48 48 
CGRH6 43 44 48 48 47  48  46  47 47 48 
CGRH7 44 44 47 47 48  47  46  46 46 46 
CGRH8 43 43 48 46 48  47  45  45 48 46 
CGRH9 43 45 48 45 47  48  47  46 48 47 

CH10 40 40 45 47 46  46  47  49 48 48 
AAC 40 36 45 45 45  49  48  47 48 46 
PAA 41 35 45 45 46  49  48  48 48 46 
CAI 38 37 43 45 46  46  48  46 46 46 
Best. 1 1  1  1 1  0  0  1  1  1 

TABLE VI.  
COMPARISON RESULTS OF THE JACKKNIFE TEST ON SUBSET B OF PLANT 

PROTEIN 
k 1 2 3 4 5 6 7 8 9 10
CGRH1 26 29 32 34 33  34  33  32 34 33 
CGRH2 27 28 31 33 35  34  35  36 36 36 
CGRH3 30 32 28 33 35  36  34  35 36 35 
CGRH4 30 31 29 32 35  35  35  34 33 33 
CGRH5 30 33 32 34 36  34  34  35 35 32 
CGRH6 28 31 29 31 32  34  33  35 34 35 
CGRH7 29 30 30 33 35  35  35  35 35 34 
CGRH8 30 31 28 33 36  37  36  35 36 34 
CGRH9 26 29 30 32 32  35  34  33 35 34 

CH10 27 28 29 32 31  32  31  31 33 33 
AAC 32 34 34 35 38  36  36  36 36 37 
PAA 31 34 34 35 37  36  36  37 36 36 
CAI 29 32 33 34 35  36  36  36 38 37 
Best. 0 0  0  0 0  1  1  0  0  0 
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TABLE VII.  
COMPARISON RESULTS OF THE JACKKNIFE TEST ON SUBSET A OF 

GRAM-POSITIVE PROTEIN 
k 1 2 3 4 5 6 7 8 9 10
CGRH1 69  74  77  77  78  76  77  76  76 77 
CGRH2 74  79  81  81  80  81  80  80  80 80 
CGRH3 76  80  80  81  79  81  79  79  79 80 
CGRH4 72  80  81  77  79  78  78  78  77 77 
CGRH5 72  75  81  80  79  79  79  77  77 78 
CGRH6 73  78  80  81  81  80  79  81  79 78 
CGRH7 75  78  79  81  79  81  79  78  79 80 
CGRH8 76  80  80  81  79  80  80  80  79 80 
CGRH9 76  79  81  80  79  80  79  78  78 79 

CH10 70  73  78  78  78  78  77  77  76 76 
AAC 73  78  81  78  80  78  80  80  79 78 
PAA 72  78  81  79  80  78  80  79  78 78 
CAI 75  78  80  79  81  80  80  78  76 76 
Best.  1  1  1 1  1 1  1  1  1  1 

From the tables III-X, we can see that the CGR mode 
gains most of the highest success rates. There is only one 
exception which is the experiments on subset B of plant 
protein shown in Table VI. The table also tells us that the 
best performance is AAC not Chou’s PseAA or Xiao’s 
CAI.  Since Chou’s PseAA and Xiao’s CAI have 
concerned the sequence order lost by AAC, this fact 
shows that the amount of information of occurrence 
frequencies is greater than that of sequence order, and has 
drowned the last one. This also can explain the not well 
performance in Table IX. 

TABLE VIII.  
COMPARISON RESULTS OF THE JACKKNIFE TEST ON SUBSET B OF GRAM-

POSITIVE PROTEIN 
k 1 2 3 4 5 6 7 8 9 10
CGRH1 67  64  66  68  66  69  68  68  69 68 
CGRH2 65  68  72  72  73  74  75  73  72 73 
CGRH3 65  65  68  69  70  71  72  72  73 73 
CGRH4 67  68  69  70  69  71  69  73  73 71 
CGRH5 64  68  71  73  73  71  69  70  72 70 
CGRH6 67  68  69  70  73  74  70  71  73 70 
CGRH7 66  67  68  68  71  72  70  72  71 72 
CGRH8 66  64  68  70  69  71  70  72  72 74 
CGRH9 66  68  69  69  70  70  71  73  70 72 

CH10 66  64  65  66  66  69  66  66  67 68 
AAC 67  65  71  73  71  72  72  74  72 71 
PAA 66  65  70  72  70  72  72  73  71 71 
CAI 65  65  70  67  70  71  73  71  72 71 
Best.  1  1  1  1  1 1  1  0  1  1 

TABLE IX.  
COMPARISON RESULTS OF THE JACKKNIFE TEST ON SUBSET A OF 

GRAM-NEGATIVE PROTEIN 
k 1 2 3 4 5 6 7 8 9 10
CGRH1 58  60  61  61  63  64  63  63  64 62 
CGRH2 59  60  62  64  64  63  64  65  66 65 
CGRH3 59  62  63  63  64  64  65  64  64 65 
CGRH4 57  59  63  64  64  67  65  65  65 65 
CGRH5 58  60  63  64  64  64  65  65  64 64 
CGRH6 56  59  63  63  65  65  65  65  65 67 
CGRH7 59  60  63  64  64  64  65  66  66 65 
CGRH8 59  62  62  63  64  64  66  65  65 66 
CGRH9 58  60  63  64  62  63  64  64  65 65 

CH10 57  61  63  61  63  63  62  62  61 63 
AAC 58  62  63  65  66  66  66  66  66 65 
PAA 58  62  64  65  66  66  65  66  66 66 
CAI 58  62  63  65  65  66  65  66  66 65 
Best.  1  1  0  0  0 1  1  1 1  1 

TABLE X.  
COMPARISON RESULTS OF THE JACKKNIFE TEST ON SUBSET B OF GRAM-

NEGATIVE PROTEIN 

k 1 2 3 4 5 6 7 8 9 10
CGRH1 71 71 73 74 72  73  72  73 73 73 
CGRH2 72 71 73 74 74  74  74  74 74 75 
CGRH3 72 72 74 74 74  75  74  76 74 75 
CGRH4 71 74 73 74 75  76  73  75 74 75 
CGRH5 70 72 71 74 73  74  74  74 75 75 
CGRH6 71 73 73 73 73  73  73  73 74 75 
CGRH7 72 73 73 74 74  76  75  76 75 75 
CGRH8 73 72 74 74 74  75  74  75 75 75 
CGRH9 72 73 73 74 74  75  74  75 75 75 

CH10 70 71 72 73 72  72  72  72 72 71 
AAC 72 72 74 73 74  74  75  74 75 75 
PAA 73 72 74 73 74  74  74  74 75 75 
CAI 73 72 74 73 74  74  75  74 75 75 
Best. 1 1  1  1 1  1  1  1  1  1 

The highest success rates with different K and 
chemical and physical properties of amino acids are 
shown in Table XI and XII respectively. As shown in 
Table XI, the best K for fuzzy K-nearest neighbor is 4 
followed by 10, 1 and 3. From Table XII, the best 
performance is H8 followed by H7, H3 and H2, and then 
H4, H6. Since the prediction result is affected by the 
representation of the protein, the given benchmark dataset, 
these discussions may be only accounted for the fuzzy K-
nearest neighbor classifier applied on predicting 
subcellular localization. However, it is still a clue for the 
proposed mode applied on other datasets or areas. 

TABLE XI 

SUM OF THE HIGHEST SUCCESS RATES WITH DIFFERENT KS 
Data 
set 1 2 3 4 5 6 7 8 9 10

Vi
rus

A 3 1 2 4 1 2 2 2 1 1 
B 1 3 5 4 2 2 7 6 1 7 

Pl
ant

A 2 1 3 2 1 0 0 1 1 1 
B 0 0 0 0 0 1 1 0 0 0 

Gp
os 

A 3 3 4 5 1 3 2 1 1 4 
B 3 5 1 1 3 2 1 0 3 1 

Gn
eg 

A 4 2 0 0 0 1 1 1 2 1 
B 1 1 2 8 1 2 1 2 4 8 

Sum 17 16 17 24 9 13 15 13 13 23

TABLE XII.  
SUM OF THE HIGHEST SUCCESS RATES WITH DIFFERENT AMINO ACID 

CHARACTERS 
Data 
set 

H
1 

H2 H3 H4 H5 H6 H7 H8
H
9 

H
10

Vi
ru
s 

A 2 3 1 1 3 3 1 0 2 3 
B 0 0 5 5 3 3 7 5 7 3 

Pl
an
t 

A 1 1 2 1 0 2 1 1 2 1 
B 0 0 0 0 0 0 0 2 0 0 

G
po
s 

A 0 6 5 2 1 3 3 5 2 0 
B 1 5 1 3 3 5 0 1 1 0 

G
ne
g 

A 0 2 2 1 0 1 3 3 0 0 
B 1 2 4 5 3 1 6 5 3 0 

Sum 5 19 20 18 13 18 21 22 1
7 7 

VI.  CONCLUSION 

The chaos game representation of sequences is a 
method to ordinate the entire domain of possibilities in a 
continuous two, or higher dimensional space. The CGR 
transformation makes a certain sequence become an 
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entire new set of statistical analysis tools. Therefore, 
CGR is a bridge between sequences of discrete units and 
numeric coordinates in a continuous space. Although 
some research has been carried out by taking into 
consideration sequence order and correlations in protein 
sequences, the methods are yet potentiality for their 
perfection and continual improvement. In this paper, we 
convert the CGR coordinates into a new mode for 
representing protein sample and express the protein 
sequence with a 20-dimension vector. And the vector is 
computed from the track of protein sequence which 
contains the sequence order as well as occurrence 
frequency. This is the essence why the success rates 
predicted by the current method are superior to those by 
many other methods on the same datasets. 

The results indicate that the CGR approach is an 
effective mode for representing protein samples and 
might at least serve as an alternative improve the 
prediction quality for other protein attributes [20, 21], 
such as membrane [19], G-protein-coupled receptor types 
[6, 24] and enzyme family classes [4, 22].  
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Appendixe A Chemical and physical properties of amino acid 

   H 
R H1 H2 H3 H4 H5 H6 H7 H8 H9 H10

A 0.62 -0.5 15 2.35 9.87 6.11 91.5 89.09 27.5 -0.1
C 0.29 -1 47 1.71 10.8 5.02 117.7 121.15 44.6 1.36
D -0.9 3 59 1.88 9.6 2.98 124.5 133.1 40 -0.8
E -0.7 3 73 2.19 9.67 3.08 155.1 147.13 62 -0.8
F 1.19 -2.5 91 2.58 9.24 5.91 203.4 165.19 115.5 1.27
G 0.48 0 1 2.34 9.6 6.06 66.4 75.07 0 -0.4
H -0.4 -0.5 82 1.78 8.97 7.64 167.3 155.16 79 0.49
I 1.38 -1.8 57 2.32 9.76 6.04 168.8 131.17 93.5 1.31
K -1.5 3 73 2.2 8.9 9.47 171.3 146.19 100 -1.2
L 1.06 -1.8 57 2.36 9.6 6.04 167.9 131.17 93.5 1.21
M 0.64 -1.3 75 2.28 9.21 5.74 170.8 149.21 94.1 1.27
N -0.8 0.2 58 2.18 9.09 10.76 135.2 132.12 58.7 -0.5
P 0.12 0 42 1.99 10.6 6.3 129.3 115.13 41.9 0 
Q -0.9 0.2 72 2.17 9.13 5.65 161.1 146.15 80.7 -0.7
R -2.5 3 101 2.18 9.09 10.76 202 174.2 105 -0.8
S -0.2 0.3 31 2.21 9.15 5.68 99.1 105.09 29.3 -0.5
T -0.1 -0.4 45 2.15 9.12 5.6 122.1 119.12 51.3 -0.3
V 1.08 -1.5 43 2.29 9.74 6.02 141.7 117.15 71.5 1.09
W 0.81 -3.4 130 2.38 9.39 5.88 237.6 204.24 145.5 0.88
Y 0.26 -2.3 107 2.2 9.11 5.63 203.6 181.19 117.3 0.33

Where H1: Hydrophobicity;  H2: Hydrophilicity;  H3: side-chain mass;  H4: pK1 (alpha-COOH);  H5: pK2 (NH3);  H6: 
PI; H7: Average volume of buried residue;  H8: Molecular weight;  H9: Side chain volume;  H10: Mean polarity.
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