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Abstract—Tongue diagnosis is one of the most important 
examinations in traditional Chinese medicine. Tongue 
images are often corrupted by various noises, but the 
subsequent diagnosis requires that the tongue images are 
clean, clear and noise-free. Thus, tongue image denoising is 
the vital preprocessing step in tongue diagnosis. A 
comparative study of tongue image denoising methods is 
given in this work, and four different methods, i.e. wavelet 
transform, wavelet packet transform, adaptive median filter 
and wiener filter are utilized to denoise the tongue images, 
and then the performance of these four methods is evaluated 
and compared. The experimental results show that wavelet 
transform-based method can effectively reduce Gaussian 
noise and speckle noise mixing in the tongue images and 
yields better results than the other three methods, and the 
adaptive median filter method gets the best result in 
removing salt & pepper noise. Moreover, the results also 
indicate that wavelet transform-based method outperforms 
wavelet packet transform-based method for the noise 
reduction of tongue images. 
 
Index Terms—tongue image, traditional Chinese medicine, 
tongue diagnosis, noise reduction 

I.  INTRODUCTION 

The traditional Chinese medicine (TCM) is an 
important part of world medicine. With a long history of 
over twenty centuries, TCM has formed an complete 
medical system, and can diagnose, treats and prevents 
disease at an earlier stage. TCM causes little pain, has no 
injury and treats the human body as a whole, and is very 
effective in the treatments of some diseases, such as vital 
infections, chronic problems and cancers. It makes a great 
contribution to human health. However, due to being 
deficient in quantitative diagnostic standards, the 
accuracy of diagnosis completely depends on the doctor's 
experiences, and the diagnostic techniques are very hard 
to grasp. Therefore, it's very urgent to quantify TCM.  

Tongue diagnosis is one of the most important 
examinations in TCM. Doctors diagnose the patient by 
inspecting the tongue color, tongue shape and tongue 
property. Tongue diagnosis is considered to be carrying 
very valuable information for some disease diagnosis, 
such as gastrosia. In recent years, with the development 
of computer science and technology, especially artificial 

intelligence and machine vision, the modernization of 
tongue diagnosis is paid more and more attention by 
researchers. Computerized tongue diagnosis is 
technology mainly includes tongue image preprocessing, 
feature extraction and tongue recognition [1].  

This paper mainly focuses on the tongue image noise 
reduction in the preprocessing stage. Tongue images are 
obtained by a self-designed tongue image acquisition, 
which is shown in Fig. 1, in which a digital camera and 
standard illuminants are built in. Due to the influence of 
the light source and some uncontrollable movements of 
body and respiration, the obtained images can be easily 
contaminated by various noises. Therefore, it is essential 
to remove these noises. Common image noise usually 
include Gaussian noise, salt & pepper noise, 
multiplicative noise (for example, speckle noise), etc. Up 
to now, many methods have been developed to the noise 
reduction of tongue image [2-4]. However, the 
comparison research of tongue image noise elimination is 
not presented in these researches.  

In this study, we applied four different algorithms to 
the tongue image noise reduction. The image denoising 
methods can be categorized into space domain and 
transform domain. Space domain methods are the data 
operation on the processing of image pixels grey value 
directly. Common space domain denoising methods 
include average filtering, median filtering [5] and wiener 
filtering [6], etc. Transform domain method deal with 
image in some transform domain, such as frequency 
domain and wavelet domain. It usually consists of four 
steps. Firstly, the image is converted from space domain 
to a transform domain. Then, the acquired coefficients are 
dealt with by some methods. Finally, the processed image 
is transformed inversely. Wavelet transform (WT) is a 
very useful denoising method, which is located in time 
and frequency, and can gain good sparsity for spatially 
localized details, such as edges and singularities [7]. 
Because such details carry significant information for 
subsequent analysis, in recent years, wavelet-based 
denoising methods has became important research 
direction of image denoising [8]. Meanwhile, wavelet-
based denoising methods include WT denoising method, 
wavelet packet transform (WPT) denoising method, 
multi-wavelet denoising method, etc.  

In order to compare the effectiveness of the tongue 
image noise reduction methods, we add Gaussian noise, 
salt & pepper noise and speckle noise into the tongue 
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image, respectively. Then, WT, WPT, an adaptive 
median filter and wiener filter are employed to eliminate 
the noises that confused in the tongue images. Finally, the 
performances of these approaches are compared and 
some useful conclusions are given. 

 

 
Figure 1. The tongue image acquisition instrument 

II.  NOISE TYPE 

Noise is undesired information, and the type of noises 
compounding in the image is usually unknown. In this 
study, to compare the effectiveness of noise reduction 
algorithms, we select several typical type images and add 
different types of noises into the images. Typical noises 
include Gaussian noise, salt & pepper noise and speckle 
noise, which is multiplicative in nature [9]. The 
characteristics of these noises are discussed in this section. 

  A. Gaussian Noise  
Gaussian noise is distributed over the image evenly 

which means that each pixel in the noise image is the sum 
of the original pixel value and a random Gaussian 
distribution noise value. Namely, this type of noise has a 
Gaussian distribution and it's probability distribution 
function is given by 
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where g represents the gray level, m is the mean of the 
noise, and σ is the standard deviation of the noise. 

B. Salt & Pepper Noise 
Salt & pepper noise is a typical noise type commonly 

confusing in images. It is an impulse type of noise and 
caused generally by malfunctioning of pixel elements in 
the camera sensors, faulty memory locations, or timing 
errors in the digitization process [9]. An image was 
corrupted by salt & pepper noise usually has dark pixels 
in bright regions and bright pixels in dark regions. As it 
has only two possible values, the corrupted pixels are set 
alternatively to the minimum or to the maximum value, 
which makes the image look like “salt and pepper”. 

C. Speckle Noise 
Speckle noise is a kind of multiplicative noise which 

presents in almost all coherent imaging systems such as 
laser, acoustics and synthetic aperture radar (SAR) 
imagery [9]. It can reduces the image picture quality and 
seriously affect the subsequent image processing such as 
automatic segmentation, classification, target detection, 
and other quantitative analysis of image contents. 

III.  NOISE REDUCTION METHODS 

A. WT 
At the end of 1980s, wavelet analysis started to 

become a hot research field. The wavelet analysis method 
is a very effective method of time-frequency analysis, 
which has been applied in many fields, such as signal 
process, speech analysis and pattern recognition. WT is 
adept in dealing with signals on short time intervals for 
high frequency components and long time intervals for 
low frequency components. At large scale, low frequency 
part of signal can be come out by WT, while at small 
scale; high frequency information could be revealed. 
Therefore, WT is called math microscope. WT can be 
categorized into continuous and discrete. Continuous 
wavelet transform (CWT) is defined by  

*
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where x (t) represents the analyzed signal, a and b 
represent the scaling factor (compression coefficient) and 
translation along with time axis (shifting coefficient). The 
superscript asterisk means the complex conjugation. ψa, b 
(t) is expressed by scaling the wavelet at time b and scale 
a:  

,
1( ) ( )a b

t bt
aa

ψ ψ −
=  ,                   (3) 

where ψ (t) represents the wavelet. 
Usually, an image consists of useful signals and noises. 

The useful signals often presents in the low-frequency 
part while noises and edge details generally present in the 
high-frequency part. The denoising methods based on 
WT generally filter out noises by setting thresholds. WT 
is good at energy compaction. Usually, small coefficients 
are considered to be produced by noise while large 
coefficients are corresponding to the useful image 
information. Hence, these small coefficients can be 
abandoned without affecting the significant image 
features.  

The threshold method was the most frequently used 
one among the wavelet-based denoising methods which is 
simple and effective. Determining threshold is focal task 
in the wavelet threshold denoising method. The threshold 
value influences the quality of the processed image 
directly. Smaller threshold means that more wavelet 
coefficients will be retained, namely, more image 
information will be remain. However, more noises also 
will survive. Reversely, if a larger threshold is set, noise 
will be eliminated, and at the same time, some useful 
high frequency information of the image may be missed. 
The selection of thresholds can be classified into two 
categories, i.e. hard threshold and soft threshold. In hard 
threshold method, the wavelet coefficients are set to zero 
if their value is smaller than a certain threshold λ, which 
is given as 

,  

0,   

w w
W

wλ

λ

λ

⎧ ≥⎪= ⎨
<⎪⎩

 .                        (4)  

While in soft threshold method, the wavelet 
coefficients which are less than a threshold are set to zero 
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and others would be subtracted the value of the threshold, 
as given by (5). 
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where sign () is signum function. Hard threshold can 
maintain some local characteristics, such as image edges, 
but it is prone to produce visual distortions such as 
ringing, pseudo-Gibbs effect [10]. Thus, soft threshold 
method is employed in this paper. Soft threshold methods 
can be divided into global soft threshold and local soft 
threshold. Global threshold means that a same threshold 
is employed for the high-frequency wavelet coefficients 
in all decomposition layers, while local soft threshold 
method utilizes different thresholds in each layer, which 
can achieve better performance in most situations. Hence, 
local soft threshold method is utilized. In this paper, we 
use the NormalShrink [11] method to select the wavelet 
thresholds. 

The threshold value is TN  is defined as 
2

N
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where the scale parameter β is computed once for each 
scale using the following equation:  

log( )kL
J

β =                                   (7) 

Lk is the length of the subband at kth scale, J is 
decomposition level. σො2 is the noise variance, which can 
be estimated from the subband HH1, HH1 is diagonal 
direction component of high-frequency at the first scale, 
�෡ 2 can be denoted as 

^
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and �෡ �  is the standard deviation of the subband under 
consideration. 

Currently, common wavelet basis function mainly 
includes orthogonal wavelet, semi-orthogonal wavelet 
and biorthogonal wavelet. Different wavelets have 
different time-frequency features, using different 
wavelets to denoise image can get different effects. 
Therefore, the selection of wavelet basis function is also 
one important issue and required to be considered 
carefully. According to [12], if the noise intensity is 
comparatively low, low threshold is needed. If the same 
threshold is set, the high frequency coefficients remained 
by the filtering method based on orthogonal wavelet 
transform can get better reconstruction result than that 
based on biorthogonal wavelet transform. Oppositely, 
when the noise intensity is comparatively high, due to the 
range of the coefficients obtained by biorthogonal 
wavelet transform is larger than orthogonal WT, there 
would be more energy of the original image in the 
remained coefficients if bigger threshold is set. However, 
as usual, the conditions of the images are complex, and 
this strategy is not suitable to select appropriate wavelet 
basis. We utilizes the emulation experiment to ascertain 

the best wavelet basis and its decomposition scale based 
on SNR and MSE, which will be introduced in the 
following sections. 

In sum, the procedure of tongue image denoising 
method based on WT is illustrated as follows.  

1. Choose one wavelet function and decomposition 
layer, apply WT to the noisy tongue images and get the 
wavelet coefficient. 

2. Select the thresholds according to (6) at each 
decomposition layer and assign zero to the detail 
coefficients whose values are smaller than the selected 
thresholds. 

3. Use the inverse WT and reconstruct the denoised 
image from the wavelet coefficients. 

4. Compute the signal to noise ratio (SNR) and mean 
square error (MSE), which shown in (16) and (17), to 
guide the choice of the wavelet function and 
decomposition layer. Repeat step 1, 2 and 3, record the 
denoising results when get the maximal SNR or Minimal 
MSE. 

B. WPT 
Wavelet packet analysis is extended from wavelet 

analysis and makes signal information decompose more 
meticulous. The wavelet packet performs the recursive 
decomposition of the frequency bands obtained by the 
recursive binary tree. These sequences are then sub-
sampled by a factor of two [13]. In the WPT, a pair of 
low pass and high pass filters is used. The two wavelet 
orthogonal bases generated from a parent node are 
defined as  

2
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where h[n] is the lowpass filter, g[n] is the highpass filter 
and ψ[n] is the wavelet function. In the ( 2 )p j

j k nψ − , j is 
the depth of decomposition, p is the number of nodes to 
the left of the parent node. 

As shown in Fig. 2, WPT can be viewed as a tree. The 
root of the tree denotes the original data set. The next 
level of the tree is the result of one step of WT. Similarly, 
the inverse wavelet packet can reconstruct the original 
image from the wavelet packet decomposition spectrum. 
Note that, the wavelet basis function cannot be changed 
during the construction. 

The original image is decomposed gradually into some 
sub-images with different scales by two-dimensional WT. 
After the first decomposition, the original image is 
divided into four parts. The first part is the low frequency 
component reserving the most important information of 
the original image. The second part is the high frequency 
horizontal component. The other two are the high 
frequency vertical component and the high frequency 
diagonal direction component. The high frequency part 
includes the information of edge details and noise. WT 
only decomposes the low frequency component at the 
second decomposition, while WPT decomposes both the 
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low frequency component and the high frequency 
component.  

Just as WT, using WPT to denoise the corrupted 
tongue image also needs to set thresholds. In order to 
convenient for comparing the different methods, we also 
use the Normal Shrink method to select thresholds in the 
WPT based denoising method. 

H0(z) 

X(z)

H1(z) 

H0(z)  H1(z)  H0(z)  H1(z)  
Figure 2. Wavelet packet tree. 

We can adopt many kinds of wavelet packet bases 
when apply WPT to denoise an image. Not all wavelet 
basis function can be suitable for noise reduction. 
Therefore, we need select the best wavelet packet basis 
[14]. Entropy is the frequently-used standard for selecting 
the best basis.  

The procedure of WPT based denosing method for 
tongue images is listed as follows.  
     1. Choose the suitable wavelet basis function and 
decomposition level and apply WPT to decompose the 
tongue images. 

2. Appoint shannon entropy and calculate optimum 
tree to determine the best wavelet packet basis. 

3. Select threshold limit TN using NormalShrink at 
each level and apply soft thresholding to remove the 
noises. 

4. Utilize inverse WPT to obtain the denoised images. 

C. Adaptive Median Filter 
 Median filter was proposed by Tuckey in 1971 and 

currently extensively applied to signal analysis and image 
processing. Median filter is a nonlinear filtering and the 
output is estimated minimum of a distribution center of 
observation samples. The median filter deals with each 
pixel in the image in turn and looks at its nearby 
neighbors to decide whether or not it represents its 
surroundings. Substitute for simply replacing the pixel 
value with the mean of neighboring pixel values, median 
filer replaces it with the median of those values. The 
median is computed by first sorting all the pixel values 
from the surrounding neighborhood into numerical order 
and then replacing the pixel being considered with the 
middle pixel value [15].  

 Suppose f (x, y) be the gray value of pixel (x, y), 
filtering window is S, then median filter of two dimension 
can be defined as 

{ }' ( , ) med ( , ), ( , ) ( , )f x y f x s y t s t S x y= + + ∈  (11) 
Shape and size of the filtering window have an great 

effect on filtering result. The bigger the window size is, 
the more loss of the detail image information. Conversely, 
the smaller the window size is, the less power of the 
median filter to denoise. Therefore, it is essential to select 
a suitable filtering window size for removing tongue 
image noise. 

There are many ways to select a suitable filing window, 
such as fixed window size and adaptively adjusted 
window size. Adaptive median filter is better in 
preserving the details of image than fixed size strategy. 
Thus, in order to keep the useful details of the tongue 
image, an adaptive median filter was proposed in our 
previous work [16].The most significant characteristic of 
the method is that it takes the maintenance of the image 
edge details into consideration. To preserve the tongue 
image details, edge detection is employed to regulate the 
median filter window size. Consider that edge detection 
based on wavelet modulus maximum can locate the edges 
precisely, hence, the proposed adaptive median filter 
applies it to keep the edge information sufficiently. 

 Assume that g (x, y) denotes the final output gray 
value of pixel (x, y), f (x, y) is the gray value of pixel (x, y) 
in the original image and m (x, y) is the processed gray 
value using the improved adaptive median filter to 
replace the original gray value of pixel (x, y), then the 
relation among them could be written as [16]:  

( , ),  ( ) is noise free pixel
( , )

( , ),  ( ) is noise pixel
f x y x, y

g x y
m x y x, y
⎧

= ⎨
⎩

 (12) 

   The procedure of the proposed adaptive median filter is 
listed as follows [15]. 

1. Detect the edge of the original tongue images using 
wavelet modulus maximum method. 

2. Both length and width of the adaptive median filter 
is initialized to W=2R+1, where R is a small positive 
integer value. 

3. Compute the number of noise-free pixels contained 
in the contextual area defined by this W×W filter. 

4. If the number of noise-free pixels is less than eight 
and the center of the filter window is not located in the 
edge of the original image, extend the size of the window 
by two (i.e. W=W+2), then go back to step 3; If the 
number of noise-free pixels is less than eight but the 
center of the filter window is on the edge of the original 
image, the window size of will stay unchanged and go to 
step 5 directly. 

5. Compute the median gray value of all the noise-free 
pixels contained in the window and set m (x, y) as the 
calculated median value. 

6. Update the value of g (x, y) using (12). 

D. Wiener Filter 
The Wiener filter is a filter proposed by Norbert 

Wiener during the 1940s. Assume that the inputs of the 
linear filter are the sum of useful signal and noise and the 
inputs are stationary. According to minimum mean-
square error criterion, Wiener achieved the best linear 
filter parameters [17].This filter is called wiener filter. 

The input to the Wiener filter is assumed to be a image 
signal s (t), corrupted by noise n (t). The output �෡ ሺ�ሻ is 
computed by means of a filter g (t) by using the following 
convolution [17]:  

                          [ ]ˆ( ) ( )* ( ) ( )s t g t s t n t= +             (13) 
where g (t) is the Wiener filter's impulse response. The 
error is defined as 

   ˆ( ) ( ) ( )e t s t s t= −                    (14) 
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TABLE I 
SNR OBTAINED BY WIENER FILTER USING DIFFERENT FILTER WINDOWS 

Noise type  3×3, SNR 5×5, SNR 7×7, SNR 9×9, SNR 11×11, SNR 13×13, SNR 
Gaussian 16.932 20.432 22.014 22.571 22.628 22.440 

Salt & pepper  15.103 18.322 21.104 21.059 21.531 21.125 
Speckle 17.443 18.855 20.419 20.975 20.936 20.738 

TABLE II 
IMAGE QUALITY METRICS OBTAINED BY VARIOUS METHODS FOR VARIOUS NOISES 

Noise type and 
variance Input SNR Input MSE Output SNR Output MSE Denosing Methods 

Salt &pepper 
noise, 0.1 

10.701 0.02733 24.394 0.00136 WT 
10.701 0.02733 21.642 0.00220 WPT 
10.701 0.02733 31.623 0.00024 Adaptive median filter 
10.701 0.02733 21.537 0.00230 Wiener filter 

Gaussian noise, 
0.01 

15.145 0.01018 27.100 0.00064 WT 
15.145 0.01018 25.519 0.00092 WPT 
15.145 0.01018 25.187 0.00193 Adaptive median filter 
15.145 0.01018 25.971 0.00181 Wiener filter 

Speckle noise 
, 0.1 

10.283 0.03101 24.680 0.00102 WT 
10.283 0.03101 21.545 0.00237 WPT 
10.283 0.03101 20.971 0.00265 Adaptive median filter 
10.283 0.03101 21.246 0.00242 Wiener filter 

 
These results illustrate which methods are more 

suitable for the three different noises. Fig. 8-10 sketches 
the relationship of the input SNR and the output SNR, in 
which method1-4 denote WT, WPT, the adaptive median 
filter and the wiener filter respectively. 

 
Figure 8. The performance comparison of the four denoising methods 

for Gaussian noise. 

 
Figure 9. The performance comparing of the four denoising methods for 

salt & pepper noise. 

According to Fig. 4 and Fig. 8, we can see that WT is 
more suitable to remove the Gaussian noise for the 
corrupted tongue image. However, it seems that the edge 
of the tongue image become blurred, as shown in Fig. 4 
(c). From the results of Fig. 5 and Fig. 9, it is obvious that 
the adaptive median filter achieves the best effectiveness 
for salt & pepper noise. For speckle noise, WT is a better 
choice, as shown in Fig. 6 and Fig. 10. 

 

 
Figure 10. The performance comparing of the four denoising methods 

for speckle noise. 

By this experiment, we can also note an interesting 
phenomenon: for tongue images noise reduction, WT is 
superior to WPT for all the three types of noises. 

V. CONCLUSION 

Noise reduction is one of the important tasks in the 
tongue image pre-processing procedure, which is a vital 
step for the subsequent tongue diagnosis. In this paper, 
the comparison research for the tongue image denoising 
methods is given. We simulate the corrupted tongue 
images by adding three types of noises to the clean 
tongue images, and then utilize four denoising methods to 
denoise them. According to the experiment results, we 
conclude that WT is better than the other three methods 
in removing Gaussian noise and speckle noise for tongue 
images, and for the noise reduction of salt & pepper noise, 
the adaptive median filter is the best choice. Note that, in 
terms of the denoising results, WT is better than WPT for 
tongue images. However, for tongue image, WT is not 
very perfect for removing Gaussian noise and speckle 
noise. Because some noises still remain in the tongue 
images and the edge and texture of the tongue images are 
blurred. The filter window size of the wiener filter is 
selected when SNR gets the maximum. However, this 
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strategy may make the edge and texture of the image 
become inconspicuous if the filter window is too big. 
Hence, if the tongue images are contaminated by 
Gaussian noise and speckle noise, new methods should be 
developed, which can eliminate the unknown noises and 
at the same time preserve the useful details for diagnosis, 
such as cracks, indentation and other textures.  
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