
Mining Web Logs with PLSA Based Prediction
Model to Improve Web Caching Performance

Chuibi Huang

Department of Automation, USTC
Key laboratory of network communication system and control

Hefei, China
Email: hcb@mail.ustc.edu.cn

Jinlin Wang, Haojiang Deng, Jun Chen

Institute of Acoustics, Chinese Academy of Sciences
National Network New Media Engineering Research Center

Beijing, China
Email: {wangjl, denghj, chenj}@dsp.ac.cn

Abstract— Web caching is a well-known strategy for
improving the performance of web systems. The key to
better web caching performance is an efficient replacing
policy that keeps in the cache popular documents and
replaces rarely used ones. When coupled with web log
mining, the replacing policy can more accurately decide
which documents should be cached. In this paper, we
present a PLSA based prediction model to predict the user
access patterns and interest to extend the well-known
NGRAM-GDSF caching policy. Extensive experiments are
conducted on the publicly available web logs datasets. The
result shows that our approach gets better web-access
performance.

Index Terms—PLSA, web caching, web caching algorithm,
prediction model, web log mining

I. INTRODUCTION

As the Internet and user scale are growing at a very
rapid rate, the performance requirements of web systems
become increasingly high. Web caching is one of the
most successful solutions for improving the performance
of web systems. The core idea of web caching is to
maintain the popular web documents that likely to be
revisited in near future in a cache, such that the
performance of web system can be significantly improved
since most of later user requests can be directly replied
from the cache. Lying in the heart of web caching
algorithms is the cache replacement policy. To improve
the performance of web caching, researchers have
proposed a number of cache replacement policies [1, 21],
many of which have been covered in the comprehensive
surveys by [16]. These traditional algorithms take into
account several factors and assign a key value or priority
for each web document stored in the cache. However, it is
difficult to have an omnipotent policy that performs well
in all environments or for all time because each policy
has different design rational to optimize different
resources. Moreover, combination of the factors that can

influence the replacement process to get wise
replacement decision is not an easy task because one
factor in a particular situation or environment is more
important than other environments [14, 15].

Due to these constraints, there is a need for an effective
approach to intelligently manage the web cache which
satisfies the objectives of Web caching requirement. This
is motivation in adopting intelligent techniques in the
Web caching algorithms. Another motivation to
intelligent Web caching algorithms is the availability of
web access logs files, which can be exploited as training
data. In a few previous studies, the intelligent approaches
have been applied in web caching algorithms or other
web service [2, 11, 12, 13, 17, 18, 19, 20]. These studies
typically build prediction model by training the web logs.
By making use of the prediction model, the caching
algorithms become more efficient and adaptive to the
web caching environment compared to the traditional
web caching algorithms. However, these studies didn’t
take into account the user access patterns and interest
when building the prediction model. Since the users are
the source of all the web access actions, it is necessary to
build a prediction model which can well modeling the
user access patterns and interest. In this paper, we use the
web access logs to train a probabilistic latent semantic
analysis (PLSA) based prediction model for user access
patterns and interest to extend NGRAM-GDSF [6]. Based
on the model, we can obtain user’s topics of interest and
mine rules for future access prediction. We then proposed
the PLSA-based NGRAM-GDSF caching algorithm,
which incorporate our PLSA-based prediction model into
NGRAM-GDSF to improve its web caching performance.
We also improve the PLSA model to get the more
accurately topics. The experiment shows that our PLSA-
based prediction model indeed improve the system
performance over NGRAM-GDSF.

The organization of the paper is as follows. In the next
section, we review the related work in web caching. In
Section 3, we give a brief introduce of the PLSA model.

JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013 1351

© 2013 ACADEMY PUBLISHER
doi:10.4304/jcp.8.5.1351-1356

Data process is described in Section 4. Then in Section 5,
we introduce the formal PLSA-based prediction model
and show how it integrates with the caching algorithms.
Experiment results are presented in Section 6. Finally, we
conclude our paper in Section 7.

II. RELATED WORK

Web caching plays a key role in improving web
systems performance. The heart of web caching is so-
called “replacement policy”, which measure the
popularity of all the previously visited documents, keeps
in the cache those popular documents and replaces rarely
used ones. The basic idea of the most well-known
caching algorithms is to assign each document a key
value computed by factors such as size, frequency and
cost. Using this key value, we could rank these
documents according to corresponding key value. When a
replacement is to be carried, the lower-ranked documents
will be evicted from the cache. Among these key value-
based caching algorithms, GDFS [1] is the most
successful one. It assigns a key value to each document in
the cache as Kሺ݄ሻ ൌ ܮ ൅ ሺ݄ሻܨ כ ሺ݄ሻ/ܵሺ݄ሻ, where L isܥ
an inflation factor to avoid cache pollution, Cሺ݄ሻ is the
cost to fetch h, Fሺ݄ሻ is the past occurrence frequency of h
and Sሺ݄ሻ is the size of h.

Availability of web access logs files that can be used
as training data promotes the emergence of intelligent
web caching algorithms [2, 3, 4, 11, 12]. In [11], the
neuro-fuzzy system has been employed to predict web
objects that can be re-accessed later. [12] proposes a
logistic regression model to predict the future request.
However, these algorithms didn't make use of the web
logs to mine the useful information that can reveal the
user behavior pattern. Then a lot of study has been
conducted to use web log mining to improve the
performance of web caching. Web log mining extract
useful knowledge from large-scale web logs for future
research and application. In [5], Pitknow and Pirolli
studied the pattern extraction techniques to predict the
web use’s access path. An n-gram model to predict future
requests was proposed in [7]. [8] has proposed sequential
data mining for web transaction data, but they didn’t
apply the algorithm in caching. In [6], Qiang Yang
discusses an integrated model by combining association-
based prediction and the well-known GDSF caching
algorithm (NGRAM-GDSF) in a unified framework.
They first train the web logs to build a set of association
rules, and then apply these rules to give prediction of
future visits for each session. However, the prediction
didn’t take into account the interest of current user. In
contrast, in this paper, we propose a PLSA-based
prediction model, by which we can make predictions
based on the current active user’s interest, to improve the
association prediction algorithm in [6].

III. THE PLSA MODEL

The PLSA model [9] was originally developed for
topic discovery in a text corpus, where each document is
represented by its word frequency. The model assumes

that, under the texts we observed there is another latent
level: the topic level. A document has a certain
probability distribution on a variety of topics, and
similarly, topics also have different distribution on a set
of words. Therefore, PLSA introduces a latent topic
variable ݖ௞ א ሼݖଵ, … , ௄ሽݖ between the document
݀௜ א ሼ݀ଵ, … , ݀ேሽ and the word ݓ௝ א ሼݓଵ, … , ெሽ. Thenݓ
the PLSA model is given by the following generative
scheme:

(1) Select a document ݀௜ with probability pሺ݀௜ሻ.
(2) Pick a latent topic ݖ௞ with probability pሺݖ௞|݀௜ሻ.
(3) Generate a word ݓ௝ with probability p ൫ݓ௝|ݖ௞൯.
As a result, we generally get an observation pair

ሺ݀௜, ௞ is hidden. Thisݖ ௝ሻ, while the latent topic variableݓ
generative model can be expressed by the following
probabilistic model:

() () (), |
j i i j j

P w d P d P w d= (1)

() () ()
1

| | |
K

j i j k k i
k

P w d P w z P z d
=

= ∑ (2)

Expectation maximization (EM) algorithm [10] is
applied to learn the unobservable probability distribution
Pሺz୩|d୧ሻ and P൫w୨|z୩൯ from the complete dataset. The
log-likelihood of the complete dataset is:

() ()
1 1

, log ,
N M

i j i j
i j

L n d w P d w
= =

= ∑ ∑ (3)

() () ()
1 1 1

, log | |
N M K

i j j k k i
i j k

n d w P w z P z d
= = =

∝ ∑∑ ∑
 (4)

Where n൫݀௜, ௝൯ is the number of occurrences of wordݓ
௝ݓ in document ݀௜ . In order to maximize the log-
likelihood function L, we should first initial the PLSA
probability model parameters Pሺݖ௞|݀௜ሻ and P൫ݓ௝|ݖ௞൯
with random number, then perform iterative calculations
by alternating implementation of the E-step and M-step.
When the change of L is less than a threshold value, we
stop the iterative calculations. In E-step, the priori
probability of z is calculated:

() ()
() ()

1

| |
(| ,)

| |

j k k i

k i j K

j l l i
l

P w z P z d
P z d w

P w z P z d
=

=

∑
. (5)

In M-step, the following formulas are used to re-
estimate the model parameters:

() 1

1 1

(,) (| ,)

|

(,) (| ,)

N

i j k i j
i

j k N M

i j k i j
i j

n d w P z d w

P w z

n d w P z d w

=

= =

=
∑

∑∑
 (6)

1352 JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013

© 2013 ACADEMY PUBLISHER

1

1

(,) (| ,)

(|)

(,)

M

i j k i j
j

k i M

i j
j

n d w P z d w

P z d

n d w

=

=

=
∑

∑
 (7)

IV. DATA PROCESS

In this section, we present our approach to establish a
PLSA-based prediction model on a large-scale web log.
Our goal is to model user access patterns to get the user’s
interest, based on which we can predict future requests
for each current active user.

A. Extracting Embedded Objects
HTML documents consist of variety of embedded web

objects, such as images, audio and video files. Exactly,
they contain the linkage structure of these web objects.
References to embedded objects are usually preceded by
their HTML container. Therefore, from the web logs we
can see, they always appear as a burst of requests from
the same user shortly after an HTML access. If an object
is observed that its request always come immediately
after access to certain HTML documents, it can be
labeled as its containers.

Generally web users are only interested in HTML page,
however, they know nothing about the linkage structure
information. Therefore, we deal with HTML documents
and embedded objects differently. While building PLSA-
based model to get the interest of user, we do not take
embedded objects into considerations. Instead, we just
associate them to their corresponding HTML containers.
After extracted from web logs, these embedded objects
are stored in HTML-OBJECT Hash Table, by which we
can get the embedded objects of a HTML documents
quickly.

B. Building User-html Matrix
After filtering the embedded objects, only HTML

document remain in a request sequence. When we build
the user-html matrix, the session list has to be generated
first. Here, the generation of session list consists of three
major steps. First, the records of the web logs are sorted
according to the access time. Then, web set a reasonable
session time threshold. We assume that the duration of
any session won’t exceed the session time threshold.
Finally, according to the threshold, we sequentially build
the sessions for each user. Then we can get the user-html
matrix (see Fig.1) by traversing the session list. Each row
in the matrix represents a user and nሺݑ௡, ݄௠ሻspecifies the
number of times the html file ݄௠ accessed by user ݑ௡.

() () ()

() () ()

() () ()

1 1 1 1

1

1

, ... , ... ,

...

, ... , ... ,

...

, ... , ... ,

m M

n n m n M

N N m N M

n u h n u h n u h

n u h n u h n u h

n u h n u h n u h

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Figure 1. The user‐html matrix.

V. PLSA-BASED PREDICTION MODEL

A. Overview
Although the PLSA model was originally developed

for topic discovery in text corpus, it has been applied in
many scientific fields, such as multimedia, data mining
and image recognition. Here we apply the PLSA model to
improve web caching algorithm. However, in the
application process, we found that there is a problem with
the PLSA model: it doesn’t consider the user similarity
when calculate the model parameters. In order to more
accurately obtain the latent topics, we have made some
improvements on the iterative calculations to address the
similarity between the users. We introduce a new
similarity layer in PLSA model such that the topic
distributions of the given user can be updated by that of
users similar to him. After building the improved PLSA
model, we can made prediction for each current active
user based on the users’ interest which is derived from
the model. Further, we make use of the prediction model
to improve the caching algorithm described in [6].

As shows in Fig.2 we depict an overview of the
improved PLSA model in our application scenario. Given
the user ݑ௜ א ሼݑଵ, … , ேሽݑ , the HTML file ௝݄ א
ሼ݄ଵ, … , ݄ெሽ and the latent topic ݖ௞ א ሼݖଵ, … ௄ሽ, we adoptݖ
the same generative scheme as that of PLSA. In addition,
we introduce a similarity layer between user and HTML
file.

1. Select a user ݑ௜ with probability Pሺݑ௜ሻ
2. Pick a latent topic ݖ௞ with probability Pሺݖ௞|ݑ௜ሻ
3. Access a HTML file ௝݄ with probability P൫ ௝݄|ݖ௞൯
4. Pሺݖ௞|ݑ௜ሻ can be updated by that of the similar

users: Pሺݖ௞|ݑ௜ሻ ൌ ∑ ܲሺݖ௞|ݑ௟ሻܲሺݑ௟|ݑ௜ሻே
௟ୀଵ

5. ܲሺݑ௟|ݑ௜ሻ is similarity between ݑ௟ and ݑ௜ , it also
can be considered as the conditional probability

The user similarities are parameterized by the user

similarity matrix S which described in the following
section. As we have incorporated the user similarities into
the PLSA model, the similar users can have similar topic
distributions and we will get more accurate latent topics
than the original PLSA model.

B. Users Similarites
With the user-html matrix introduced as Fig.1 shows,

we compute the user similarity matrix S by cosine
similarity. For each pair of users in the matrix, we first
compute their cosine similarity as follows:

 i l
ih

i l

u u
Sim

u u

⋅
=

⋅

uur uur

uur uur (8)

where
i

u
uur

is the i-th user and represented by the i-th row
in the user-html matrix. Then we can get a similarity
matrix S where ௜ܵ௟ ൌ ܵ݅݉௜௟ . Further, we should
normalize the matrix S such that its row adds up to 1.

JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013 1353

© 2013 ACADEMY PUBLISHER

1

il
il N

ih
h

S
S

S
=

=

∑
 (9)

Therefore, each element of S can be considered as the
conditional probability ܲሺݑ௟|ݑ௜ሻ and the topic distribution
of a given user can be updated by the topic distributions
of the users that are similar to the given user.

() () ()
1

| | |
N

k i k l l i
l

P z u P z u P u u
=

= ∑ (10)

C. Parameter Estimating
According to the maximum likelihood principle, we

estimate the parameters Pሺݖ௞|ݑ௜ሻ and P൫ ௝݄|ݖ௞൯ by
maximizing the log-likelihood function:

() () ()
1 1 1

, log | |
N M K

i j j k k i
i j k

L n u h P h z P z u
= = =

= ∑∑ ∑

 (11)
Then we used EM algorithm to estimate the parameters.

In order to incorporate the user similarity, we renew the
probability Pሺݖ௞|ݑ௜ሻ by equation (9) at each end run of
M-step, thus resulting in a variation of EM algorithm
through the following E-step and M-step:

The E-step is given by

() () ()
() ()

1

| |
| ,

| |

j k k i

k i j K

j l l i
l

P h z P z u
P z u h

P h z P z u
=

=

∑
 (12)

and the M-step is given by

()
() ()

() ()
1

1 1

, | ,

|

, | ,

N

i j k i j
i

j k N M

i j k i j
i j

n u h P z u h

P h z

n u h P z u h

=

= =

=
∑

∑∑
(13)

()
() ()

()
1

1

, | ,

|

,

N

i j k i j
j

k i M

i j
j

n u h P z u h

P z u

n u h

=

=

=
∑

∑
 (14)

() () ()
1

| | |
N

k i k l l i
l

P z u P z u P u u
=

= ∑ (15)

Iteratively perform E-step and M-step until the

probability values are stable.

D. Prediction Algorithm
The process of building the PLSA-based model is

called training. Once the training is finished, we can
make use of the model to give predictions of future visits.
Specifically, for user ݑ௜ , we will assume that he is
interested in the topic ݖ௞ , if pሺݖ௞|ݑ௜ሻ is the biggest one
among the sets ሼܲሺݖଵ|ݑ௜ሻ, … ܲሺݖ௄|ݑ௜ሻሽ . Likewise, for
topic ݖ௞, we only keep N largest value among sets. Then

we assume that the N html pages corresponding to the N
values are likely to be accessed under the topic ݖ௞.

In the previous section, we introduced the intelligent
web caching algorithm [6] (NGRAM-GDSF) which aims
to improve the GDSF caching algorithm. NGRAM-GDSF
is one of the best intelligent caching replacement
algorithms. Our PLSA-based predictive caching
algorithm (PN-GRAM) is an extension and enhancement
of NGRAM-GDSF by incorporating a factor of predictive
interest frequency. When we use the improved PLSA
model, the corresponding PLSA-based predictive caching
algorithm is called IPN-GRAM.

Normally, there simultaneously exist a number of
active users who are accessing a web server. Based on the
pre-trained improved PLSA model, our prediction model
can predict each active user’s interested topic and the
HTML file corresponding to the topic. Different users
will give different prediction to future HTML files. Since
our prediction of a HTML file comes with a probability
P൫ ௝݄|ݖ௞൯, we can combine all the current active users’
interest predictions to calculate the future interest-based
occurrence frequency of a HTML file. Let ௝݄ denote a
HTML file on the server, ݑ௜ be an active user on a web
server, ௜ܲ,௝ be the probability predicted by an active user
௜ݑ , who are interested in topic ݖ௞ , for HTML ௝݄ . If

௜ܲ,௝ ൌ 0, it indicates that HTML file ௝݄ is not predicted by
௜ݑ . Let ܫ௝ be the future interest based frequency of
requests to HTML ௝݄. If we assume all the users on a
web server are independent to each other, we can obtain
the following equation:

,j i j
i

I P= ∑ (16)

To illustrate (16), we map two users in Figure 2. Each
user yields a set of predictions to HTML files according
to his interest. Since users are assumed independent to
each other, we use (16) to compute the interest-based
frequency of HTML file ௝݄ . For example, The HTML
file ݄ଵ is predicted by three active users with a
probability of 0.7, 0.6 and 0.5, respectively. From (16),
ଵܫ ൌ 1.3. This means that based on users’ interest, the
HTML file ௝݄ will be accessed 1.3 times in the near
future.

1
: 0.30h

2
: 0.21h

1
: 0.50h

2
: 0.42h

1
: 0.60h

1
: 0.20h

1
0.30 0.50 0.60I = + +

1.40=

2
0.21 0.42 0.20I = + +
0.83=

Figure 2. Prediction of interest‐based frequency.

1354 JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013

© 2013 ACADEMY PUBLISHER

Once the future interest-based frequency Iሺ݄ሻ of a
HTML h can be predicted, we extend NGRAM-GDSF [6]
to incorporate the Iሺ݄ሻ:

() () () ()() () ()* /K h L w h F h I h C h S h= + + +

 (17)
We add wሺ݄ሻ, Fሺ݄ሻ and Iሺ݄ሻ together in (17), which

implies that the key value of a HTML h is determined not
only by its past occurrence and session-based future
frequency, but also affected by its interest. The more
likely the active users are interested in it, the greater the
key value will be. The rationale behind our extension is
that we take into account the users interest obtained by
training the web logs and adjust the replacement policy.

VI. EXPERIMENTS

A. Simulation Model
We have conducted a series of experimental

comparisons with the web log that we are able to get. In
the experiments, the EPA data set contains a full day of
HTTP requests to the EPA web server which located at
Research Triangle Park, NC. Before the experiments, we
removed the records of uncacheable URLs from the web
logs. A URL is considered uncacheable when it contains
dynamically generated content such as CGI scripts. We
also filtered out the records with unsuccessful HTTP
response code. In our experiments, we use two objective
performance parameters to evaluate the performance of
our extended caching algorithm. The hit rate is the
percentage of all requests that can be replied directly by
searching the cache for a copy of the requested document.
The byte hit rate represents the percentage of bytes that
are transferred directly from the cache rather than from
the origin server. Let N be the total number of request
and δ௜ ൌ 1 if the request i is hit in the cache, while
δ௜ ൌ 0 ohterwise. Mathematically, the two parameters
can be calculated as follows:

1

N

i
iHR
N

δ
==
∑

 (18)

1

1

N

i i
i

N

i
i

b

BHR

b

δ
=

=

=
∑

∑
 (19)

where ܾ௜ is the size of the i-th request.

B. Experimental Results
In the experiments, the algorithms under comparison

are NGRAM-GDSF, PN-GRAM and IPN-GRAM. With
respect to any one of the three algorithms, from Fig.3 and
Fig.4, we can see that both the hit rate and byte hit rate
are growing in a log-like fashion as a function of the
cache size. This suggests that hit rate or byte hit rate does
not increase as much as the cache size does, especially
when cache size is large enough. In other words, as the
cache size becomes infinite, the performance difference
between these three algorithms will disappear. So we

should compare the performance of caching algorithms
under limited cache size.

We observed the cache hit rates and cache byte hit
rates under different cache sizes. As shows in Fig.3 and
Fig.4, IPN-GRAM and PN-NGRAM both perform better
than NGRAM-GDSF. This result reveals that the interest-
based frequency, predicted by the PLSA-based prediction
model, is workable. Due to the validity of interest-based
frequency, IPN-GRAM and PN-GRAM both build a
more accurately prediction model than N-GRAM, so that
the according cache replacement policies get a better
performance. Besides, we found that IPN-GRAM is a
little better than PN-GRAM, since it gets a more
accurately latent topic when building the prediction
model. In addition, we can see that when cache sizes are
large few replacement decisions are needed and cache
pollution is not a factor so the policies have similar
performance. When cache sizes are very small, adding a
single large document can result in the removal of a large
number of smaller documents reducing the effects of
cache pollution. At this case, a good caching algorithm
could significantly improve the caching performance.

In order to prove the validity of the improved PLSA

model, we compare the convergence rate between IPN-
GRAM and PN-GRAM. PN-GRAM adopts the PLSA
model and IPN-GRAM uses the improved PLSA model
instead. As shows in Fig.5, the log-likelihood of IPN-
GRAM convergence faster than PN-GRAM. Since IPN-

Figure 3. Hit rate comparison on EPA data

0 0.5 1
40

50

60

70

80

90

Cache size(%)

H
it

R
at

e(
%

)

Hit Rate VS Cache Size

IPN-GRAM
PN-GRAM
NGRAM-GDSF

Figure 4. Byte hit rate comparison on EPA data

0 0.5 1
45

55

65

75

Cache size(%)

B
yt

e
H

it
R

at
e(

%
)

Byte Hit Rate VS Cache Size

IPN-GRAM
PN-GRAM
NGRAM-GDSF

JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013 1355

© 2013 ACADEMY PUBLISHER

GRAM introduce similarity layer in PLSA model, topic
distributions of the given user can be updated by that of
users similar to him during the iterative process of
training. By this way, IPN-GRAM could estimate more
accurate probability model of the topic distributions in an
iteration, which will accelerate the convergence rate of
iterations.

VII. CONCLUSION

In this paper, we applied the PLSA-based prediction
model build from the web logs to improve the NGRAM-
GDSF caching algorithm. By taking into account the
interest-based frequency in caching algorithm, it is
possible to dramatically improve both the hit rate and
byte hit rate. In the future, we would like to study on how
to reduce the building time of PLSA model, so that we
can dynamically update the model parameters on line. In
addition, in future we can consider incorporating the
clustering approach to process web logs, so that a more
accurate user interest model could be obtained by
building PLSA model.

ACKNOWLEDGMENT

This work and related experiment environment is
supported by the National High Technology Research and
Development Program of China under Grant No.
2011AA01A102, the National Key Technology R&D
Program under Grant No. 2012BAH18B04 and the
Strategic Priority Research Program of the Chinese
Academy of Sciences under Grant No. XDA06010302.
We are sincerely grateful to their support.

REFERENCES

[1] L. Cherkasova, “improving www proxies performance
with greedy-dual-size-frequency caching policy,” In HP
Technical Report, Palo Alto, November 1998.

[2] Q. Liu, “Web Latency Reduction with prefetching,” PhD
thesis, University of Western Ontario, London, 2009.

[3] H.T. Chen, “Pre-fetching and Re-fetching in Web caching
system: Algorithms and Simulation,” Master Thesis,
TRENT UNIVERSITY, Peterborough, Ontario, Canada,
2008.

[4] W. Ali, S.M. Shamsuddin, “Intelligent Client-side Web
Caching Scheme Based on Least recently Used Algorithm
and Neuro-Fuzzy System,” The sixth International

Symposium on Neural Networks, Lecture Notes in
computer Science, Springer-Verlag Berlin Heidelberg, pp.
70-79, 2009.

[5] Pitkow J, Pirolli P, “Mniing longest repeating
subsequences to predict www surfing,” In Proceedings of
the 1999 USENIX Annual Technical Conference, 1999.

[6] Qiang Yang, Haining Henry Zhang, Tianyi LI, “Mining
web logs for prediction models in WWW caching and
prefetching,” In Proceedings of International Conference
on Knowledge Discovery and Data Mining KDD’01, San
Francisco, California, USA, 2001.

[7] R. Agrawal and R. Srikant, “Mining Sequential Patterns,”
In Proceedings of International Conference on Data
Engineering, Taipei, Taiwan, 1995.

[8] Z. Su, Q. Yang, Y. Lu, H. Zhang, “Whatnext: A prediction
system for web requests using n-gram sequence models,”
In Proceedings of the First International Conference on
Web Information System and Engineering Conference, pp.
200-207, Hong Kong, June 2000.

[9] T. Hofmann, “Probabilistic latent semantic indexing,” In
Proceedings of the 22nd annual international ACM SIGIR
conference on Research and development in information
retrieval, pp. 50-57, ACM, 1999.

[10] S. Deerwester, “Maximum likelihhod from in complete
data via the EM algorithm,” Journal of the Royal Statistical
Society B 39, pp. 1-38

[11] L. Jianhui, X. Tianshu, Y. Chao, “Research on WEB
Cache Prediction Recommend Mechanism Based on Usage
Pattern,” First International Workshop on Knowledge
Discovery and Data Mining(WKDD), pp.473-476, 2008.

[12] T.M. Kroeger, D.D.E. Long, J.C. Mogul, “Exploring the
bounds of web latency reduction from caching and
prefetching.” Proceedings of the USENDC Symposium on
Internet Technology and Systems, pp. 13-22, 1997.

[13] Tao. Tan, Hongjun. Chen, “A personalization
recommendation method based on Deep web data query,”
Journal of Computers, v 7, n 7, p 1599-1606, 2012.

[14] H.T. Chen, “Pre-fetching and Re-fetching in Web caching
systems: Algorithms and Simulation,” Master Thesis,
TRENT UNIVERSITY, Peterborough, Ontario, Canada,
2008.

[15] A.K.Y. Wong, “Web Cache Replacement Policies: A
Pragmatic Approach,” IEEE Network magazine, 20(1), pp.
28-34, 2006.

[16] J Wang, “A survey of web caching schemes for the
internet,” ACM SIGCOMM Computer Communication
Review, 1999.

[17] Jingli. Zhou, Xuejun. Nie, Leihua. Qin, Jianfeng, Zhu,
“Web clustering based on tag set similartiy,” Journal of
Computers, v 6, n 1, p 59-66, 2011.

[18] Yanjuan. Li, Maozu. Guo, “Web page classification using
relational learning algorithm and unlabeled data,” Journal
of Computers, v 6, n 3, p 474-479, 2011.

[19] Wei. Huang, Liyi. Zhang, Jidong. Zhang, Mingzhu Zhu,
“Semantic focused crawling for retrieving E-commerce
information,” Journal of Software, v 4, n 5, p 436-443, July
2009.

[20] Xiangfeng. Luo, Kai. Yan, Xue. Chen, “Automatic
discovery of semantic relations based on association rule,”
Journal of Software, v 3, n 8, p 11-18, November 2008.

[21] P. Cao, S. Irani, “Cost-Aware WWW Proxy Caching
Algorithms,” USENIX Symposium on Internet
Technologies and Systems, Monterey, CA, 1997.

Figure 5. Log‐likelihood convergence rate

0 50 100 150 200
-11

-10.5

-10

-9.5

-9

-8.5

-8

-7.5 x 104

Number of iterations

Lo
g-

lik
el

ih
oo

d

IPN-GRAM
PN-GRAM

1356 JOURNAL OF COMPUTERS, VOL. 8, NO. 5, MAY 2013

© 2013 ACADEMY PUBLISHER

