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Abstract— Web caching is a well-known strategy for 
improving the performance of web systems. The key to 
better web caching performance is an efficient replacing 
policy that keeps in the cache popular documents and 
replaces rarely used ones. When coupled with web log 
mining, the replacing policy can more accurately decide 
which documents should be cached. In this paper, we 
present a PLSA based prediction model to predict the user 
access patterns and interest to extend the well-known 
NGRAM-GDSF caching policy. Extensive experiments are 
conducted on the publicly available web logs datasets. The 
result shows that our approach gets better web-access 
performance.  
 
Index Terms—PLSA, web caching, web caching algorithm, 
prediction model, web log mining 
 

I.  INTRODUCTION 

As the Internet and user scale are growing at a very 
rapid rate, the performance requirements of web systems 
become increasingly high. Web caching is one of the 
most successful solutions for improving the performance 
of web systems. The core idea of web caching is to 
maintain the popular web documents that likely to be 
revisited in near future in a cache, such that the 
performance of web system can be significantly improved 
since most of later user requests can be directly replied 
from the cache. Lying in the heart of web caching 
algorithms is the cache replacement policy. To improve 
the performance of web caching, researchers have 
proposed a number of cache replacement policies [1, 21], 
many of which have been covered in the comprehensive 
surveys by [16]. These traditional algorithms take into 
account several factors and assign a key value or priority 
for each web document stored in the cache. However, it is 
difficult to have an omnipotent policy that performs well 
in all environments or for all time because each policy 
has different design rational to optimize different 
resources.  Moreover, combination of the factors that can 

influence the replacement process to get wise 
replacement decision is not an easy task because one 
factor in a particular situation or environment is more 
important than other environments [14, 15].  

Due to these constraints, there is a need for an effective 
approach to intelligently manage the web cache which 
satisfies the objectives of Web caching requirement. This 
is motivation in adopting intelligent techniques in the 
Web caching algorithms. Another motivation to 
intelligent Web caching algorithms is the availability of 
web access logs files, which can be exploited as training 
data. In a few previous studies, the intelligent approaches 
have been applied in web caching algorithms or other 
web service [2, 11, 12, 13, 17, 18, 19, 20]. These studies 
typically build prediction model by training the web logs. 
By making use of the prediction model, the caching 
algorithms become more efficient and adaptive to the 
web caching environment compared to the traditional 
web caching algorithms. However, these studies didn’t 
take into account the user access patterns and interest 
when building the prediction model. Since the users are 
the source of all the web access actions, it is necessary to 
build a prediction model which can well modeling the 
user access patterns and interest. In this paper, we use the 
web access logs to train a probabilistic latent semantic 
analysis (PLSA) based prediction model for user access 
patterns and interest to extend NGRAM-GDSF [6]. Based 
on the model, we can obtain user’s topics of interest and 
mine rules for future access prediction. We then proposed 
the PLSA-based NGRAM-GDSF caching algorithm, 
which incorporate our PLSA-based prediction model into 
NGRAM-GDSF to improve its web caching performance. 
We also improve the PLSA model to get the more 
accurately topics. The experiment shows that our PLSA-
based prediction model indeed improve the system 
performance over   NGRAM-GDSF. 

The organization of the paper is as follows. In the next 
section, we review the related work in web caching. In 
Section 3, we give a brief introduce of the PLSA model. 
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Data process is described in Section 4. Then in Section 5, 
we introduce the formal PLSA-based prediction model 
and show how it integrates with the caching algorithms. 
Experiment results are presented in Section 6. Finally, we 
conclude our paper in Section 7.  

II.  RELATED WORK 

Web caching plays a key role in improving web 
systems performance. The heart of web caching is so-
called “replacement policy”, which measure the 
popularity of all the previously visited documents, keeps 
in the cache those popular documents and replaces rarely 
used ones. The basic idea of the most well-known 
caching algorithms is to assign each document a key 
value computed by factors such as size, frequency and 
cost. Using this key value, we could rank these 
documents according to corresponding key value. When a 
replacement is to be carried, the lower-ranked documents 
will be evicted from the cache. Among these key value-
based caching algorithms, GDFS [1] is the most 
successful one. It assigns a key value to each document in 
the cache as Kሺ݄ሻ ൌ ܮ ൅ ሺ݄ሻܨ כ  ሺ݄ሻ/ܵሺ݄ሻ, where L  isܥ
an inflation factor to avoid cache pollution, Cሺ݄ሻ is the 
cost to fetch h, Fሺ݄ሻ is the past occurrence frequency of h 
and Sሺ݄ሻ is the size of h.  

Availability of web access logs files that can be used 
as training data promotes the emergence of intelligent 
web caching algorithms [2, 3, 4, 11, 12]. In [11], the 
neuro-fuzzy system has been employed to predict web 
objects that can be re-accessed later. [12] proposes a 
logistic regression model to predict the future request. 
However, these algorithms   didn't make use of the web 
logs to mine the useful information that can reveal the 
user behavior pattern. Then a lot of study has been 
conducted to use web log mining to improve the 
performance of web caching. Web log mining extract 
useful knowledge from large-scale web logs for future 
research and application. In [5], Pitknow and Pirolli 
studied the pattern extraction techniques to predict the 
web use’s access path. An n-gram model to predict future 
requests was proposed in [7]. [8] has proposed sequential 
data mining for web transaction data, but they didn’t 
apply the algorithm in caching. In [6], Qiang Yang 
discusses an integrated model by combining association-
based prediction and the well-known GDSF caching 
algorithm (NGRAM-GDSF) in a unified framework. 
They first train the web logs to build a set of association 
rules, and then apply these rules to give prediction of 
future visits for each session. However, the prediction 
didn’t take into account the interest of current user. In 
contrast, in this paper, we propose a PLSA-based 
prediction model, by which we can make predictions 
based on the current active user’s interest, to improve the 
association prediction algorithm in [6]. 

III.  THE PLSA MODEL 

The PLSA model [9] was originally developed for 
topic discovery in a text corpus, where each document is 
represented by its word frequency. The model assumes 

that, under the texts we observed there is another latent 
level: the topic level. A document has a certain 
probability distribution on a variety of topics, and 
similarly, topics also have different distribution on a set 
of words. Therefore, PLSA introduces a latent topic 
variable  ݖ௞ א   ሼݖଵ, … , ௄ሽݖ  between the document   
݀௜ א   ሼ݀ଵ, … , ݀ேሽ and the word ݓ௝ א   ሼݓଵ, … ,  ெሽ. Thenݓ
the PLSA model is given by the following generative 
scheme: 

(1) Select a document ݀௜ with probability pሺ݀௜ሻ. 
(2) Pick a latent topic ݖ௞ with probability pሺݖ௞|݀௜ሻ. 
(3) Generate a word ݓ௝ with probability p ൫ݓ௝|ݖ௞൯. 
As a result, we generally get an observation pair 

ሺ݀௜,  ௞ is hidden. Thisݖ ௝ሻ, while the latent topic variableݓ
generative model can be expressed by the following 
probabilistic model: 
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Expectation maximization (EM) algorithm [10] is 
applied to learn the unobservable probability distribution 
Pሺz୩|d୧ሻ  and P൫w୨|z୩൯  from the complete dataset. The 
log-likelihood of the complete dataset is:  
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Where n൫݀௜,  ௝൯ is the number of occurrences of wordݓ
௝ݓ  in document ݀௜  . In order to maximize the log-
likelihood function L, we should first initial the PLSA 
probability model parameters Pሺݖ௞|݀௜ሻ  and P൫ݓ௝|ݖ௞൯ 
with random number, then perform iterative calculations 
by alternating implementation of the E-step and M-step. 
When the change of L is less than a threshold value, we 
stop the iterative calculations. In E-step, the priori 
probability of z is calculated: 
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In M-step, the following formulas are used to re-
estimate the model parameters: 
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IV.  DATA PROCESS 

In this section, we present our approach to establish a 
PLSA-based prediction model on a large-scale web log. 
Our goal is to model user access patterns to get the user’s 
interest, based on which we can predict future requests 
for each current active user. 

A.  Extracting Embedded Objects 
HTML documents consist of variety of embedded web 

objects, such as images, audio and video files. Exactly, 
they contain the linkage structure of these web objects. 
References to embedded objects are usually preceded by 
their HTML container. Therefore, from the web logs we 
can see, they always appear as a burst of requests from 
the same user shortly after an HTML access. If an object 
is observed that its request always come immediately 
after access to certain HTML documents, it can be 
labeled as its containers. 

Generally web users are only interested in HTML page, 
however, they know nothing about the linkage structure 
information. Therefore, we deal with HTML documents 
and embedded objects differently. While building PLSA-
based model to get the interest of user, we do not take 
embedded objects into considerations. Instead, we just 
associate them to their corresponding HTML containers. 
After extracted from web logs, these embedded objects 
are stored in HTML-OBJECT Hash Table, by which we 
can get the embedded objects of a HTML documents 
quickly.  

B.  Building User-html Matrix 
After filtering the embedded objects, only HTML 

document remain in a request sequence. When we build 
the user-html matrix, the session list has to be generated 
first. Here, the generation of session list consists of three 
major steps. First, the records of the web logs are sorted 
according to the access time. Then, web set a reasonable 
session time threshold. We assume that the duration of 
any session won’t exceed the session time threshold. 
Finally, according to the threshold, we sequentially build 
the sessions for each user. Then we can get the user-html 
matrix (see Fig.1) by traversing the session list. Each row 
in the matrix represents a user and nሺݑ௡, ݄௠ሻspecifies the 
number of times the html file ݄௠ accessed by user  ݑ௡.  
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Figure 1. The user‐html matrix. 

 

V.  PLSA-BASED PREDICTION MODEL 

A.  Overview 
Although the PLSA model was originally developed 

for topic discovery in text corpus, it has been applied in 
many scientific fields, such as multimedia, data mining 
and image recognition. Here we apply the PLSA model to 
improve web caching algorithm. However, in the 
application process, we found that there is a problem with 
the PLSA model: it doesn’t consider the user similarity 
when calculate the model parameters. In order to more 
accurately obtain the latent topics, we have made some 
improvements on the iterative calculations to address the 
similarity between the users. We introduce a new 
similarity layer in PLSA model such that the topic 
distributions of the given user can be updated by that of 
users similar to him. After building the improved PLSA 
model, we can made prediction for each current active 
user based on the users’ interest which is derived from 
the model. Further, we make use of the prediction model 
to improve the caching algorithm described in [6]. 

As shows in Fig.2 we depict an overview of the 
improved PLSA model in our application scenario. Given 
the user ݑ௜ א ሼݑଵ, … , ேሽݑ , the HTML file ௝݄ א
ሼ݄ଵ, … , ݄ெሽ and the latent topic ݖ௞ א ሼݖଵ, …  ௄ሽ, we adoptݖ
the same generative scheme as that of PLSA. In addition, 
we introduce a similarity layer between user and HTML 
file.  

 
1. Select a user ݑ௜ with probability Pሺݑ௜ሻ 
2. Pick a latent topic ݖ௞ with probability Pሺݖ௞|ݑ௜ሻ 
3. Access a HTML file ௝݄ with probability P൫ ௝݄|ݖ௞൯ 
4. Pሺݖ௞|ݑ௜ሻ  can be updated by that of the similar 

users: Pሺݖ௞|ݑ௜ሻ ൌ  ∑ ܲሺݖ௞|ݑ௟ሻܲሺݑ௟|ݑ௜ሻே
௟ୀଵ  

5. ܲሺݑ௟|ݑ௜ሻ  is similarity between ݑ௟  and ݑ௜ , it also 
can be considered as the conditional probability 

 
The user similarities are parameterized by the user 

similarity matrix S which described in the following 
section. As we have incorporated the user similarities into 
the PLSA model, the similar users can have similar topic 
distributions and we will get more accurate latent topics 
than the original PLSA model. 

B.  Users Similarites 
With the user-html matrix introduced as Fig.1 shows, 

we compute the user similarity matrix S by cosine 
similarity. For each pair of users in the matrix, we first 
compute their cosine similarity as follows: 

                 i l
ih

i l

u u
Sim

u u

⋅
=

⋅

uur uur

uur uur                                   (8) 

where  
i

u
uur

is the i-th user and represented by the i-th row 
in the user-html matrix. Then we can get a similarity 
matrix S where ௜ܵ௟ ൌ  ܵ݅݉௜௟ . Further, we should 
normalize the matrix S such that its row adds up to 1. 
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Therefore, each element of S can be considered as the 
conditional probability ܲሺݑ௟|ݑ௜ሻ and the topic distribution 
of a given user can be updated by the topic distributions 
of the users that are similar to the given user. 
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C.  Parameter Estimating 
According to the maximum likelihood principle, we 

estimate the parameters Pሺݖ௞|ݑ௜ሻ  and P൫ ௝݄|ݖ௞൯  by 
maximizing the log-likelihood function: 
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Then we used EM algorithm to estimate the parameters. 

In order to incorporate the user similarity, we renew the 
probability Pሺݖ௞|ݑ௜ሻ by equation (9) at each end run of 
M-step, thus resulting in a variation of EM algorithm 
through the following E-step and M-step: 

The E-step is given by  
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and the M-step is given by  
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Iteratively perform E-step and M-step until the 

probability values are stable. 

D.  Prediction Algorithm 
The process of building the PLSA-based model is 

called training. Once the training is finished, we can 
make use of the model to give predictions of future visits. 
Specifically, for user ݑ௜ , we will assume that he is 
interested in the topic ݖ௞ , if pሺݖ௞|ݑ௜ሻ is the biggest one 
among the sets ሼܲሺݖଵ|ݑ௜ሻ, … ܲሺݖ௄|ݑ௜ሻሽ . Likewise, for 
topic ݖ௞, we only keep N largest value among  sets. Then 

we assume that the N html pages corresponding to the N 
values are likely to be accessed under the topic ݖ௞. 

In the previous section, we introduced the intelligent 
web caching algorithm [6] (NGRAM-GDSF) which aims 
to improve the GDSF caching algorithm. NGRAM-GDSF 
is one of the best intelligent caching replacement 
algorithms. Our PLSA-based predictive caching 
algorithm (PN-GRAM) is an extension and enhancement 
of NGRAM-GDSF by incorporating a factor of predictive 
interest frequency. When we use the improved PLSA 
model, the corresponding PLSA-based predictive caching 
algorithm is called IPN-GRAM. 

Normally, there simultaneously exist a number of 
active users who are accessing a web server. Based on the 
pre-trained improved PLSA model, our prediction model 
can predict each active user’s interested topic and the 
HTML file corresponding to the topic. Different users 
will give different prediction to future HTML files. Since 
our prediction of a HTML file comes with a probability 
P൫ ௝݄|ݖ௞൯, we can combine all the current active users’ 
interest predictions to calculate the future interest-based 
occurrence frequency of a HTML file. Let ௝݄ denote a 
HTML file on the server,  ݑ௜ be an active user on a web 
server, ௜ܲ,௝ be the probability predicted by an active user 
௜ݑ , who are interested in topic ݖ௞ , for HTML ௝݄ . If  

௜ܲ,௝ ൌ 0, it indicates that HTML file ௝݄ is not predicted by 
௜ݑ . Let ܫ௝  be the future interest based frequency of 
requests to HTML  ௝݄. If we assume all the users on a 
web server are independent to each other, we can obtain 
the following equation: 

,j i j
i

I P= ∑                                 (16) 

To illustrate (16), we map two users in Figure 2. Each 
user yields a set of predictions to HTML files according 
to his interest. Since users are assumed independent to 
each other, we use (16) to compute the interest-based 
frequency of HTML file  ௝݄ . For example, The HTML 
file  ݄ଵ  is predicted by three active users with a 
probability of 0.7, 0.6 and 0.5, respectively. From (16), 
ଵܫ ൌ 1.3. This means that based on users’ interest, the 
HTML file  ௝݄  will be accessed 1.3 times in the near 
future. 
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Figure 2. Prediction of interest‐based frequency. 
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Once the future interest-based frequency Iሺ݄ሻ  of a 
HTML h can be predicted, we extend NGRAM-GDSF [6] 
to incorporate the  Iሺ݄ሻ: 

( ) ( ) ( ) ( )( ) ( ) ( )* /K h L w h F h I h C h S h= + + +

                                                                                       (17) 
We add  wሺ݄ሻ, Fሺ݄ሻ and Iሺ݄ሻ  together in (17), which 

implies that the key value of a HTML h is determined not 
only by its past occurrence and session-based future 
frequency, but also affected by its interest. The more 
likely the active users are interested in it, the greater the 
key value will be. The rationale behind our extension is 
that we take into account the users interest obtained by 
training the web logs and adjust the replacement policy. 

VI.  EXPERIMENTS 

A.  Simulation Model 
We have conducted a series of experimental 

comparisons with the web log that we are able to get. In 
the experiments, the EPA data set contains a full day of 
HTTP requests to the EPA web server which located at 
Research Triangle Park, NC. Before the experiments, we 
removed the records of uncacheable  URLs from the web 
logs. A URL is considered uncacheable when it contains 
dynamically generated content such as CGI scripts. We 
also filtered out the records with unsuccessful HTTP 
response code. In our experiments, we use two objective 
performance parameters to evaluate the performance of 
our extended caching algorithm. The hit rate is the 
percentage of all requests that can be replied directly by 
searching the cache for a copy of the requested document. 
The byte hit rate represents the percentage of bytes that 
are transferred directly from the cache rather than from 
the origin server. Let N be the total number of request 
and δ௜ ൌ 1  if the request i is hit in the cache, while 
δ௜ ൌ 0  ohterwise. Mathematically, the two parameters 
can be calculated as follows: 

1
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i
iHR
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==
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where ܾ௜ is the size of the i-th request. 

B.  Experimental Results 
In the experiments, the algorithms under comparison 

are NGRAM-GDSF, PN-GRAM and IPN-GRAM. With 
respect to any one of the three algorithms, from Fig.3 and 
Fig.4, we can see that both the hit rate and byte hit rate 
are growing in a log-like fashion as a function of the 
cache size. This suggests that hit rate or byte hit rate does 
not increase as much as the cache size does, especially 
when cache size is large enough. In other words, as the 
cache size becomes infinite, the performance difference 
between these three algorithms will disappear. So we 

should compare the performance of caching algorithms 
under limited cache size.  

We observed the cache hit rates and cache byte hit 
rates under different cache sizes. As shows in Fig.3 and 
Fig.4, IPN-GRAM and PN-NGRAM both perform better 
than NGRAM-GDSF. This result reveals that the interest-
based frequency, predicted by the PLSA-based prediction 
model, is workable. Due to the validity of interest-based 
frequency, IPN-GRAM and PN-GRAM both build a 
more accurately prediction model than N-GRAM, so that 
the according cache replacement policies get a better 
performance. Besides, we found that IPN-GRAM is a 
little better than PN-GRAM, since it gets a more 
accurately latent topic when building the prediction 
model. In addition, we can see that when cache sizes are 
large few replacement decisions are needed and cache 
pollution is not a factor so the policies have similar 
performance. When cache sizes are very small, adding a 
single large document can result in the removal of a large 
number of smaller documents reducing the effects of 
cache pollution. At this case, a good caching algorithm 
could significantly improve the caching performance. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 

 

 

 

 
In order to prove the validity of the improved PLSA 

model, we compare the convergence rate between IPN-
GRAM and PN-GRAM. PN-GRAM adopts the PLSA 
model and IPN-GRAM uses the improved PLSA model 
instead. As shows in Fig.5, the log-likelihood of IPN-
GRAM convergence faster than PN-GRAM. Since IPN-

Figure 3. Hit rate comparison on EPA data 
 

0 0.5 1
40

50

60

70

80

90

Cache size(%)

H
it 

R
at

e(
%

)

Hit Rate VS Cache Size

 

 

IPN-GRAM
PN-GRAM
NGRAM-GDSF

Figure 4. Byte hit rate comparison on EPA data 
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GRAM introduce similarity layer in PLSA model, topic 
distributions of the given user can be updated by that of 
users similar to him during the iterative process of 
training. By this way, IPN-GRAM could estimate more 
accurate probability model of the topic distributions in an 
iteration, which will accelerate the convergence rate of 
iterations.  

 
 
 
 
 

 

 

 

 

 

VII. CONCLUSION 

In this paper, we applied the PLSA-based prediction 
model build from the web logs to improve the NGRAM-
GDSF caching algorithm. By taking into account the 
interest-based frequency in caching algorithm, it is 
possible to dramatically improve both the hit rate and 
byte hit rate. In the future, we would like to study on how 
to reduce the building time of PLSA model, so that we 
can dynamically update the model parameters on line. In 
addition, in future we can consider incorporating the 
clustering approach to process web logs, so that a more 
accurate user interest model could be obtained by 
building PLSA model.  
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Figure 5. Log‐likelihood convergence rate   
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