JOURNAL OF COMPUTERS, VOL. 8§, NO. 6, JUNE 2013

1427

A Solution for Privacy-Preserving Data
Manipulation and Query on NoSQL Database

Guo Yubin®, Zhang Liankuan®, Lin Fengren®, Li Ximing®*
@ College of Informatics, South China Agricultural University, Guangzhou 510640, China
Email: {guoyubin,linfengren,liximing } @scau.edu.cn
b College of Science, South China Agricultural University, Guangzhou 510640, China
Email: zhangliankuan@scau.edu.cn

Abstract— Privacy of data owners and query users is vital in
modern clouding data management. Many researches have
been done on cloud security, but most of them are focused on
the privacy of data owners or of query users separately. How
to protect the privacy of the data owners and users simulta-
neously is a great challenge. In this paper, a solution of data
storage and query protocol based on classical homomorphic
encryption scheme is given to preserve privacy of both data
owners and query users. Our main efforts are put on NoSQL
database which is less structural than relational database.
Storage and indexing structure on NoSQL database, query
protocol are proposed, and algorithms for updating and
querying are also given. To implement our solution, Berkley
DB, an excellent storage solution for NoSQL database is
chosen and data are encrypted/decrypted using Elgamal
and Paillier encryption system, using basic Java package.
Experiments are done under different parameters in order
to achieve better efficiency.

Index Terms—NoSQL; cloud data management; privacy
preserving

I. INTRODUCTION

Today cloud computing and data outsourcing provide
much convenience for kinds of enterprises. For instance,
enterprises can concentrate on their main business while
outsourcing their complex data management and query
service to service providers in cloud. These service
providers in cloud focus on data management, and provide
high quality service. But in such kind of computing
pattern, a bottleneck, privacy preserving of data owners
and query users, seriously restricts progress of cloud
computing.

Consider environment illustrated in Fig. 1, data owners
outsource their data and query services, but the data is
private assets of them and should be protected against
the service providers and querying users in some extent.
On one hand, data owner can update, query and authorize
access of data, while the service providers in cloud should
know nothing about especially detailed data, and query
users should know not more than the exact answers for
what she/he is querying. On the other hand, query users

Partially supported by National Science Foundation of China
(61103232, 61272402, 61202294),Guangdong Provice Nature Science
Foundation (10351806001000000, 10151064201000028), Guangdong
Science Technology Plan Project (2010B010600046, 2011B090400325),
Guangzhou Science Technology Plan Project (12C42101606).

* Contact author.

©2013 ACADEMY PUBLISHER
doi:10.4304/jcp.8.6.1427-1432

need to query data from cloud, but the query might
disclose sensitive information, behavior patterns of the
user. For example, when Alice searches a website, such as
Facebook, for friends who share the similar backgrounds
(e.g., age, education, home address) with her, she should
not disclose the query that involves her own details to the
cloud. Privacy of data owners and query users are defined
as data privacy and user privacy respectively.

¢ cloud \ -
Service Provider

Dflta Query‘I

|
data User

query
transformantion

data owner

— resu'fﬁ'm

e P fPricavy f—— filter
| nction
| Source DB unctio

Figure 1: Architecture of Data Service on Cloud

A. Related works

For data privacy, the most general solution in recently
research papers are encryption that means data deposited
to service provider must be encrypted to avoid infor-
mation leakage. Agrawal et al [5] proposed an order
preserving encryption scheme (OPES) by which indexes
can be built directly on ciphertext. OPES can handle
directly (without decryption) any interesting SQL query
types, except SUM and AVG. But order preserving would
leak information about data, and is not a good solution
to privacy preserving. Hacigumus et al [9] proposed to
handle SUM and AVG using homomorphic encryption
function in the database context. Ayman Mousa et al. [14]
uses classic REA, a symmetric encryption algorithm, to
encrypted data respectively, and in this way the query pro-
cessing performance is assured, but information leakage
and query privacy are not considered. Privacy homomor-
phism [17] is encryption transformations which map a
set of operations on cleartext to another set of operations
on ciphertext. In essence, privacy homomorphism enables
complex computations (such as distances) based solely on
ciphertext, without decryption. Unfortunately, as pointed

1428

out by Mykletun and Tsudik [15], its encryption scheme
is insecure, demonstrated by its vulnerability to a basic
ciphertext-only attack. However, for encrypted database,
efficiency of query processing is a great challenge.

In [8], [10], [11], user privacy is considered together
with data privacy. Yonghong Yu and Wenyang Bai dis-
cussed how to enforce data privacy and user privacy
over outsourced database service in [18]. Hu et al. [11]
proposed a solution based on secure traversal framework
and privacy homomorphism based encryption scheme.
Yong Hu et.al in [12] constructed an intelligent analysis
model for outsourced software. And secure protocols
for processing k-nearest-neighbor queries (kNN) on R-
tree index is given. In the authors following work [10],
they integrated indexing techniques with secure multi-
party computation (SMC) based protocols to construct
a secure index traversal framework. In this framework,
the service provider cannot trace the index traversal path
of a query during evaluation, and thus keep privacy of
users. Their protocols for query are complex, and hard
to implement. The thought of composed key in index is
directly prompted by Tingjian Ge’s work [8]. In his paper,
keyword are composed together to improve the efficiency
of aggregation operations in database. It is intuitively that
addition of keywords in block is dramatically efficient
than adding them one by one. But the authors have not
considered range or single key search. As to protecting
data privacy and user privacy, we use the block structure
to hide real structure of keys in index. And key search is
efficient for key comparison can be done k£ —in—1 where
the k is key number in a single block, that is decided by
block and key size.

B. Our contribution

For data privacy and user privacy, a solution of data
storage, manipulation and query is presented in this paper.
In main database files, data are stored in key/value pair
which is a typical NoSQL storage structure and are en-
crypted with Elgamal homomorphic encryption scheme.
Keys in index are ciphertext of combinations of real keys
in big blocks (in our experiments, one block is set to
1024 bits), which are encrypted with Paillier encryption
scheme [16] which is an additive homomorphic crypto-
system. When a key is queried, comparison can be done
on ciphertext in blocks that improves efficiency of query.
Protocols of data manipulation and query among data
owner, service provider and querying user is given. Algo-
rithm for data updating and querying are implemented to
verify usefulness of the solution. As to implementation of
our solution, Berkley DB, a typical key/value pair model
database, is chosen to construct a prototype system. It is
an excellent storage solution for NoSQL database for its
high efficiency and convenience.

C. Outline of the paper

The rest of the paper is organized as follows. Section
IT provides background information on homomorphic

©2013 ACADEMY PUBLISHER

JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013

encryption scheme, NoSQL database and index. Section
IIT describes the query protocol and main algorithms,
security analysis is also given in the section. Performance
and analysis of experiments results are shown in section
IV. Finally, section V gives conclusions and future works.

II. PRELIMINARY
A. Homomorphic Encryption

Homomorphic encryption allows specific types of com-
putations to be carried out on ciphertext and obtains
an encrypted result which is ciphertext of the result
of operations performed on the plain text. The additive
homomorphic property of a homomorphic cryptosystem
is Enc(a) x Enc(b) = Enc(a + b) , where a and
b are two plain text message blocks, and Enc is the
encryption function that takes a plaintext message block
(and an encryption key) and returns the ciphertext block.
Thus, in the above equation, + operates on the plain
text, and x operates on the ciphertext. An example of
such an encryption scheme is the Paillier system. Elgamal
encryption scheme [6], [7] is multiplicative homomorphic
with Enc(a) x Enc(b) = Enc(a % b) where a,b, Enc
and x share the same meanings with formula above,
and operation + is multiple operation on the plaintext.
The Legion of the Bouncy Castle [1] provided open
source libraries of Java and c# Cryptography Architec-
ture. Both Paillier and ElGamal encryption scheme have
great practical implications on the outsourcing of private
computations, such as, in the context of cloud computing
and outsourcing [13].

B. NoSQL database and index

NoSQL database is defined as the next Generation
Databases mostly because of the following characteristics:
being non-relational, distributed, open-source and hori-
zontally scalable [2]. The concept NoSQL is prompted
by Carlo Strozzi in 1998 [3], and the current NoSQL
movement beginning from 2009 often more characteristics
apply such as: schema-free, easy replication support,
simple API, eventually consistent / BASE (not ACID),
a huge amount of data and more. From NoSQL Data
Modeling Techniques [4] data model for NoSQL Database
can be cataloged into key/value or tuple store, Big-
table style databases, Document databases, and graph
databases. Berkeley DB is a robust solution on which
to build a NoSQL system, and the storage system of its
key/value pair is more efficient than other database. That
is the reason for us to choose it as our base database in
our experiments.

III. SOLUTION FOR STORAGE AND UPDATING

In this section some symbols are defined for simplifi-
cation. owner means data owner, sp is service provider
in cloud, and user data user for query. We use Paillier
crypto-system to encrypt keys and values in NoSQL
database. System parameter is taken as n. Enc(m, pk)
is the function to encrypt plaintext m with public key

JOURNAL OF COMPUTERS, VOL. 8§, NO. 6, JUNE 2013

pk, and Dec(c, sk) function to decrypt ciphertext ¢ with
private key sk. Denote the public key and secret key of
data owner as (pkowner, Skowner). Denote the public key
and secret key of user user; as (Pkuser; , Skuser,). All data
are encrypted using homomorphic encryption algorithm,
each one of owner, sp and user publishes his public key
and uses the private key to decrypt ciphers.

A. data storage

In our solution, data are stored in database, and in
key/data model. That means each tuple is composed of
one key and one data, the key and data are encrypted
respectively. To construct indices of data, several keys
are composited together to form a 1024 binary bits block.
Number of keys in one block is determined by length of
key. Let [be length of key, then the number of keys in one
block is | (1024)/(1+1)] and one bit is added to each key
to deal with overflow.. Let k1, ko, ..., k,, be keys which
will be combined together, then the key block in index k
can be computed as follows:

k=Fk << (n—=1)*«(1+1)U
(ko << (n—2)%x(I+1)U...U(kp)

In this formula, String << n is left transferring opera-
tion which will left transfers bit-string String for n bits.
To k, only one encryption operation is needed. The block
of keys in plaintext and ciphertext are illustrated in Fig.
2.

group of keywords k. k... Encrypted group of keywords k, k,...

k

—Encrypt—
k1 " VP

Enc(k, . k k

12‘ 11 K1z, o Ky PRopner) ‘

‘ kZm ‘\»EncrvphP{ Enc(k,, k

21, K2z, e Ky PK ey
knm }»Encrypk%

Figure 2: the structure of index keys

knm’pkowner) ‘

E“c(km, an,

In the index, the pointers pointing to tuples in main
database file are composed in according to the key blocks.
Algorithm for index construction is presented as Algo-
rithm. 1.

B. Data manipulation

When a data owner outsources his data to service
provider in cloud, some preparation works must be done.
At initial stage, data are encrypted in key/value pair,
indices are constructed with Algorithm 1. Then, service
provider uses the indices to improve query efficiency.
And maintenance of data and indices are task of the
data owner. When there are some tuples to be inserted
or deleted, data owner must arrange an insert or delete
operation on main database files which is stored at service
provider, reindex the changed data and sent the index to
service provider.

©2013 ACADEMY PUBLISHER

1429

Algorithm 1: Index constructing algorithm

Input: key, pointer*
Output: index file f
1 f= New(file);

2 [= length of key;

3 n=1int(1024/(1 + 1));

4 while not end of input do

5 1=0;

6 mip = myg = O;

7 while ¢ <= n and not (end of input) do
8
9

my = (my << (I+1)Vkey) mod n? ;
/Ingy is sqare of n in encrypting algorithm;

10 me =mg << I'V mod n? ;

11 /1’ is the length of key in database main
files;

12 1++;

13 Add < Enc(my, pkowner), Enc(ma, pkowner) >
into index file f;

14 return f;

For the data encrypted under homomorphic encryption
scheme, order of data is not kept in ciphertext. In order
to simplify data maintenance, data in plaintext can be or-
dered in time, which means the data owner need to attach
the data when it is put into database. When a fresh tuple
is going to be inserted, it must be at the end of database
files. When a tuple is going to be deleted, it will not be
deleted physically, it will only be marked as ‘deleted’. The
‘deleted’ data will not appear in any query results, and
can be rearranged after a certain amount of manipulation.
Let updating operation be done by deleting and inserting
operation, data inserting and deleting algorithm are given
as Algorithm. 2 and Algorithm. 3 respectively.

C. Data querying protocol

In this section, we illustrate the query details first, and
then propose the query protocol. As the keys are in block,
the queried key must be repeated n times and together
to meet each key in a key block. Fig. 3 presents an
example of query procedure. As shown in Fig. 3, there
are 4 keys in a key bloc. Then in plaintext keys 0, 1, 10, 2
is combined into a big integer as 000001010002, and
then encrypted into ciphertext. As to the queried key,
the additive reverse is used to composite into block, then
the queried block is —002 — 002 — 002 — 002 when
the queried key equals to 2. We use additive reverse of
the queried key to transfer minus into addition operation
in plaintext, then multiplication on ciphertext can be
used to implement subtraction, according to the additive
homomorphic property of Paillier encryption scheme.

1430

Algorithm 2: Data inserting algorithm

Input: < key, value > //a new tuple that is inserting
into the database
Output:
1 //Insert a new tuple
< Enc(key, pkowner), Enc(key, pkowner) > into
database.;
2 T =< Enc(key, pkowner), Enc(value, pkowner) >3
3 Attach
T =< Enc(key, pkowner), Enc(value, pkowner) >
to the end of main database file;
4 //index maintaining;
5 for each index do
6 Construct its new keys key’;
7 t =<
Enc(keylypkowner)y Enc(keyapkowner) >
8 if the last data block of index file is not full then

9 (Ckeys Coatue)= ciphertext of last block ;

10 Chey = cfgl; + Enc(key, pkowner) mod n?;

11 Coalue = cUJ;llue + Enc(value, pkowner)
mod n?;

12 Write (Ckey, Coatue) back to file;

13 else

14 Attach T' =<

Enc(keyvpkowner)v EnC(Ualueapkowner) >
L to the end of index file.

5 Send the index back to sp and replace old one ;

[

Algorithm 3: Data deleting algorithm

Input: ¢t =<
Enc(key, pkowner), Enc(value, pkowner) >,
database(main file and indices)
Output: database(main file and indices) after
deletion
1 Select
t =< Enc(key, pkowner), Enc(value, pkowner)) >
in main file and indices.;
2 //deleting from main database file, is done by sp;
3 Select the last tuple of main database file as ?1;
4 Replace t with ¢4;
5 //deleting from index;
6 for each index do
7 Construct key key’;
8 Let t =<
Enc(key’, pkowner), Enc(key, pkowner) >
9 Find the block b, in which t is the ith key;
10 Find the last key block b; in in which key t; is
in bl)
1 by = bt/ti*(l+1) « t;*(lJrl) mod n? ;
12 by = b;/t; mod n? ;

[

3 Send the index file to sp and replace old one;

©2013 ACADEMY PUBLISHER

JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013

Plaintext Encrypted block
key block in index
‘00 001 | 010 002 . | 10000111001100001111...,
queried key Encrypt
‘-002 ‘-002‘ -002‘ -002 11010001000010001111..... ‘
¥ JL*
4
‘-002 -001‘ 08‘ 00 {Decrypt; | 11001100000011110000.... ‘
Al J

Figure 3: An example of querying

We know, the query algorithm is oblivious for data user.
The data user encrypted additive reverse of queried key
at first, and send it to service provider. Then the service
provider extends it into queried block, and chooses proper
index to multiple the queried block with a key block, and
as follows, the product is sent to data owner one by one.
When the data owner receives the product, it decrypts
the cipher and decomposes the plaintext to find which
one is 0, which means the according key in the block
is equal to queried key. The serial numbers of the key
are sent back to the service provider, service provider
can get the key in main data file and get queried data
for the data owner. This process will terminated when the
queried key is found or all blocks in the index is searched.
To database applications, querying is the most common
operation. In our solution, all of the three roles, service
provider, data owner and data user must participant in
the querying process. To preserve both data owner and
user privacy, querying process is more complex than in
traditional database system. Fig. 4 presents the querying
protocol in detail.

data owner data user

)

service provider

-, enc(-kq,pk
2. composite into big integer M
<

owner:

3. multiple M with blocks in proper index
-
<-4, series of products:
5. decrypt products to find equal key
4 equal keys -

=-7. data from database

8. enc(data,pk) >

useri

Figure 4: Query protocol

D. Security analysis

In this protocol, data user prompts a query by encrypt-
ing additive inverse of queried key with public key of data
owner and sends it to the service provider. The second
step starts when the service provider receives a query
request. The service provider chooses proper index, and
then a 1024 bits big integer M is composed by repeating
the queried key several times. Then multiplies M by each
key block respectively, and sends the results to data owner.
When the data owner receives the products, he decrypts
the cipher and decomposes the plaintext to find O in each

JOURNAL OF COMPUTERS, VOL. 8§, NO. 6, JUNE 2013

product. This procedure can be ended when the key is
found or all products are searched. Then the serial number
of equal key is sent back to the service provider, and all
the queried data are sent to the data owner. At last step,
the data owner decrypts the data with his owner private
key and encrypts it with public key of the data user and
sent the result to him.

During the query process, additive reverse of the
queried keyword is encrypted before sending to the ser-
vice provider, and the queried data is sent by data owner,
therefore the service provider can get no information
about what the data user is querying on the database.
Security can also be enforced by adding disturbing data
when the data owner requests query data from service
provider. And as to the data owner, during the query
process, only product of the queried block and index key
blocks are received and decrypted to find the order of
equal ones, while the queried key is kept invisible. The
data owner do not know which index is chosen and cannot
deduce what the data user is querying. It is obvious that
we cannot complete query without leaking no information
about the user and what she is querying. At least, queried
result must be sent back to her. What we really want to do
and can do is to limit the information leakage as much as
possible. From the analysis above, we can see, confidence
of data owner can surely be protected for homomorphic
encryption scheme is used. Data privacy and user privacy
are all kept by the scheme we propose to some extent.

IV. EXPERIMENTS
A. Setup

Our experiments are conducted on BDB database
system on Windows 7. We implements the generalized
Paillier system with basic Java package, and the Elgamal
scheme is from open source library of bouncy castle
[1]. All experiments of the solution are implemented in
Java with JDK 1.7 and the prototype system are run on
personal computer with Intel 2Ghz processor and 2GB
memory.

B. Experiments design and analysis

A series of experiments have been done to test ef-
ficiency of our solution. Some vital parameters, like
quantity of data, thread number, and length of key, have
been changed to find difference. Fig. 5 illustrates query
efficiency of our solution. In this figure, x axis is number
of tuples which is set to be 20000, 30000, 40000, 50000,
75000 and 100000, while y axis is average time used
for a single value query. And we can get 3 curves when
the length of key is set to 5, 10 and 20 decimal bits
respectively. (as in binary, it should be 1, 2, and 4 bytes
approximately.) On the whole, query efficiency is much
better when length of key is not so long. The reason
lies in that when the key is short, more keys can be put
into one single block, therefore a comparison on block is
equivalent to much more comparisons on single key.

In Fig. 6, tuple number is set to 50,000, to illustrate
query efficiency variation on thread number and key

©2013 ACADEMY PUBLISHER

1431

120
100
20
=] =—5
40 x il ()
20 T B 20
0 T T T T T !
£ £y] £ 2 2
L L5 £y ¥ =
&) £ %) L3
I S c:é% A7

Figure 5: Query efficiency on data quantity, and length of
key

length. In this figure thread number is x axis, and there
3 curves are with different key length. It is oblivious
that the best value of thread number is 4. When thread
is few, computing power of CPU cannot be fully used.
And when threads are too much, communication and
context change decrease the efficiency of the solution.
Thread number is vital for most service providers in
clouds. And parallel process of key words comparison can
improve query performance drastically. In our prototype
system, block comparison is divided into several parts
simply, query efficiency can be heightened further with
sophisticated technology of parallel programming. Note
that thread number is a hardware-depended parameter.

a0

g0 44—

40 5

30 —

. ‘\\ 1 ()
[i]

10 P ., .v '_. 20
4] T T T 1

1 2 4 8

Figure 6: Query efficiency on thread number and key
length

Fig. 7 illustrates efficiency variation according to thread
number and tuple number when the key size is fixed to 10.
From the figure, we can see, query time increases more
quickly when tuples are more than 50,000. And it means
performance of our solution is more better to middle scale
database.

V. CONCLUSION

Homomorphic encryption scheme provides a good so-
lution to privacy preservation for database system. We
present a storage solution for NoSQL database using ho-
momorphic encryption algorithms. Protocol of data query-
ing is proposed, and algorithms for data manipulation are
given also. In indices, keys are composed into big blocks
to improve the performance of encryption and decryption,
therefore accelerate the process of data manipulation and

1432

a0

S0

a0 —p—]

30 —

20

10 4
0 —— T

Figure 7: Query efficiency on thread number and tuple
number

query. Although Paillier and Elgamal encryption scheme
is not so efficient comparing to symmetric encryption
schemes like DES and SHA. But it is good enough for
some cases that users pay more attention on information
security than computation performance.

Future work includes improving efficiency of the sys-
tem and extending system functionality, such as extended
query on range, aggregation, and join.

REFERENCES

[1] The legion of the bouncy -castle. http://www.
bouncycastle.org/, 2013. [Online; accessed 10-Jan-
2013].

[2] Non - relational universe. http://nosgl-database.
org/, 2013. [Online; accessed 10-Jan-2013].

[3] Nosql, a relational database management system.
http://www.strozzi.it/cgi-bin/CSA/tw7/

I/en-US/nosqgl/Home\%$20Page, 2013. [Online;
accessed 10-Jan-2013].
[4] Nosql data modeling techniques. http:

//highlyscalable.wordpress.com/2012/
03/01/nosgl-data-modeling-techniques/,
2013. [Online; accessed 10-Jan-2013].

[5] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant,
and Yirong Xu. Order preserving encryption for numeric
data. In Proceedings of the 2004 ACM SIGMOD interna-
tional conference on Management of data, SIGMOD 04,
pages 563-574, New York, NY, USA, 2004. ACM.

[6] Haipeng Chen, Xuanjing Shen, and Yingda Lv. An implicit
elgamal digital signature scheme. JSW, 6(7):1329-1336,
2011.

[7] Taher El Gamal. A public key cryptosystem and a signature
scheme based on discrete logarithms. In CRYPTO, pages
10-18, 1984.

[8] Tingjian Ge, Stanley B. Zdonik, and Stanley B. Zdonik.
Answering aggregation queries in a secure system model.
In VLDB, pages 519-530, 2007.

[9] Hakan Hacgm, Bala Iyer, and Sharad Mehrotra. Efficient
execution of aggregation queries over encrypted relational
databases. In YoonJoon Lee, Jianzhong Li, Kyu-Young
Whang, and Doheon Lee, editors, Database Systems for
Advanced Applications, volume 2973 of Lecture Notes
in Computer Science, pages 125-136. Springer Berlin
Heidelberg, 2004.

[10] Haibo Hu and Jianliang Xu. Non-exposure location
anonymity. In Yannis E. Ioannidis, Dik Lun Lee, and
Raymond T. Ng, editors, /CDE, pages 1120-1131. IEEE,
2009.

©2013 ACADEMY PUBLISHER

JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013

[11] Haibo Hu, Jianliang Xu, Chushi Ren, Byron Choi, and
Byron Choi. Processing private queries over untrusted data
cloud through privacy homomorphism. In ICDE, pages
601-612, 2011.

[12] Yong Hu, Xizhu Mo, Xiangzhou Zhang, Yuran Zeng,
Jianfeng Du, and Kang Xie. Intelligent analysis model
for outsourced software project risk using constraint-based
bayesian network. JSW, 7(2):440-449, 2012.

[13] Daniele Micciancio. A first glimpse of cryptography’s holy
grail. page 96, 2010.

[14] Ayman Mousa, Elsayed Nigm, El-Sayed El-Rabaie,
Osama S. Faragallah, and Osama S. Faragallah. Query
processing performance on encrypted databases by using
the rea algorithm. pages 280-288, 2012.

[15] Einar Mykletun and Gene Tsudik. Aggregation queries
in the database-as-a-service model. In Ernesto Damiani
and Peng Liu, editors, Data and Applications Security XX,
volume 4127 of Lecture Notes in Computer Science, pages
89-103. Springer Berlin / Heidelberg, 2006.

[16] Pascal Paillier. Public-key cryptosystems based on com-
posite degree residuosity classes. In EUROCRYPT, pages
223-238, 1999.

[17] R. Rivest, L. Adleman, and M. Dertouzos. On data banks
and privacy homomorphisms. pages 169-177. Academic
Press, 1978.

[18] Yonghong Yu and Wenyang Bai. Enforcing data privacy
and user privacy over outsourced database service. JSW,
6(3):404-412, 2011.

GuoYubin Received Ph. D. from South China University of
Technology in 2007. She is now lecturer in South China
Agricultural University. Her research interests include Database
theory and technology, cryptography and network computing.

Zhang Liankuan Received Ph. D. from South China Agricul-
tural University in 2012. He is now lecturer in South China
Agricultural University. His research interests include Database
theory, technology and network computing.

Lin Fengren He is now Bachelor student in South China
Agricultural University. His research interests include Database
theory and technology.

Li Ximing Received Ph.D. degree from College of Informatics,
South China Agricultural University, Guangzhou, Guangdong,
China, in 2011. His current research interests include computer
theory and cryptography.

