
An Efficient Backup Technique for Database
Systems Based on Threshold Sharing

Sahel Alouneh1, Sa'ed Abed2, Bassam Jamil Mohd2, Mazen Kharbutli3
1German Jordanian University, 2Hashemite University, 3Jordan University of Science and Technology

{sahel.alouneh@gju.edu.jo, sabed@hu.edu.jo, Bassam@hu.edu.jo, kharbutli@just.edu.jo}
Corresponding and principle author: Sahel Alouneh, Ph.D

Abstract—Database security, corruption, and loss can be
disruptive, time-consuming and expensive to organization
operation and business continuity. Therefore, data
protection and availability is a high priority and a sensitive
concern during the design and implementation of
information systems infrastructure. This paper proposes a
novel technique for designing and implementing a database
recovery and security system based on the threshold secret
sharing scheme. Furthermore, a network-based database
protection technique is devised and presented. Analysis of
the proposed technique shows that it is effective and
comprehensive while not imposing significant delay in order
to secure, distribute and recover the data.

Index Terms— Database; Threshold sharing; Security;
Recovery

I. INTRODUCTION AND MOTIVATION

Business continuity necessitates the existence of a
reliable database system. A database error or failure, even
if for a short time period, can cause financial and social
confusion, and may lead to the loss of valuable customer
confidence [1, 2]. A database system failure may be
caused by various reasons such as human errors or
hardware failures. To ensure the reliability of the database
in a system, the database management and recovery policy
must be prepared beforehand prior to the occurrence of
such errors and failures. In addition, the security of
database content is of great concern, and in some
situations is considered the first priority.

This paper proposes a novel and efficient technique
for designing and implementing a database protection
system that is based on the Threshold Secret Sharing
Scheme (TSSS) [3]. One main motivation behind this
work is the ability to use the natural characteristics of the
threshold secret sharing scheme in order to provide
security and recovery for database systems. On the other
hand, the original TSSS requires extra overhead for
coding the shares and therefore this work suggests
modification to the original TSSS to help in reducing this
overhead size, especially when using this technique to
recover from data loss and protecting the integrity of the
data. The proposed technique relies on dividing the
database into shares and distributing them to an array of
hard drives (Sub-storage databases) in such a way that
would make it possible to recover the original database
even if not all hard drives are able to provide their shares.
That is, the shares would contain enough redundancy

making it possible for the whole database to be recovered
if enough (but not all) hard drives are able to provide their
shares. In addition, the proposed technique is also able to
protect the confidentiality and integrity of the database
system because the shares are coded. The proposed
technique is analyzed and shown to be effective while
imposing insignificant delays and overhead.

The rest of the paper is organized as follows. Section 2
discusses the database protection background and related
work. After that, Section 3 presents the proposed
technique and Section 4 evaluates and compares it with
other existing techniques. Finally, Section 5 concludes the
paper.

II. DATABASE PROTCTION BACKGROUND AND RELATED
WORK

Data recovery is the process of preserving data from
damage or destruction. It may be required due to failures
or errors that turn up in the form of physical damage to the
storage device or logical damage to the file system that
prevents it from being mounted by the host operating
system.

A primary storage medium used for data storage is the
hard disk. Hard disks have higher failure rates relative to
other storage mediums necessitating the existence of a
backup and recovery system. A simple method that can be
used to protect from hard disk failures is to make backup
copies of the files on other mediums such as redundant
hard disks, magnetic tapes, removable disks, or magnetic
optical disks [2].

Currently, a popular method used to improve the
reliability and performance of database storage on hard
disks is RAID arrays (Redundant Arrays of Inexpensive
Disks) [4]. RAID technology was developed to address
the limitations and drawbacks of conventional disk
storage systems in terms of fault-tolerance and
performance. It can offer an improved fault tolerance and
higher throughput levels compared to a single hard drive
or a group of independent hard drives. While RAID arrays
were once considered complex and expensive storage
solutions, today they are easy to use, relatively
inexpensive, and have become essential for a broad range
of applications.

In a RAID solution, multiple drives are organized in a
single array, which is viewed by the operating system as a
single disk. There are several different RAID "levels" or

2980 JOURNAL OF COMPUTERS, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jcp.8.11.2980-2989

redundancy schemes, each with its inherent cost,
performance, and availability (fault-tolerance)
characteristics. Each level is designed to meet different
user and system requirements. RAID levels 0, 1, and 5 are
the most common and cover most requirements. Table I
summarizes the main characteristics of these RAID levels.
In Table II, a summary of database protection techniques
is presented.

Many recovery schemes have been proposed to
address various performance issues. The work proposed
by Ammann et. al. [5] considers the database recovery
from a security point of view. It concentrates on database
failures caused by attacks that aim to reduce the
availability by bringing the system down. To recover from
such attacks, the authors developed a family of trusted
repair algorithms, each of which has two versions: static
and dynamic. The tradeoffs vary between static repair and
dynamic protection characteristics in terms of service
delay and the amount of recoverable data.

TABLE I.
COMPARISON BETWEEN RAID LEVELS

TABLE II.
LIST OF SOME DATABASE PROTECTION TECHNIQUES

Technique Strengths Weakness

Ammann
et.al [5]

-Recovery from DoS
attacks.

-No data failure
recovery.
-Variable recovery
delay.

Nakamura et.
al. [1].

-Partial recovery -When to apply the
full backup.
-Variable overhead.

HDFS [4] -Asynchronous
Compression
-RAID compatible.

-Large delay
overhead

Lui et. al.
[15]

-Specialized for image
data.
-Grid computing

-High overhead.

Lu. et.al [11] -Hierarchical clustering
-Scalable

Reverse clustering

Kadhem et.
al. [18]
(MCDB)

Protection for
Confidentiality,
privacy, integrity of
data.

No failure recovery

Storer et. al
[17]

Protects database for
security and failure.

High overhead
redundancy and
delay

Other database recovery mechanisms aim to protect
the database system from malfunctions caused by
hardware failures. Nakamura et. al. [1] considers the
problem of when to make a full backup. They propose an
optimal backup policy for a database system with
incremental and full backups. The incremental method
takes only copies of newly updated files that are usually
adopted in most database systems. An important concern
when applying this technique is the necessity of knowing
when to apply the full backup. Also, the overhead of an
incremental backup increases in proportion to the total
amount of updated files and the backup process depends
on the total amount of newly updated files.

The work presented by Kawai et. al. [2] proposes a
backup warning policy for a hard disk of an engineering
workstation or personal computer. A warning for backup
operation is given at the elapsed time Tw since the last
backup operation or the last recovery from hard disk
failure. The main drawback of the proposed scheme is the
non-responsive recovery due to unexpected hardware
failures.

In reference [4], the authors propose a
modification of the Hadoop Distributed File System
(HDFS) called DiskReduce system. This enables
asynchronous compression of the initially triplicate
data and transforms it to a RAID – class redundancy
overhead. This solution increases cluster capacity by
a factor of three. The delay factor is a main concern
in this technique and can affect its performance.

The References in [6 and 7] are used to show the
benefits of applying the threshold sharing on network
environments in terms of security and fault tolerance.
The requirements to apply the threshold sharing on
database systems are different from those in
networking systems.

A data grid architecture concept for clinical
image data backup is presented by Lui et. al. [15]. Clinical
image data backup solutions are considered expensive and
time consuming. Their study shows that the construction
of a federation of picture archiving and communication
system (PACS) archives serves as a cooperative backup
archive, and that this solution can be effectively realized
utilizing grid technology. In this design, only a small
fraction of the PACS data archive resource is needed from
each federated member. Furthermore, the massive
overhead burden in system design development and
operation can be mitigated by the public domain nature of
most of the data grid technology.

Another important work that discusses data recovery
in distributed database systems (DDBSs) is presented by
Krishna et. al. [16]. The authors propose a Backup
Commit (BC) protocol by including backup phases to the
two-phase commit protocol. In reference [11], a one
reverse hierarchical variable clustering on database
accelerated algorithm is presented. The authors present a
method that can both enhance the operation speed in large
scale sparse database and save the storage space,
simultaneously keep the inherent structure of the database.
The main thought of this paper is by using a reverse

RAID
level

Level 0 Level 1 Level 5

Minimum
number
of drives

2 2 3

Strengths Highest
performance.

High
performance;
High data
protection.

High performance;
High data protection;
Lower redundancy
cost compared to
RAID 1.

Weaknes
ses

No data
protection; If
one drive
fails, all data
is lost.

High
redundancy
cost
overhead.

Moderate
redundancy cost
overhead;
Complexity is more
than RAID 0 and 1.

JOURNAL OF COMPUTERS, VOL. 8, NO. 11, NOVEMBER 2013 2981

© 2013 ACADEMY PUBLISHER

variable cluster method to produce a projection clustering
database.

On the other hand, the security of database systems
has been investigated by many researchers. The authors in
[18] study security of the databases shared between many
parties from a cryptographic perspective. Their focus was
mainly targeting the confidentiality, privacy and integrity
of the data. They have proposed a mixed cryptography
database (MCDB) to encrypt databases over un-trusted
networks in a mixed form using many keys owned by
different parties. The work in reference [19] discusses
privacy and security issues that are likely to affect data
mining projects. Also, in reference [20], the authors
propose an encryption-based multilevel model for
database management systems. The proposed model is a
combination of the Multilevel Relational (MLR) model
and an encryption system. This encryption system
encrypts each data in the tuple with different field-key
according to a security class of the data element. Each
field is decrypted individually by the field-key of which
security class is higher than or equal to that of the
encrypted field-key. Indeed, one database scheme which
is very similar to this work is presented in reference [17].
However, it will be discussed later on after the proposed
scheme is presented in order to have a better
understanding for the difference between each one of
them.

This proposed approach is different and utilizes the
secret sharing scheme [6][7] to provide fault tolerance in
addition to security by dividing the database into shares
that are then distributed over an array of disks in such a
way that would allow for full recovery when a sufficient
(but not all) shares are available.

III. PROPOSED APPROACH

The main goal of this proposed recovery technique is
to provide recovery when failures occur. This proposed
technique for recovery uses a modified version of the
threshold secret sharing scheme. The following discussion
describes the basic idea of the secret threshold sharing
scheme.

Secret sharing is a technique used for distributing a
secret amongst a group of participants. Each participant is
allocated a share of the secret. The secret can be
reconstructed only when a sufficient number of shares are
combined together; individual shares on their own are
useless [3].

The Shamir sharing scheme [3] is used to implement
this proposed technique for database recovery. In this
scheme, any t out of n shares can be used to recover the
secret, which is the database in this case. The system
relies on the idea that you can fit a unique polynomial of
degree (t-1) to any set of t points that lie on the
polynomial. For example, two points are needed to define
a straight line, three points to define a quadratic curve,
four points to define a cubic curve, and so on. In other
words, it takes t points to define a polynomial of degree t-
1. The scheme works as follows: First, a polynomial of
degree t-1 is created with the original secret as the first
coefficient while the remaining coefficients are picked at

random. Next, n points on the curve are found and each is
assigned to a different sharer. Only when at least t out of
the n sharers disclose their points, there is sufficient
information to fit a (t-1) degree polynomial to them. The
first coefficient of the polynomial is the secret (the
original database as in this case).

The Shamir (k, n) threshold scheme is based on the
Lagrange interpolation for polynomials. The polynomial
function is as shown in equation (1), where p is a prime
number, coefficients a1 , … , ak-1 are unknown elements
over a finite field Zp, and a0 = M is the original data.
 f(x) = (ak-1xk-1 + … + a2x2 + a1x + a0) mod p (1)

Using Lagrange linear interpolation the polynomial

function can be represented as follows:

 f(x)=∑
=

k

j
ijy

1
∏

≠≤≤ −
−

jsks isij

is

xx
xx

,1

 (2)

In the following section we describe the architecture
and functionality of this proposed algorithm.
A. Database Protection Using Threshold Secret Sharing
(Architecture of the Proposed Work)

This subsection presents the high-level system
architecture for the proposed recovery technique. Figure 1
depicts a simplified architecture of the system. The basic
operation of this technique can be summarized in the
following points:

1. The database information that is passed into or

from the storage device has to go through an
interface component, i.e., the Database Controller.
The Database Controller component shown in
Figure 1 is responsible for distributing and
reconstructing the data.

2. The new total database size after applying the
threshold sharing scheme is equal to:
Total Database Size = n/k × Original Database
Size
 (3)

Where, n = Total number of shares

 k = Number of shares required to

reconstruct the original data.
3. The proposed technique can provide data

recovery for a single failure if (n–k=1), or
multiple failures if (n-k>1).

Figure.1 Database partitioning using the Threshold Sharing Scheme

2982 JOURNAL OF COMPUTERS, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

From the above discussion, it is clear that the Database
Controller is the basic component of this system. To
illustrate the general function of this component, the e-
mail storage system is taken as an example. The database
that is to be protected is the users’ mail boxes. Now, when
the e-mail server receives new e-mails or updates e-mails
in the system, it has to perform this task by distributing
the data to sub-database shares through the Database
Controller that runs the threshold sharing scheme

B. The Design Model of This Implementation

The threshold sharing scheme presented in reference
[7] will be used to implement the database partitioning. In
order to reduce the redundancy overhead, the requirement
of the random selection of coefficients in equation (1)
above will be changed to use actual values obtained from
the original database.

Figure 2 below shows an example of how the
distribution process applies a (2, 3) Threshold Secret
Sharing scheme into a binary file. The binary file is first
divided into m blocks B1, B2, ... , Bm where each block
size L is a multiple of k bytes. The effect of block size L
on file processing is shown later in Figures 3 and 4. From
Equation (1), it can be easily seen that there are two
coefficients, a0, and a1, for a (2, 3) scheme where k = 2.
Each block is therefore divided in k equal parts and these
coefficients are assigned values from the block (unlike
original TSSS scheme where a1 is assigned a random
value).

Let us take another example with n>k. The p value is
equal to 31. Let the threshold be k=3, and the input to the
threshold sharing system are the following groups of data:
a1= x7, a2=x19, and a3=21 in Z31. f(x) = 7+19x+21x2. In
this case, the system can generate as many shares as the
system requires. In other words, n=3 if no redundancy is
needed, or n= 4 if recovery from one failure is required,
and so on. Let us say that one redundancy is required, then
the following shares can be produced:

(x=1, f(1))= (1,16)
(x=3, f(3))= (3,5)
(x=5, f(5))= (5,7)
(x=7, f(7))= (7,22)

From any three values of the above share, the
polynomial coefficients a1, a2 and a3 can be
reconstructed using Lagrange interpolation.
Lemma 1: The following conditions should be fulfilled
between the coefficients and the polynomial variables for
the multiplication inverse:

For each w � Zp , w≠0, there exist z � Zp such that
(w×x)≡ 1(mod p). We further observed that any integer in
Zp has a multiplicative inverse if and only if that integer is
relatively prime to p [14]. The finite field of order pn is
generally written GF(pn); Either of the following case can
be considered. The first one is when n = 1, we have the
finite field GF(p); this finite field has a different structure
than that for finite fields with n > 1 and it is the one which
is going to be applied in our implementation studied in
this section. We look at finite fields of the form GF(2n).

Suppose it is needed to define a conventional coding
algorithm that operates on data 8 bits at a time and also it
is needed to perform division. With 8 bits, it can represent
integers in the range 0 through 255. However, 256 is not a
prime number, so that if arithmetic is performed in Z256
(arithmetic modulo 256), this set of integers will not be a
field. The closest prime number less than 256 is 251. Thus,
the set Z251, using arithmetic modulo 251, is a field.
However, in this case the 8-bit patterns representing the
integers 251 through 255 would not be used, resulting in
inefficient use of storage. The same argument applies
when selecting 257 as a prime number where the waste

Algorithm 1: [Distributing the Original Database into
Sub-storage Partitions]
Input: a binary file S (e.g., object, executable EXE, etc)
obtained from the original Database
Output: n binary files distributed into sub-storage
databases, depending on the (k,n) TSSS.

Step1: Initialization
• Let a binary file of size S be fed to the TSSS,

determine the size of S in bytes.
• Select the TSSS level, set k and n values.

Step 2: Processing TSSS
• Break the binary file into blocks of fixed lengths B1,

B2, …, Bi, where 0 ≤ i ≤ U, and U is the total
number of blocks in a binary file S.

• Block size should be divisible over k with no
remainder, i.e., (Bi/k) ≠ 0.

• Padding, in the last block in S, padding is required
if number of bytes in the block is not divisible by k.

• In each block, all bytes are fed to all coefficients of
the polynomial function f(x)= ak-1xk-1 + … + a2x2 + a1x
+ a0.

Where

• Select the irreducible polynomial for GF(28) finite

field to be m(x) = x8 + x4+ x3 + x + 1.
• Calculate n values for function f(x), where

x=1,2,3,…n.
• Save and distribute the calculated n values to n

output binary files in sub-storage databases.

Step 3: Repetition 1 (Inside block repetition)
Repeat Step 2 for all bytes in Bi

Step 4: Repetition 2 (Inside binary file repetition)

Repeat Step 2 and 3 for all blocks in the binary file S.

Step 5: Finish the TSSS processing or wait for another
binary files to be processed.

a0 = byte 1 of Bi
a1 = byte 2 of Bi

ak-1 = byte c of Bi, where i is byte
index in a block Bi

JOURNAL OF COMPUTERS, VOL. 8, NO. 11, NOVEMBER 2013 2983

© 2013 ACADEMY PUBLISHER

will be high
finite field of
polynomial,
the irreducibl
methodology
operations on

C. Security E

The appl
provide four

Confidential
Now, fr

confidentialit
database sys
achieved us
additional su
confidentialit
threshold sec
by the distrib
original data
inherited from

Detection of
To suppo

TSSS schem
shares are ne
the network
The detection

her. An equiv
f the form GF
is sometimes
le polynomial

y can perform
n equations (1

Enhancement f
ication of TS
main security

lity of the dat
from a secu
ty can be the
tem, and ther
ing a (k, k)

ub-storage sha
ty is basically
cret sharing a
butor process

abase. The co
m the original

f database mo
ort data integri
e where n > k
eeded. The im
resource utiliz
n of modified

valent techniq
F(2n) using th

more conven
l G(x) = x8 + x
m Multiplicat
 and 2).

for the Databa
SS on the da

y features whic

tabase
urity point
only security
refore, this re
) TSSS. Thi
are(s) is/are r
y the main go
algorithm. The
s carry an enc
nfidentiality o
TSSS algorith

odification:
ity it is require
k. This means
mpact of addin
zation is show
share(s) can s

que for defini
e same irredu

nient. Indeed,
x4 + x3 + x + 1
tion and Add

ase System
atabase system
ch are:

of view,
level required

equirement ca
s means tha
required. The
oal of the ori
e shares gene
coded form o
of data is actu
hm.

ed to apply a (
extra or redun

ng more share
wn in equation
simply be obta

Figure.2 E

ing a
ucible

with
, this

dition

H
appr
illus
data
part

m can

data
d in a
an be
at no

data
iginal
erated
of the
tually

(k, n)
ndant
es on
n (3).
ained

by c
of sh

Iden
T

follo
TSS

Ava
T

exam
deni
orga
wou
does
secu
grea
n >
shar
enou
agai

Example for a dist

Having define
roach, the foll
strate the step
abase in orde
itions and the

comparing val
hares.

ntification of
To support i
owing require
SS scheme, wh

ailability
This work foc
mple of avail
ial of service
anization is de
uld normally e
s not usually r
urity losses, it
at deal of time

k, the service
res are under D
ugh to reconst
in inherited fro

tribution process o

ed the finite
lowing algorit
ps of processi
er to create,
reconstruction

lues reconstru

modified sha
identification
ement should
hich is n > k +

cuses on Deni
lability attack
attack is an i

eprived of the
expect to hav
result in the th
can cost the t

e and money.
e continues op
DoS attacks,
truct the origin
om the basic T

on a block of data

field requirem
thms (Algorit
ing threshold
distribute the

n of the origin

ucted from dif

ares
of modified

d be available
+ 1.

ial of Service
ks on databas
incident in wh
services of a

ve. Although
heft of inform
target person
Using a (k, n)
perational if (
since k databa
nal database. I
TSSS model.

a

ments for this
thms 1 and 2)

sharing in a
e sub-storage
nal database:

fferent groups

d shares, the
e in a (k, n)

s (DoS) as an
e systems. A
hich a user or
resource they
a DoS attack

mation or other
or company a
) TSSS where
(n-k) database
ase shares are
Indeed, this is

s
)
a
e

s

e
)

n
A
r
y
k
r
a
e
e
e
s

2984 JOURNAL OF COMPUTERS, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

IV.PERFORMANCE EVALUATION

The measurements were performed on 3 GHz Intel
Core 2 Duo processor with 4 GB memory running under
Linux operating system to measure the time taken by this
TSSS scheme to process variable file sizes for the
distribution and reconstruction processes.

A. Write and Read Operations
In this section we evaluate the performance of the

write and read operations. These operations are performed
on the disk drives through the Database Controller and
buffering is performed using a cache memory installed in
the Database Controller. The required buffering time for
the distribution and reconstruction processes is modeled
accordingly. Figure 3 below shows the distribution
processing time that is measured for variable database
sizes.

It is worth to note that the processing times for the
database shares reconstruction are found to be close to
those obtained for the distribution process. Therefore, the
figures 3 and 4 do not specify the processes.

The results obtained from Figure 3 above show that
the processing times required to distribute the original
data using the (k,n) level in the TSSS application increase
as the data size increases. This increase is somewhat linear
and thus does not favor larger sizes over smaller ones, nor
smaller sizes over larger ones. In the figure, we have kept
the value of N as variable. In other words, the N values
used in the testing were checked for different n≥k (e.g.,
level (5,5), (5,6), (5,7), level (4,4), (4,5), (4,6), and level
(3,3), (3,4), (3,5)), nevertheless in all cases the processing

time results for each (k,n) recovery level were not affected
by the N values.

Verifiable Secret Redistribution (VSR) model is
another software recovery technique that was proposed by
Wong [10] and uses threshold secret sharing in software
data recovery. VSR distributes data storage in multiple
servers to preserve it for long times. A comparison is
made between the processing times of this technique and
the VSR model, the results are presented in Figure 4. It is
worth to note that this approach is a typical
implementation of the original threshold sharing scheme.
In other words, with reference to equation 1, coefficients
a1 , … , ak-1 are unknown element which are given
random values and a0 is the original database file to be
processed. This exact implementation of the original
Shamir threshold sharing scheme makes the recovery
redundancy cost in terms of storage size n times higher
compared to this approach which uses a threshold sharing
scheme. The MIRACL package for arithmetic integer
precision is used in the implementation of VSR model
while this implementation uses the Multiple Precision
arbitrary sized integers (MPZ) functions under GNU
Multiple Precision (GMP) Arithmetic Library.

Figure.3 Database distribution processing times

Algorithm 2: [Recovering the Original Database
from Sub-storage Partitions]

Input: binary files shares from sub-storage databases
Output: a binary file of the original database

Step 1: Select any k out of n binary files share.

Step 2: Perform Lagrange interpolation as in
equation (2) for any k sub-storage blocks.

• Select the irreducible polynomial for GF(28)

finite field to be m(x) = x8 + x4+ x3 + x + 1.
• Recover the coefficients of polynomial f(x)= ak-

1xk-1 + … + a2x2 + a1x + a0. Each coefficient
represents a byte in the original block Bi of the
S binary file.

Step 3: Reconstruction
Reconstruct the original block Bi from blocks Bsub in
each sub-storage database, where Bsub is the block
size in the binary file share.
Step 4: Repetition
Repeat Steps 2 and 3 until all blocks from sub-
storage databases have been reconstructed and
finally the original binary file is recovered.

JOURNAL OF COMPUTERS, VOL. 8, NO. 11, NOVEMBER 2013 2985

© 2013 ACADEMY PUBLISHER

Figure.4 (a) Graphical representation, Data shares distribution processing
times in the VSR model compared to t proposed technique using the

same testing files sizes.

Figure.4 (b) Tabular representation, Data shares distribution processing

times in the VSR model compared to t proposed technique using the
same testing files sizes.

B. Failure Recovery Comparison with POTSHARDS
Archival System

The storage archival system proposed by Storer et. al.
[17] uses secret sharing to provide archiving security by
splitting and spreading the resulting shares across
separately managed devices, this developed system is
named POTSHARDS. There is a major difference
between this proposed work and the POTSHARDS
system which is the storage overhead requirement. To
illustrate more, to provide data integrity in POTSHARDS,
a two-way XOR split followed by a (2,3) secret split
increases storage requirements by a factor of six. On the
other hand, this proposed solution requires only one-third
of the original storage size.

This is a very significant gain in this approach
compared to the POTSHARDS. This modification to the
secret threshold sharing original model in reference [3]
enabled us to provide this reduction. The POTSHARDS
system implemented the original Shamir secret sharing
technique [3] as is, and the result will be having a
considerable overhead which is a result from the secret
sharing itself, and that is why it is required to modify the

Shamir secret sharing model first and then it can be used
in database storage system.

RAID is implemented at a lower level either in
hardware or software. To compare with RAID, this
proposed approach is integrated into a database system at
a file level for a database. Using MySQL as an example,
and depending on the implementation model used, the
database in this implementation consists of a variable
number of large or small binary files. RAID on the other
hand; consists of small number of large binary files.

In order to overcome a single failure of one of the sub-
database shares, the database controller has to apply the n-
k=1 condition. This condition used in this technique is
comparable to a RAID 5 level. The parity XOR is used in
RAID 5 to calculate the parity drive. On the other hand,
this technique implements the Lagrange interpolation for
polynomials.

To calculate the complexity of this scheme, it is
needed to identify the elements of the Database Controller.
In the following discussion the complexity of the
distribution process is to be discussed.

The complexity of the distribution process is deduced
from Figure 2; it is expressed in terms of the original data
size, the size of the blocks to be used, and the number of
database shares [7]. More precisely, if M is the size of the
original database, B is the size of the blocks resulting from
the division of the original data, and N is the number of
database shares, then the complexity of the distribution
process is:

Distribution process complexity =)(N
B
M

×Ο (5)

In conclusion, the distribution process complexity of

the XOR parity in RAID 5 and the threshold sharing are
theoretically the same. On the other hand, to calculate the
complexity of the reconstruction process of the threshold
sharing scheme, this requires the identification of the
number of database shares needed, the number of blocks
used, and the complexity of the Lagrange linear
interpolation. So, if a is the number of required database
shares and b is the number of blocks used, then the
complexity of the reconstruction process is

)3(ab×Ο (6)

The RAID 5 reconstruction process has the same
complexity as the distribution process. The reconstruction
process becomes more complex as the RAID level
increases, i.e., RAID-6. On the other hand, this algorithm
has the same complexity degree no matter what the value
of the threshold level is [9].

C. Failure Detection in Database
Failure detection of data written onto or read from

hard disks is a crucial requirement that has to be available
in any recovery technique. The detection of failure in
RAID technology is available in RAID levels 5 and higher.

 In this technique, the detection of database failure can
be achieved by threshold sharing when n=k+1.

2986 JOURNAL OF COMPUTERS, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

The detection of failed sub-database share(s) can
simply be obtained by comparing values reconstructed
from different groups of database shares as shown in
Figure 5. The original database (ODB) is divided into
three sub-database (SDB) shares r1, r2, r3 using a (2,3)
threshold sharing scheme. The reconstruction process
requires a group of at least two SDB shares to be able to
reconstruct the ODB. The number of groups which
contains different combinations of shares is given by:

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

k
n

G SDBnk),(where n > k (7)

For n = k +1, the number of groups G (k, k +1)TSSS is equal to:

 1
1

)1,(+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=+ k

k
k

G SDBkk (8)

In Figure 5, an example of a database recovery (RDB)
using a (2,3) threshold sharing scheme is presented. Based
on equation (8) the total number of groups obtained is 3.
In Figure 5-(a), if a failure occurs at SDB3, then only one
group reconstructs the original data which represents the
true value of the original database (ODB), where the other
two reconstructed database values have different “invalid”
values. Also, the failure of two or three SDB shares will
result in different “invalid” reconstructed database values
as shown in Figures 5-(b). In conclusion, the (k, k +1)
threshold sharing scheme can successfully provide
detection of data failure.

Figure.5 – (a) An example of a (2,3) threshold sharing scheme used to

detect database failures with single sub-database failure

Figure.5 – (b) An example of a (2,3) threshold sharing scheme used to
detect database failures with multiple sub-database failure detection

D. Database Repair (Correction)
In order to repair/correct a failed database, the location

of the failed SDB share should be found. It is worth to
note that using a (k, k+1) sharing scheme; there will be
always one correct reconstructed original database with
only one sub-database failure, or no correct reconstructed
values if more than one sub-database share have failed.
This result is shown in Figure 5. The explanation of this
result comes from the fact that if there is one failed
database share, then only one group is able to reconstruct
the original database from the non-failed shares. This
result can be formalized by the following equation:

 1),(=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

−−

−−

sharesfailednon

sharesfailednon
SDBkk k

k
G (9)

On the other side, if there are more than one failed
sub- database shares, then there will be no group that can
contain knon failed shares.

From the above discussion, the location of the failed
sub-database share cannot be determined as there are at
maximum one group which is able to reconstruct the
original database given that one failed database share
occurred.

Therefore, in order to be able to repair the failed sub-
database share, it is needed first to locate it and
differentiate it from the other valid shares. To do so, a
higher (k, n) level is required, i.e., (k, k+2) level can be an
appropriate choice for a single failure of sub-database
shares. It is worth noting that this repair option requires
the database system to allocate more bandwidth space size.

Furthermore, in the case of power failure of one of the
sub database shares, the detection of the failure can be
pointed to the element share that has a power failure. Also,
it is easy to determine which share element has failed and
therefore, no higher (k, n) level is required. However, to
make this work more comprehensive, and if resources are
available, it is preferable to build this proposed recovery
system with higher (k, n) levels.

E. A Future Work Application
For future work, an extension to this technique is

proposed to allow its implementation over computer
networks with high speed and bandwidth capabilities. The

JOURNAL OF COMPUTERS, VOL. 8, NO. 11, NOVEMBER 2013 2987

© 2013 ACADEMY PUBLISHER

basic idea is to distribute the sub-database shares over
separated network locations. In other words, this approach
spreads the database shares among physically separated
locations in order to protect and recover from catastrophic
failures such as fires and earthquakes [12]. This is indeed
a vital component of business continuity.

An example of a preliminary network implementation
of this extension is shown in Figure 6. The sub-database
shares are distributed at the edge routers ER3, ER4, and
ER5. The edge routers belong to the same network
domain. The implementation of this approach should take
into consideration the following points:

a. The Database Controller application is installed in
one of the edge routers, e.g. ER1 as shown in
Figure 6.

b. Each sub-database share should create a path with
the Database Controller router, e.g. a path
between ER3 and ER1 {ER3 → R8 → R1 →
ER1}.

c. It is preferable that the paths created between each
database share and the Database Controller be
maximally disjoint. That is, the paths between the
sub-database shares and Database Controller
include a minimum number of shared nodes
between them.

d. The Database Controller router is responsible for
the process of maintaining the paths with sub-
database shares. This process should take into
account variable path lengths.

To sum up, the architecture of this future network-
based database protection technique requires the threshold
sharing application to be installed on a server (i.e. the
server here refers to the Database Controller). Therefore,
any information that has to get into or from the database
should pass through this server. One drawback of such
approach is the single point of failure. However, this
problem can be overcome by adding another server to act
as a backup server when the primary one fails. This extra
server can also support load balancing.

Figure.6 A network topology example to illustrate the distribution of
database shares.

The selection of sub-database locations in the network
should take into consideration that the paths lengths can
be variable and therefore the Database Controller server
has to buffer the data received from different sub-
databases in order to be able to reconstruct the original
database when all shares are received. In other words, it is
only required to receive k out of n sub-database shares in
order to reconstruct the original database. Therefore, in
case one sub-database storage location failed or the path
between this storage location and the database controller
server is broken, this will not affect the reconstruction
process. Future work on the application of this work on
networking will be carried out to confirm its feasibility
and performance. Our solution can also be applied in
Multicast networks to provide recovery and security
[7,and 13].

V. CONCLUSION

In this paper, a new technique is presented to protect
database systems from failures due to data corruption,
power failures, and/or network failures. This proposed
technique is based on the threshold sharing scheme. We
demonstrate the effectiveness and feasibility of this
proposed technique and have demonstrated the
modifications on the original threshold sharing scheme by
explaining the distribution and reconstruction processes.
Moreover, these results highlight the fact that this solution
imposes insignificant time delays and data overhead in
order to distribute and recover the data, making it in all a
very attractive solution. Also a comparison has been made
between this approach and the RAID technology and
POTSHARDS archival system.

The security benefits of this proposed technique have
also been discussed for the purpose of providing
confidentiality, detection and identification of modified
database, and availability. Furthermore, a future work for
a network-based application of this technique is presented.

REFERENCES

[1] S. Nakamura, C. Qian, S. Fukumoto, and T. Nakagawa, "
Optimal Backup Policy for a Database System with
Incremental and Full Backups", Mathematical and
Computer Modelling journal, Elsevier, Vol. 38, 2003, pp.
1373-1379.

[2] H. Kawai, and H. Sandoh, " An Efficient Backup Warning
Policy for a Hard Disk", Computers and Mathematics with
Applications, Vol 46, 2003, pp. 1055 - 1063.

[3] A. Shamir, “How to share a secret,” Communications of
ACM, vol. 24, Nov. 1979.

[4] B. Fan, W. Tantisiriroj, L. Xiao, and G. Gibson,
“DiskReduce: RAID for data-intensive scalable
computing”, In Proceedings of the 4th Annual Workshop
on Petascale Data Storage , November 14, 2009), PDSW
'09. ACM, New York, NY.

[5] P. Ammann, S. Jajodia, and P. Liu, “ Recovery from
Malicious Transactions”, IEEE Transactions on
Knowledge and Data Engineering, Vol. 14, No. 5, Spet.
2002.

[6] S. Alouneh, A. Agarwal, and A. En-nouaary, “A Novel
Path Protection Scheme for MPLS Networks Using Multi-
path Routing”, Journal of Computer and

2988 JOURNAL OF COMPUTERS, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

Telecommunications Networking, Elsevier, Vol. 53, Issue
9, June 2009, pp. 1530-1545.

[7] S. Alouneh, A. En-nouaary, and A. Agarwal, “MPLS
Security: An approach for Unicast and Multicast
Environments”, Annals of Telecommunication, Springer,
Vol. 64, Issue 5, 2009, pp. 391-400.

[8] M. Iwaki, K. Toraichi, R. Ishii, “ Fast Polynomial
Interpolation for Remez exchange Method”, IEEE Pacific
Rim Conference on Communications, Computers and
Signal Processing, pp. 411-414, 1993.

[9] P. Anvin, “The mathematics of RAID-6. H. Peter Anvin”,
Article, Kernel.org. 2009.

[10] T. Wong, “Decentralized Recovery for Survivable Storage
Systems”, Ph.D Thesis, Carnegie Mellon University, 2004.

[11] W. Lu, P. Zhou, and X. Liao, “Reverse hierarchical
variable clustering on database accelerated algorithm”,
System Science and Engineering (ICSSE), 2011
International Conference on , vol., no., pp.251-254, 8-10
June 2011.

[12] Y. Ping, K. Bo, L. Jinping, and L. Mengxia, “Remote
disaster recovery system architecture based on database
replication technology”, Computer and Communication
Technologies in Agriculture Engineering (CCTAE), 2010
International Conference On , vol.1, no., pp.254-257, 12-
13 June 2010.

[13] J. Cui, M. Faloutsos, M. Gerla, “ An Architecture for
Scalable, Efficient, and Fast Fault-Tolerant Multicast
Provisioning”, IEEE Networks, pp. 26-34, March/April
2004.

[14] William Stallings, “Cryptography and Network Security
Principles and Practices”, Fourth Edition, Prentice Hall.

[15] B. Lui, M. Zhou, and J. Document, “ Utilizing data grid
architecture for the backup and recovery of clinical image
data”, Journal of Computerized Medical Imaging and
Graphics, ELesevier, Vol. (29), pp. 95-102, 2005.

[16] P. Krishna, and M. Kitsuregawa, “ Reducing the blocking
in two-phase commit protocol emplying backup sites”,
Proceedings of Third IFCIS Conference on Cooperative
Information Systems, 1998.

[17] M. Storer, K. Greenman, and Ethan Miller, “POTSHARDS:
Secure Long-Term Storage Without Encryption”, 2007
USENIX Annual Technical Conference, USA, pp. 143-156,
2007.

[18] H. Kadhem, T. Amagasa, and H. Kitagawa, "A Novel
Framework for Database Security Based on Mixed
Cryptography," Internet and Web Applications and
Services, 2009. ICIW '09. Fourth International Conference
on , vol., no., pp.163-170, 24-28 May 2009.

[19] K. Pathak, N. Chaudhari, A. Tiwari, “Privacy-Preserving
Data Sharing Using Data Reconstruction Based Approach”,
IJCA Special Issue on Communication Security
comnetcs(1):64-68, March 2012. Published by Foundation
of Computer Science, New York, USA.

[20] A. Sallam, E. El-Rabaie, and O. Faragallah, “Encryption-
based multilevel model for DBMS”, Computers &
Security, Elsevier, Available online 22 February 2012,
ISSN 0167-4048.

JOURNAL OF COMPUTERS, VOL. 8, NO. 11, NOVEMBER 2013 2989

© 2013 ACADEMY PUBLISHER

