
An Approach for Description of Computer
Network Defense Scheme and Its Simulation

Verification

Zhao Wei, Chunhe Xia, Yang Luo, Xiaochen Liu and Weikang Wu
Beijing Key Laboratory of Network Technology, School of Computer Science and Engineering, Beihang

University, Beijing, China
Email: wz@cse.buaa.edu.cn, xch@buaa.edu.cn, veotax@sae.buaa.edu.cn, ann4498@sina.com,

wuweikang2012@gmail.com

Abstract—In order to solve the problem of which the
existing defense policy description languages can only
describe some aspects of defense, such as protection or
detection, but cannot express relationship among actions
and to cope with large-scale network attack, we proposed an
approach for description of computer network defense
scheme and its simulation verification. A computer network
defense-oriented scheme description language (CNDSDL)
was designed to describe actions of protection (i.e., access
control, encryption communication, backup), detection (i.e.,
intrusion detection, vulnerability detection), analysis (i.e.,
log auditing), response (i.e., system rebooting, shutdown),
recovery (i.e., rebuild, patch making), and relationship
among actions (i.e., sequence-and, sequence-or, concurrent-
and, concurrent-or, and xor). The Extend Backus-Naur
Form (EBNF) of CNDSDL was provided. At last, we
provided an implementation mechanism of CNDSDL. A
task deadlock detection algorithm was given for the defense
scheme. The simulation was completed in simulation
platform of GTNetS. Three simulation experiments verified
the description capability and effectiveness of CNDSDL.
The results of the experiments show that the defense scheme
described by CNDSDL can be transformed to detailed
technique rules and realize the defense effect of expression.

Index Terms—defense, deadlock detection, EBNF, scheme
description language, simulation verification

I. INTRODUCTION

Researchers have proposed defense technology and
mechanisms to protect network security. For example,
detection [1] or response [2] mechanism of defense
scheme for DDoS attack, a linkage defense framework
[3-4] that makes IDS and Honeypot work together, a
mechanism [5] that detects the conversion channels
through the interaction of IDS and firewalls.

As the scale of network grows, it is a huge challenge
for administrator to manage different defense
mechanisms and devices in a large-scale network
environment. In order to solve these problems,
researchers have proposed policy-driven management
methods [6] to simplify the management for the
complicated and distributed network system, such as
cloud framework [7]. Administrator may specify the

targets and constraints only in the form of policy. Thus, a
variety of policy description languages are proposed [8-9].
However, most of these policy languages [10-12] focus
on one aspect of the network defense, such as access
control. And these policy languages can’t describe the
interaction actions of linkage mechanism for defense
devices.

Based on the characteristics of computer network
defenses (CND), we intend to provide a language
description for linkage defense of different defense
mechanism to cope with large-scale network attack and
make it convenient for the security management of
administrator.

Computer network defenses are actions through the use
of computer networks to protect, monitor, analyze, detect,
and respond to unauthorized activities within Department
of Defense information systems and computer networks
[13].

Based on these problems, we proposed an approach for
description of computer network defense scheme and its
simulation verification. We designed a formalized
description language of defense scheme and its
implementation mechanism and completed simulation
verification in simulation platform of GTNetS. This
language can describe actions of protection, detection,
analysis, response, recovery, and relations among actions.
These relations include sequence-and, sequence-or,
concurrent-and, concurrent-or, and xor.

The remaining parts of this paper are organized as
follows: The relevant literature is discussed in Section II,
the description of computer network defense scheme is
presented in section III, an implementation mechanism of
CNDSDL is provided in Section IV, and the experiment
verification and analysis are shown in section V, followed
by a conclusion of our work in section VI.

II. RELATED WORK

Many studies on defense scheme focus on defense
mechanism. For example, Reference [1] proposes a new
defense scheme to develop a flow monitoring scheme to
defend against DDoS attacks in mobile ad hoc networks.
In this paper, they provide a new defense mechanism that
consists of a flow monitoring table at each node. It
contains flow id, source id, packet sending rate and
destination id. Reference [2] proposes an effective DDoS

Manuscript received June 1, 2013.
Corresponding author: Zhao Wei (wz@cse.buaa.edu.cn)

388 JOURNAL OF COMPUTERS, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jcp.9.2.388-395

attack defense scheme using web service performance
measurement and development of a DDoS attack
response system. Reference [14] presents a two-tier
coordination defense scheme for detecting and mitigating
DDoS attacks. The first tier traffic filter (1st-TF) filters
suspicious traffic for possible flooding. The second tier
traffic filter (2nd-TF) performs online monitoring of
queue length status with RED/Droptail mechanism for
any incoming traffic. Reference [15] proposes a robust
scheme to defend these routing attacks in MANETs and
improve the performance of the networks.

How do we provide a language description for linkage
defense of different defense mechanisms to cope with
large-scale network attack? This is a problem to be solved.
At present, there are a variety of policy description
languages to express defense actions.

Reference [16] provides a policy description language-
Ponder. This is an oriented-object and illustrative
language. It can define access control policy based on
role and management policy, such as condition-response
rule of event triggering. Then, Ponder2 [17] is applied to
miniature embedded system and large-scale complex
network for network management. XACML [18] is a
general language which is developed by OASIS for
accessing control. TPL [19] is used to define
authorization policy of Internet services. But its grammar
of XML is very tediously long and unreadable. These
policies contain many rules but lack succession and
reusing. REI [20] is a semantic policy description
language in the ubiquitous computing environment
including access control policy and management policy.
According to the difficulty in the management of
distributed network, reference [21] suggests a high-level
security configuration description language-FLIP to
describe access control policy of firewall.

Nevertheless, most of these policy languages focus on
one aspect of the network defense, such as access control.
They lack a unified defense scheme description language
that can describe defense actions of protection, detection,
analysis, response, recovery, and relations among actions
to cope with complicated network attacks.

III. DESCRIPTION OF THE COMPUTER NETWORK DEFENSE
SCHEME

In this section, we provide a description of computer
network defense scheme including a formalized
definition of computer network defense scheme,
CNDSDL and its EBNF.

A. The formalism Definitions of Defense Scheme
Definition 1. Defense Scheme. It is a plan that consists

of tasks to achieve defense intention. It is a two-tuple
including task set and relation set. It is represented as
follows:

()
{ }

::= , ;
::= |1 ;

.
i

Scheme R
Task i n

R

ζ
ζ

ζ ζ

⎧
⎪ ≤ ≤⎨
⎪ ⊆ ×⎩

Wherein, ζ denotes the set of tasks, R denotes the set
of relations between tasks.

Definition 2. Task. It is a six-tuple which includes
subject, operation, execution time, execution results and
constrains. It is represented as follows:

{ }

:: (, , , , int);
;

:: |1 .i

Task sub Operation Time Effect Constra
sub Subject
Operation ope i n

⎧ =
⎪ ∈⎨
⎪ = ≤ ≤⎩

 Wherein, Subject are the subjects in the network that
can execute tasks; Operation is the set of operations of a
task; Time denotes the starting time when a task runs.
Effect denotes the executing result of tasks including
success and failure. intConstra denotes the prerequisites
of tasks.

Definition 3. Subject. It refers to all the hardware and
software resources participating in network defense such
as firewall firewallS , IPsec VPN sec_ip vpnS , intrusion
detection system (IDS) int detrude ectS , vulnerability library

_vul serverS , log audit system log _audit systemS , operation system

_operation systemS , backup server _backup serverS .
Definition 4. Operation. It is a three-tuple that consists

of action, object of action, and input parameters of
actions. It can be represented as follows:

():: , , ;
; .

iope action object InPara
action Action object Object

=⎧
⎨ ∈ ∈⎩

Wherein, Object denotes the set of objects including
node nodeO , service serviceO , application program

_application programO and data packet _data packetO . InPara
denotes the set of input parameters of actions. Action
was defined as follow.

Definition 5. Action. It denotes the set of defense
actions including protection action (such as permit action

permitA and deny action denyA of firewall, the permission
Encryption action _permit cryptA of IPsec VPN, backup
action backupA of backup server), detection action(such as
alerting action alertA of IDS, scan action vulscanA of
vulnerability scan server), responding action(such as
rebooting rebootA and shutdown shutdownA action of
operation system), analysis action(such as log audit
action log_ auditA of log audit system) and recovery
action(making patch action makepatchA of operation system,
rebuild action rebuildA of backup server).

Definition 6. Relation of Task. It means temporal and
logic relation which include sequence and _seq andr ,
sequence or _seq orr , concurrent and _concurrent andr ,
concurrent or _concurrent orr , xor xorr . To simplify the
discussion, we assume that there are only two tasks in one
scheme. { }1 2:: , ;Task task task= Each relation is
explained separately as follows:

seq andr : If ()1 2 ,seq and task task , it denotes that the

1task is executed firstly. If the executing effect of 1task
is true, the 2task is executed as follows. Only when both

JOURNAL OF COMPUTERS, VOL. 9, NO. 2, FEBRUARY 2014 389

© 2014 ACADEMY PUBLISHER

tasks are successfully completed can we say the scheme
is finished successfully.

seq orr : If ()1 2 ,seq or task task , it denotes that the 1task
is executed firstly. If the executing effect of 1task is true,
the 2task does not need to be executed. If the executing
effect of 1task is false, the 2task must be executed.
Whether the scheme is finished successfully depends on
the success of 1task or 2task .

concurrent andr :If ()1 2 ,concurrent and task task , it denotes
that both 1task and 2task are executed at the same time.
Only if the effects of 1task and 2task are true can we say
that the scheme is successfully finished.

concurrent orr :If ()1 2 ,concurrent or task task , it denotes
that both 1task and 2task are executed at the same time.
Only if there is a true executed effect between 1task and

2task , we can say that the scheme is successfully finished.

xorr :If ()1 2,xor task task , it denotes that there exists one
executing task between 1task and 2task . Whether the
scheme is finished successfully depends on the true effect
of 1task or 2task .

B. EBNF of CNDSDL
Based on the discussions above about the concepts and

relations, we propose a CNDSDL in this section. Its
grammar is expressed in EBNF as follows:

The defense scheme described by CNDSDL consists of
three main parts: global variables declaration and
definition; task description; and the tasks’ relation
description.

<scheme>::=[<global_variable_statement>]<tasks>[tas
k_relations‘:’<task_relations>]

<tasks>=<task>|<tasks><task>
(1) Global variables declaration and definition
Global variable sentence is used to define global

variable including statement sentence and variable
assignment sentence. Global variable is alive during the
entire time of scheme.

<global_variable_definiton>::=globals:<variable_state
ment>;|<variable_assignment>;|<global_variable_stateme
nt><variable_statement>;|<global_variable_statement><v
ariable_statement>;

<variable_statement>::=<variable_type><variable_na
me>;

<variable_type>::=ip|time|int|float|string
 The global variable type can be extended by adding
key words. These variables are string.

(2) Task description
• Task
<tasks>::=<task>|<tasks>;<task>
<task>::=task <num> ‘{‘ subject: <subject> actions:

‘(‘ <actions> ‘)’[time: <time >] [constrains:
‘{‘ <constrains>’}’]

• Subject

<subjcet>::=<protection_subject>|<detection_subject>|
<analysis_subject>|<response_subject>|<recovery_subjec
t>

<protection_subject>=back_up_server<num>|firewall<
num>|gateway <num>|cryptor <num>| host <num>|
server <num>

<detection_subject>::=IDS<num>|anti_virus_system<
num>|vul_base<num>

<analysis_subject>::=audit_system<num>
<response_subject>::=server <num>|host <num>
<recovery_subject>::=back_up_server <num> | host

<num>| server <num>
 • Actions

<actions>::=<action>|<actions>,<action>
<action>::=<protect_action>|<detect_action>|<analysis

_subject>|<respond_action>|<recover_action>
<protect_action>::=<protect_act><protect_obj>[inPara

:’{‘<protection_inParas>’}’]
Protect action consists of protect act, protect object and

parameter. Its EBNF is shown as follows:
<protect_act>::=back_up|permit|deny|crypt|authenticat

e
<protect_obj>::=<file>|<packet>|ip
<packet>::=<ip_packet>|<tcp_packet>|<udp_packet>|

<icmp_packet>
<ip_packet>::=IP <src_ip><dst_ip>
<tcp_packet>::=TCP<src_ip><ports> <dst_ip><ports>
<udp_packet>::=UDP<src_ip><ports><dst_ip><ports

>
<icmp_packet>::=ICMP<src_ip><ports><dst_ip><por

ts>
<src_ip>::=(ip/mask)|any
<dst_ip>::=(ip/mask)|any
<ports>=<port>|<port>:<port>|<port_operator><port>|

any
<protection_inPara>::=priority:<num>|type:(full|additi

on|offset)|crypt:(Y|N)|secure_trans:(Y|N)|interface:<num
>
 Detect action consists of detect act, detect object and
parameter. It contains intrusion detection, virus checking,
and vulnerability scanning. Its EBNF is shown as follows:

<detection_action>::=<detect_act><detect_obj>[in_Pa
ra:’{‘<detection_inParas>’}’

<detect_act>::=ids_detect| check_virus|vul_scan
<detect_obj>::=<IDS_rule>|<virus>|<vul>|<log>
<virus>::=<string>
<vul>::=cve-<cve_year>-<cve_number>
<log>::=<file>
<detection_inPara>::=(host:<num>)|(ip:<ip>)|(service:

<service_name>)
<service_name>::=Web|Telnet|Rlogin|Ftp|SMTP
<ids_rule>::=<idsRule_head><idsRule_body>
<idsRule_head>::=<idsRule_action><packet>
<idsRule_action>::=alert|pass|log
<idsRule_body>::=’(‘<options>’)’
<options>::=<option>|<options>;<option>
<option>::=(message:<string>)|(content:<bin-

str>|<string >)|(refenrence:<vul>)|(fw:<num>|<ip>)|(vbas
e:<num>|<ip>)|resp:(rst_all|rst_rcv|rst_send|icmp_all|icm
p_host|icmp_net|icmp_port)

390 JOURNAL OF COMPUTERS, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

Response action consists of response act, response
object, and parameter. It contains account locking, system
shut down, reboot, patch installing, file deleting, process
killing, and file access authority. Its EBNF is shown as
follows:

<response_action>::=<response_act><response_obj>[i
nPara:’{‘<response_inPara>’}’

<response_act>::=lock|shutdown|reboot|install|patch|de
lete|kill|set_file_access

<response_obj>::=<account>|<patch>|<file>|<process
>|<service_name>

<response_inPara>::=access_authority:<access_authori
ty>|account:<account>

<access_authority>::=R|W|X|RW|RX|WX|RWX
Recovery action consists of recovery act, recovery

object, and parameter. It contains rebuild and redundant.
Its EBNF is shown as follows:

<recovery_subject>::=back_up_server <num>|host
<num> |server <num>

<recovery_action>::=recover<recovery_obj>[inPara:’{
‘<recovery_inPara>’}’]

<recovery_obj>::=<file>|<service_name>
<recovery_inPara>::=host<num>|server<num>|date:<d

ate>
• Time
Time denotes the task’s start time.
 <time>::=<num> (s|ms|us)
• Constrains
Constrains denotes some conditions and environment

necessary to execute task for task subject.
<constrain>::=<conditions>

<conditions>::=<condition>|<conditons>;<condition>
<conditon>::=<state_condition>|<expression_conditio

n>
<state_condition>::=<state_variable><state_operator>

<state_value>
<state_variable>::=cpu_ratio|mem_ratio|bandwith|disk

_pace
<state_value>::=<float>|<int>
 (3) Tasks’ relation description
<task_relations>::=<task_relation>|<task_relations>;<t

ask_relations>
<task_relation>::=seq_or‘(’<num>,<num>‘)’|seq_and‘

(’<num>,<num>‘)’|con_or‘(’<num>,<num>‘)’|con_and‘(
’<num>,<num>‘)’|xor‘(’<num>,<num>‘)’

IV. THE IMPLEMENTATION MECHANISM OF CNDSDL

The defense scheme described by CNDSDL needs
scheme interpretation and deployment so that the
simulation can be executed on the simulation platform.
The implementation mechanism of CNDSDL includes
three modules: scheme interpretation, scheme
deployment, and scheme simulation. In the scheme
interpretation module, we executed the lexical analysis,
syntactic analysis, and identification of meanings for
defense scheme that is described by CNDSDL through
lexical and syntactic analyzer lex/yacc in order to check
grammar errors and generate the corresponding tasks. In
the scheme deployment module, we executed task
deadlock detection at first. If a deadlock exists, the

scheme is refused to execute. Otherwise, tasks in the
scheme will be scheduled and deployed to corresponding
simulation node to realize simulation. In the scheme
simulation module, we realize simulation of defense tasks
of IDS, firewall, vulnerability library, patch making, and
system rebooting with network topology information and
generated the simulation executing report of defense
scheme.

The system architecture of the implementation
mechanism of CNDSDL is shown in Fig.1.

Figure 1. System architecture of implementation mechanism of

CNDSDL
In the scheme deployment module, we designed some

algorithms to detect deadlock in the defense scheme. At
first, task graph and task deadlock are defined as follows:

Definition 7. TaskGraph. Suppose the task set in a
scheme is ζ and a set of sequential relations is ≺
including the relations of “seq_or” and “seq_and” among
tasks, the TaskGraph is

:: ,TaskGraph Nodes Edges=< > ,wherein
Nodes ζ= , Edges =≺ , TaskGraph is a diagraph and the
directions of the edges indicate the sequential relations.

Definition 8. Task deadlock. Suppose the two tasks
include it and jt in one scheme: the finish of one task is
the premise of the other, or the start of executing one task
requires the successful execution of the other. This can be
represented by i jt t≺ . If i jt t≺ and j it t≺ exist in one
scheme, there is a task deadlock.

The algorithm of task deadlock detection is described
as follows. (1) First a graph of task relation is constructed.
The task set ζ is derived from scheme. Then, a task is
taken as node to be added to task relation graph
TaskGraph . It means Nodes ζ= . At the same time, we
can get Edges =∅ . Any two tasks it and jt can be
analyzed to check whether there is a sequential relation

i jt t≺ or j it t≺ . At last, task relation is taken as edge to
be added to the set of edge Edges for task relation graph
TaskGraph . The number of pairs of tasks is (-1) / 2n n . (2)
Transitive closure is constructed for ζ which is a binary
relation of the set ζ . If the number of element is n for set

ζ , the transitive closure for ≺ , we can get
1

()
n

i

i

t
=

=≺ ≺∪ .

Then, we will construct a graph of transitive closure

JOURNAL OF COMPUTERS, VOL. 9, NO. 2, FEBRUARY 2014 391

© 2014 ACADEMY PUBLISHER

'TaskGraph for the graph TaskGraph . It means the task
of ζ is regarded as node of 'TaskGraph and relation of

()t ≺ as edge of 'TaskGraph . Because transitive closure
()t ≺ is constructed with transitivity of relation ≺ , the

sequential relation among tasks is not changed by
'TaskGraph . If there is a sequential relation among task

node for TaskGraph , it will be shown in a directed
edge.(3) The edge set 'Edges is checked for 'TaskGraph .
If there exists , 'i j j it t t t Edges∈≺ ≺ , there is a deadlock
between task it and task jt . So this scheme will be
refused to execute. Otherwise, this scheme will be
simulated in corresponding node according to the
sequential and logic relations among tasks.

Transitive closure is constructed with Floyd-Warshall
algorithm. The time complexity of task deadlock
detection algorithm is 3()O n . wherein, | |n ζ= .The
pseudo-code of task deadlock detection algorithm is
shown as follows:

ALGORITHM TASK_DEADLOCK_DETECTION
 INPUT: : ; Re : .
 OUTPUT: : .
 PROCEDURE ()
 : , ;
 ' : ', ' ;

Task Set Task lation Set
BOOL ISDeadLock

DeadLockDetection
TaskGraph Nodes Edges
TaskGraph Nodes Edges

ζ

< >
< >

≺

 ; ' ;
 ; ' ;
 // ' //
 (, ,)
 (', ',)
 //

Nodes Nodes
Edges Edges

adding task set to node set Nodes and Nodes of task graph
AddNodeSet TaskGraph Nodes
AddNodeSet TaskGraph Nodes

addin

ζ
ζ
ζ

←∅ ←∅
←∅ ←∅

 //
 FOR 0 TO | | DO
 FOR 0 TO | | DO
 IF(, AND AND ,)
 (, , ,

i j i j i j

i

g task relation to edge set Edges of TaskGraph
i

j
n n Nodes n n n n

AddEdge TaskGraph Edges n

ζ
ζ

=
=
∈ ≠ < >∈

<
≺

1

);
 ENDIF
 REPEAT
 REPEAT
 // ' //

 () ;

 FOR 0 TO | | DO
 FOR 0 TO | | DO

j

n
i

i

n

constructing a transitive closure graph TaskGraph forTaskGraph

t

i
j

ζ
ζ

=

>

=

=
=

≺ ≺∪

' ' ' ' ' '

' '

 IF(, ' , ())
 (', ', ,);
 ENDIF
 REPEAT
 REPEAT
 //

i j i j i j

i j

n n Nodes AND n n AND n n t
AddEdge TaskGraph Edges n n

checking dead lock in TaskGra

∈ ≠ < >∈

< >

≺

1

'//
 FOR ' DO
 FOR ' ' DO

 IF(') THEN
 TRUE;

 RETURN ;
 ENDIF

 REPEAT
 REPEAT
 EN

ph
each e in Edges

each e e in Edges
e e
ISDeadLock

ISDeadLock

−

≠
=

=

D DeadLockDetection

V. THE EXPERIMENTS

In this section, we provide some defense scheme
instances to illustrate the usage of CNDSDL. These
defense schemes can be executed automatically in the
simulation platform through our implementation
mechanism of CNDSDL and the simulation effect can be
observed.

A. Experiment Environment
The experiment environment is the network security

simulation platform based on GTNetS. Network topology
environment is shown in Fig.2. The whole network is
divided into three main parts: external network, DMZ,
and internal network. DMZ includes Web server, DNS
server, FTP server and SMTP server (The corresponding
IP addresses are 192.168.1.4/24, 192.168.1.5/24,
192.168.1.2/24 and 192.168.1.3/24.). The internal
network is partitioned into two segments by switcher, i.e.
Net 1 and Net 2. There are three hosts and one backup
Server (IP:192.168.2.2/24)in Net 1; one host and one
Database Server (IP :192.168.3.2/24) in Net 2.

Figure 2. Network topology

The IP address, operation system, service information
of hosts and servers are shown in Table I.

TABLE I.
HOSTS AND SERVERS INFORMATION

Outside Hosts
IP Address Hostname OS Notes
192.168.4.2 Host0 Redhat 5.0 kernel 2.0.32

DMZ Hosts
192.168.1.2 Server1 Windows

Server
2003

MS Exchange
2003 Mail server

192.168.1.3 Server2 Windows
Server
2003

Windows IIS 5.1
FTP server

192.168.1.4 Server3 Red hat 5.0 Linux Apache
2.8.19 Web server

192.168.1.5 Server4 Windows
2000 server

DNS server

192.168.1.6 Host1 FreeBSD
4.0

IDS

Inside Hosts
192.168.2.2 Server5 Windows

Server
2003

System
management

software
192.168.2.3 Host2 Ubuntu

8.04
host in domain B

192.168.2.4 Host3 CentOS host in domain B

392 JOURNAL OF COMPUTERS, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

192.168.2.5 Host4 Windows
XP Home

Edition sp1

host in domain B

192.168.3.2 Server6 Solaris 2.6 Oracle 11i
Database server

192.168.3.3 Host5 Ubuntu
8.04

Domin
SunPRC(linux)
Database server

B. Verification and Analysis of the Experiments
 (1)Defense scheme including one simulation task of

access control of firewall
Scenario: We assume that the attacker can access FTP

and SMTP servers at the beginning. Then this attacker is
detected. So we must give a defense scheme to deny this
attacker.

The defense scheme that is described by CNDSDL is
shown as follows:

 1 { : 1;
: (

 192.168.4.2 / 24 192.168.1.2 / 32 25
 :{int : 4 },

 192.168.4.2 / 24 192.168.1.3 / 32 21
:{int : 4 },)

: 1; }

task subject Firewall
actions
deny TCP any
inPara erface

deny TCP any
inPara erface
time

After executing this scheme, we find there are many
denial rules in the firewall. This firewall ACL is shown in
Fig.3.

Figure 3. The control platform results of the ACL in firewall1

In the simulation platform, we can find that the
attacker cannot access FTP server. The simulation effect
is shown in Fig.4.

Figure 4. Denying packet from attacker in firewall1

(2) Defense scheme including simulation task of access
control of firewall, patch making, system rebooting, and
temporal-logic relations among these tasks.

Scenario: There is a presumption that the network exits
some vulnerability shown in Server3 (CVE-2003-0542),
Server4 (CVE-2007-0939) and Host2 (CVE-2005-0753).
By utilizing these vulnerabilities, the attacker can gain
root access and bring about DoS attack. The attacker can
access Net1 and Net2 through the DMZ area to form
some attacking paths which are found with the tool in
reference [22], such as Host0->Sever3->Host2, Host0-
>Server4->Host2.

To cope with the situation above, we have designed a
defense scheme: At first, we must deny the attacker

accessing the Server3 and Server4. Then, we must install
some patch on Server3 and Server4, and reboot system
subsequently. The defense scheme description using
CNDSDL is shown as follows:

: 192.168.4.2;int 1 1; 2 1.5;
 1{ : 1;

 : (/ 32 192.168.1.4 / 32 :{int : 4 },
 / 32 192.168.1.5 / 32

globals ip attIP t float t
task subject Firewall

actions deny IP attIP inPara erface
deny IP attIP

= = =

:{int : 4 })
 : 0.5;},

 2{ : 3;
 : (- 2.0.46 - 26)
 : 1;},

 3{ : 3;
 : ()

inPara erface
time

task subject Server
actions patch httpd
time t

task subject Server
actions reboot
tim : 2;},

 4{ : 4;
 : (924430)
 : 1;},

 5{ : 4;
 : ()
 : 2;},

 6{ : 2;

e t
task subject Server

actions patch KB
time t

task subject Server
actions reboot
time t

task subject Host
actio : (-1.11.2 - 27)

 : 1;},
 7{ : 2;

 : ()
 : 2;},

_ : _ (2,3); _ (4,5); _ (6,7).

ns patch cvs
time t

task subject Host
actions reboot
time t

task relations seq and seq and seq and

In this scheme, task1 gives a description which denotes

firewall preventing attackers from access Server3 and
Server4. Then Server3, Server4, and Host2 are installed
patch and reboot subsequently in task2, task3, task4,
task5, task6, task7. The expression “seq_and” denotes
that patch installing is finished before system rebooting.
It is shown in Fig.5.

Figure 5. The control platform results of the patch installing and

rebooting

(3) Defense scheme including simulation tasks of
access control of firewall, intrusion detection of IDS,
vulnerability library, and temporal-logic relations among
these tasks.

Scenario: There is a presumption that the attacker can
bypass the Firewall2 and access DB server in Net2 and
file server in Net1 according to the configuration
venerability of firewall. The attacker send a one byte
packet to server which runs the service of Oracle 9i 9.0.1.
These results in triggering the vulnerability of daemon
process TNS Listener. So, it will conduct the dos attack.
In addition, attacker can also conduct the buffer overflow
attack for the file server.

To cope with the situation above, we have designed a
defense scheme: At first, IDS can detect the dos or buffer
overflow attack. Then, IDS inquires the vulnerability
library to affirm vulnerability information. At last, the
firewall denies the packet from attacker. Three tasks and
task relation “seq_and” are used to describe the situation

JOURNAL OF COMPUTERS, VOL. 9, NO. 2, FEBRUARY 2014 393

© 2014 ACADEMY PUBLISHER

 mentioned above. This defense scheme description using
CNDSDL is shown as follows:

 1{
: 1;
:

 (192.168.4.2 / 32 192.168.2.0 / 24
 (: " "; : "01000110";)
 192.168.4.2 / 24 192.168.3.0 / 24 21

 (: "

task
subject IDS
actions

alert IP
message bufferoverflow content
alert TCP any
message "; : "00110010";))

 : 0;
},

 2{
: :192.168.101.2;
: (- 2007 - 5398; - 2002 - 0509;)

 : 0.5;
},

 3{
: 2;

 :
 (IP 192.16

dos content
time

task
subject vbase
actions vulcheck cve cve

time

task
subject Firewall

actions
deny 8.4.2 / 24 192.168.2.0 / 24 :{int : 4},

 TCP 192.168.4.2 / 24 192.168.3.0 / 24 :{int : 4}
)
 :1.2;

}
_ : _ (1, 2); _ (2,3).

inPara erface
deny inPara erface

time

task relations seq and seq and

This defense scheme is deployed in the simulation

platform. The simulation effect is shown as follows:
When the dos attack is detected by IDS, IDS inquires

the vulnerability library to affirm this vulnerability
information. In the Fig.6, the yellow packet in the circle
denotes enquiring packet from IDS to vulnerability
library.

Figure 6. Inquiring message sending from IDS to vulnerability library

The vulnerability library queries the database and
affirms this attacking. Then the vulnerability library
sends affirmed information to IDS. In the Fig.7, the gray
packet in the circle denotes affirmed packet from
vulnerability library to IDS.

Figure 7. Affirming message sending from vulnerability library to IDS

In the Fig.8, the red packet in the circle denotes that
IDS informs the firewall1 to forbid the unlawful access
after receiving the vulnerability affirmed information.

Figure 8. Denying packet message sent from IDS to firewall

Now, the packet of attacker cannot bypass the
firewall1. It is shown in Fig.9. The control platform
results of the packet denying from attacker are shown in
Fig.10.

Figure 9. The packet is denied from attacker

Figure 10. The control platform results of the packet denying from

attacker

VI. CONCLUSION

In this paper, we proposed an approach for description
of computer network defense scheme and its simulation
verification. The formalized definition of computer
network defense scheme was provided and a novel
computer network defense-oriented scheme description
language (CNDSDL) was designed to describe the
actions of protection (i.e., access control, encryption
communication, backup), detection (i.e., intrusion
detection, vulnerability detection), analysis (i.e., log
auditing), response (i.e., system rebooting, shutdown),
recovery (i.e., rebuild, patch making), and relations
among actions. These relations include sequence-and,
sequence-or, concurrent-and, concurrent-or, and xor. This
language provides a language interface of linkage defense
for the different security devices and its EBNF was given.
On the other hand, we provided the implementation
mechanism of CNDSDL. A task deadlock detection
algorithm was designed for the defense scheme. At last,
we conducted three simulation experiments of defense
scheme: simulation task of access control of firewall;
simulation task of access control of firewall, patch

394 JOURNAL OF COMPUTERS, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

making, system rebooting, and temporal-logic relations
among these tasks; simulation tasks of access control of
firewall, intrusion, detection of IDS, vulnerability library,
and temporal-logic relations among these tasks. The
results of these experiments verified the description
capability and effectiveness of CNDSDL. In our future
work, we will describe a variety of defense schemes in
CNDSDL in order to further verify our language’s
description capability.

ACKNOWLEDGMENT

This work is supported by the following funding
sources: the National Nature Science Foundation of
China under Grant No. 61170295, the Project of National
ministry under Grant No.A2120110006, the Co-Funding
Project of Beijing Municipal education Commission
under Grant No.JD100060630 and the Project of BUAA
Basal Research Fund under Grant No.YWF-11-03-Q-001.

REFERENCES
[1] S.A.Arunmozhi and Y.Venkataramani, “A New Defense

Scheme against DDoS Attack in Mobile Ad Hoc
Networks,” International Conference on Computer Science
and Information Technology, Bangalore, India, p p.210-
216, 2011.

[2] N.Baik, A.Sungsoo and K.Namhi, “Effective DDoS attack
defense scheme using web service performance
measurement,” International Conference on Ubiquitous
and Future Networks, Phuket, Thailand, pp.428-433, 2012.

[3] B.Khosravifar and J. Bentahar, “An experience improving
intrusion detection systems false alarm ratio by using
honeypot,” International Conference on Advanced
Information Networking and Applications, Okinawa, Japan,
pp.997-1004, 2008.

[4] B.Khosravifar, M. Gomrokchi and J. Bentahar, “A multi-
agent-based approach to improve intrusion detection
systems false alarm ratio by Using Honeypot,”
International Conference on Advanced Information
Networking and Applications, Bradford, United Kingdom,
pp.97-102, 2009.

[5] S.Hammouda, L.Maalej and Z.Trabelsi, “Towards
optimized TCP/IP covert channels detection, IDS and
firewall integration,” International Conference on New
Technologies, Tangier, Morocco, pp.1-5, 2008.

[6] J.P.Loyall, M.Gillen, A.Paulos et al, “Dynamic policy-
driven quality of service in service-oriented information
management systems,” SOFTWARE-PRACTICE &
EXPERIENCE, Vol.41, No.12, pp.1459-1489, 2010.

[7] X.LUO,M.SONG and J.SONG, “Research on service-
oriented policy-driven IAAS management,” The Journal of
China Universities of Posts and Telecommunications,
Vol.18, pp.64-70, 2011.

[8] M.D.Amicoa, G.Sermeb, M.S.Idreesa, A.S.de.Oliveirab,
Y.Roudiera, “HiPoLDS: A Hierarchical Security Policy
Language for Distributed Systems,” Information Security
Technical Report, Vol.17, No.3, pp.81-92, 2013.

[9] J.Poroora, B.Jayaramanb, “C2L:A Formal Policy
Language for Secure Cloud Configurations,” Procedia
Computer Science, Vol.10, pp.499-506, 2012.

[10] Q.Ni, E.Bertino, “xfACL: An extensible functional
language for access control,” ACM Symposium on Access
Control Models and Technologies, Innsbruck, Austria,
pp.61-72, 2011.

[11] P.W.L. Fong, “Relationship-based access control:
protection model and policy language,” ACM Conference
on Data and Application Security and Privacy, San
Antonio, USA, pp.191-202, 2011.

[12] P.Fong, I.Siahaan, “Relationship-based access control
policies and their policy languages,” ACM Symposium on
Access Control Models and Technologies, Innsbruck,
Austria, pp.51-60, 2011.

[13] Department of Defense, “JP3-13: Information Operations,”
Washington DC: US Government printing, 2006.

[14] C.Chin-Ling, and C.Chih-Yu, “A two-tier coordinated
defense scheme against DDoS attacks,” International
Conference on Computer Science and Service System,
Nanjing, China, pp.148-151, 2011.

[15] H.M.Sun, et al, “A Robust Defense Scheme to Resist
Routing Attacks in Mobile Ad Hoc Networks,” World
Congress in Applied Computing, Computer Science, and
Computer Engineering, Kota Kinabalu, MALAYSIA, pp.58-
65, 2011.

[16] N.Damianou, N.Dulay, E.Lupu, et al, “The ponder policy
specification language,” Proceedings of the International
Workshop on Policies for Distributed Systems and
Networks, Bristol, UK, pp.18-38, 2001.

[17] K.Twidle, N.Dulay, E.Lupu, et al. “Ponder2: A policy
system for autonomous pervasive environments,” Fifth
International Conference on Autonomic and Autonomous
Systems, Valencia, Spain, pp.330-335, 2009.

[18] OASIS, “eXtensible access control markup
language(XACML) Version 3.0,” http://docs.oasis-
open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf , 2013.

[19] A.Herzberg,Y.Mass,J.Mihaeli,D.Naor, et al, “Access
control meets public key infrastructure, or: assigning roles
to strangers,” IEEE Symposium on Security and Privacy,
Berkeley, America, pp.2-14,2000.

[20] L.Kagal, “Rei: A Policy Language for the Me-Centric
Project,”
http://ebiquity.umbc.edu/_file_directory_/papers/57.pdf,
2005.

[21] Z.Bin, A.S.Ehab, J.Radha, R.James, P.Corin,
“Specifications of a high-level conflict-free firewall policy
language for multi-domain networks,” Proceedings of the
12th ACM symposium on Access control models and
technologies, Sophia Antipolis, France, pp.185 – 194, 2007.

[22] L.P.Swiler, C.Phillips, D.Ellis, S.Chakerian, “Computer-
attack graph generation tool,” Proceeding of DARPA
Information Survivability Conference & Exposition II,
Vol.2, pp.307-321, 2001.

Zhao Wei, born in 1984, Ph. D. candidate, His main research
interests include computer network and information security.

Chunhe Xia, born in 1965, professor, Ph. D. supervisor. His
main research interests include computer network and
information security, information operations and cloud
computing.

Yang Luo, born in 1989, master candidate, His main research
interests include network security and virtualization technology.

Xiaochen Liu, born in 1988, Ph. D. candidate. Her main
research interests include network security and cloud computing.

Weikang Wu, born in 1987, Master. His research interest is
network security technology.

JOURNAL OF COMPUTERS, VOL. 9, NO. 2, FEBRUARY 2014 395

© 2014 ACADEMY PUBLISHER

