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Abstract—The aim of super resolution is to get high 
resolution (HR) images/videos from low-resolution (LR) 
images/videos. The obtained HR images/videos are expected 
to be clear and have less artifacts. Projection Onto Convex 
Sets (POCS) in the space domain is a super resolution 
method. It results in edge oscillation and produces many 
artifacts. This paper introduces a POCS method in both the 
space and the frequency domain. Firstly, a frequency 
domain POCS method is proposed. Then it is combined with 
the space POCS and the space-frequency POCS is obtained. 
Compared with the common bilinear interpolation method 
and the existing POCS method in the space domain, our 
method may decrease the edge oscillation phenomena and 
raise the Peak Signal to Noise Ratio (PSNR).  
 
Index Terms—super-resolution, Projection Onto Convex 
Sets (POCS), space-frequency domain, edge oscillation, 
Peak Signal to Noise Ratio (PSNR) 
 

I.  INTRODUCTION 

It is easy for people to get digital images and videos 
from various channels in today’s society. However, the 
existing resolutions of these digital elements may not 
meet the requirements of people usually. One way to 
raise the resolutions is to update the hard devices. It often 
requires a high cost. The other way is to use software. It 
creates high resolution (HR) images/videos from Low 
resolution (LR) ones. This process is called super-
resolution. It is widely used in the fields of intelligent 
surveillance [1, 2], remote sensing [3], medical 
technology [4], mobile devices [5], and so on.  

There are a lot of super resolution methods. These 
methods are mainly divided into two classes [6]. The first 
is based on learning. In 2002, Reference [7] uses a 
nearest-neighbor search in the training set to get a one-

pass super resolution algorithm. Reference [8] uses 
contourlet transformation for video super-resolution. In 
2010, Reference [9] combines the partial differential 
equations’ regularization with the learning-based super-
resolution process. Reference [10] uses nonlinear 
mappings to coherent features and recognizes the faces in 
the LR images. In the train set, Reference [11] uses the 
kernel partial least square to describe the relationship 
between the LR and the HR images. The second is based 
on reconstruction. The HR images are reconstructed as 
the inverses of the LR images in these methods, such as 
interpolation [12-15], Projection onto Convex Sets 
(POCS) [16-18], Maximum a Posteriori [19-22], Iterative 
Back Projection [23-25], and their combination [26].  

In this paper, we focus on the conventional POCS 
method in the space domain. It uses a priori knowledge, 
and is easy for implementing [27]. However, its 
reconstructed images may have edge oscillations. We will 
give a space-frequency POCS instead. By using our 
method, the edge oscillation phenomena will be 
decreased, and the Peak Signal to Noise Ratio (PSNR) 
will be increased. 

The rest of the paper is divided into 4 parts. In the next 
section, the conventional POCS is introduced shortly. 
Section 3 and Section 4 shows our method for images and 
videos, respectively. The final conclusions are drawn in 
the last section. 

II.  POCS METHOD 

In this section, we will overview the conventional 
POCS method [16] shortly. 

The principle of the POCS method is simple and direct 
to view. It uses a priori knowledge of the spatial response 
characteristics of the imaging system. In the process of 
reconstructing HR image, there are many constraints. All 
the constraints, regarded as the boundaries, build a set. 
The set is made up of some convex sets with good 
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properties. This is the solution space of the HR images. 
Then the required HR image is the optimal solution in the 
space, that is, the projections onto the convex sets. So the 
main idea of POCS is to solve a constrained optimization 
problem.  

See Fig. 1. There should be the minimal residuals 
between the given images and the LR images degenerated 
by the required HR image. This is the target function in 
the constrained optimization problem.  

The constraints are described as that if the residuals are 
all less than a given threshold, then the projections from 
the HR image to the LR ones are obtained; otherwise, the 
degenerating model is needed to be modified. Both the 
target function and the constraints are described in the 
space domain. So we call it space POCS in this paper. 

 
Figure 1.  Explanation of POCS method. 

III.  SPACE-FREQUENCY POCS FOR IMAGES 

In this section, we use our space-frequency POCS for 
image super resolution. The first subsection deals with 
the image matching process. In the second subsection, 
our POCS in the frequency domain is introduced. The 
third subsection combines the space and the frequency 
domain and gets our space-frequency POCS. We also 
give examples to show visual comparisons among the 
bilinear interpolation, the space POCS and our space-
frequency POCS. In the last subsection, we give the 
PSNR as a quantitative comparison of the above 
mentioned three methods. 

We firstly use bilinear interpolation, a simple and 
common method, to get a HR reference image, noted as 

( , )f x y , where x and y is corresponding to the row and 
the column number of pixels, respectively.  

A.  Image Matching 
There are many images matching method. In this paper, 

we hope to effectively describe the rotation, translation 
and scaling movements between two images caused by 
relative motion between the lens and the scene. Moreover, 
the method is expected to be used in video cases easily. 
So we choose the least square image matching based on 
affine models [28]. 

Given a reference image 
0 ( , )I x y , the matched image 

1 ( , )I x y , can be presented thought the affine relations as 
follows.  

 1 0 0 0 0( , ) ( , ) ( ( ), ( ))x x x y y yI x y I x y I x a b x c y y a b x c y= = + + + + + +  (1) 

where , , , , ,x x x y y ya b c a b c    are the parameters of the affine 
transformation. Then the square error of the two images 
is 

[ ]2
1 0 0 0

( , )
( , , , , , ) ( , ) ( , )x x x y y y

x y
E a b c a b c I x y I x y= −∑ .       (2) 

Least square matching of the two images is the process of 
solving the parameters for the minimal E . That is,  

, , , , ,
arg min ( , , , , , )

x x x y y y

x x x y y y
a b c a b c

E a b c a b c= .                 (3) 

In the neighborhood of the pixel ( , )x y , we use the 
Taylor expansion to approximate 0 0 0( , )I x y . 

0 0 0 0( , ) ( , )
( ) ( , ) ( ) ( , )x x x x y y y y

I x y I x y
a b x c y d x y a b x c y d x y

  ≈
+ + + + + +

,     (4) 

where 

[ ]0
0 0

( , ) 1( , ) ( 1, ) ( 1, )
2x

I x yd x y I x y I x y
x

∂= = + − −
∂

       (5) 

and 

[ ]0
0 0

( , ) 1( , ) ( , 1) ( , 1)
2y

I x yd x y I x y I x y
y

∂= = + − −
∂

       (6) 

separately denotes the gradient of 
0 ( , )I x y along the x 

and y direction.  
Let  

1 0( , ) ( , ) ( , )I x y I x y I x yΔ = − .                    (7) 

Then the problem (3) can be represented as  

( ),

2 ( , ) ( , ) ( , ) 0T

x y

q x y p I x y q x y⎡ ⎤− Δ =⎣ ⎦∑              (8) 

where  
T

x x x y y yq d xd yd d xd yd⎡ ⎤= ⎣ ⎦             (9) 

is the coefficient matrix and  
T

x x x y y yp a b c a b c⎡ ⎤= ⎣ ⎦                      (10) 

is the parameter vector. The iterative process is 

1 1 1

1 1 1

1 0 0 1 0 0 1 0 0
1

1

i i i i i i i i i
x x x x x x x x x

i i i i i i i i i
y y y y y y y y y

a b c a b c a b c
a b c a b c a b c

+ + +

+ + +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= Δ + Δ Δ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ Δ + Δ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

.  (11) 

The Matlab program for calculating the affine 
parameters can be seen in Appendix A. We use small 
sampling level here. This estimation applies to the small 
amplitude of movement, which is enough for our 
examples in this paper. If more accurate estimation of the 
successive correction parameters is need, then more 
iterative steps may be used.  

HR image 

LR image LR image LR image … 
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B.  POCS in Frequency Domain 
The conventional POCS is in the space domain. This 

subsection will give a POCS in the frequency domain. 
We call it frequency POCS. Different from [17], we focus 
on the norm in the frequency domain. 

We use the Gauss function, a very common degrading 
function in many optical systems, as the Point Spread 
Function (PSF).  

2 2
0 0

2
( ) ( )

2
0 0( , )

x x y y
σh x y Ce

− + −

= ,                        (12) 

where 0 0( , )x y is the spread center and σ denotes the 
blurring level of the image. C is the constant to normalize 
the function. It fulfills  

0 0

0 0

0 0( , ) 1
x x w y y w

x x w y y w
h x y

− = − =

− =− − =−

=∑ ∑ ,                      (13) 

where w gives the radius of the support domain of the 
PSF. 

We assume that ( , )kg i j  denotes the observed kth LR 
images. According to the motion vector field, for each 
pixel 0 0( , )kg i j  in ( , )kg i j , we can get the corresponding 
coordinate of the point in ( , )f x y , the reference image. 
The point is noted as 0 0( , )f x y . Then the estimated LR 
image is regarded as the image degenerated from the HR 
image through the Gauss blurring. That is,  

0 0

0 0

0 0 0 0 0 0ˆ ( , ) ( , ) ( , )
x x w y y w

k
x x w y y w

g i j h x y f x y
− = − =

− =− − =−

= ∑ ∑          (14) 

The residual between the estimated and the observed LR 
images can be given by the following formula.  

0 0 0 0 0 0ˆ( , ) ( , ) ( , )k kr x y g i j g i j= −  .               (15) 

If ( , )f x y  is the ideal HR images, then the residual 
( , )r x y is equal to zero. Let 0δ  be a positive number. It is 

used as a threshold to construct the iterative function. If 
the residual r  is in the threshold range, then ( , )f x y will 
be unchanged, otherwise, ( , )f x y will be modified. If r  
is too small or too large, then it will be increased or 
decreased until it is near-zero, i.e. in the 0δ  determined 
neighborhood of zero. The iterative process can be 
presented as follows. 

[ ]
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

( , ) ( ) ( , )
( , ) ( , )

( , ) ( ) ( , )

f x y u r h x y r
P f x y f x y r

f x y u r h x y r

δ δ
δ δ

δ δ

+ + < −⎧
⎪= − ≤ ≤⎨
⎪ + − >⎩

,(16) 

where u is a constant to control the convergence speed of 
the iterative process. 

The above three formulas, (14), (15) and (16) are all in 
the space domain. They are used in the space POCS 
method. We use the Fourier transformation, a common 
technique, to change them into the frequency domain. In 
the frequency POCS, our estimated LR image is 
presented as follows. 

0 0

0 0

- -

0 0 0 0 0 0
- - - -

ˆ( ( , )) ( ( , )) * ( ( , ))
x x w y y w

k
x x w y y w

F g i j F h x y F f x y
= =

= =

= ∑ ∑ ,   (17) 

where F is the Fourier transformation, and “*” means the 
convolution operator. Then our residual in the frequency 
domain is 

0 0 0 0ˆ( ( , )) ( ( , ))k kR F g i j F g i j= − .              (18) 

Analogously, our iterative process in the frequency 
domain is presented as 

( )
( )

( )

0 0

0 0

0 0 0 0

0 0

0 0

( ( , ))

( ( , ))
( , ) ( ( , ))

( ( , ))

( ( , ))

F f x y
R

u R F f x y
P F f x y F f x y R

F f x y
R

u R F f x y

δ
δ

δ

δ
δ

⎧
< −⎪

+ +⎪
⎪⎡ ⎤ = ≤⎨⎣ ⎦
⎪
⎪ >⎪+ −⎩

,  (19) 

where δ  is a threshold. 
By now, we have two POCS models. One is in the 

space domain, and the other is in the frequency domain. 
Then we will combine them with each other in the next 
subsection. 

C.  Combining Space and Frequency POCS 
Assume that the HR image obtained by using the space 

POCS and the frequency POCS is ( , )s x y and ( , )f x y , 
respectively. Then we use an interpolation method to get 
the final HR image.  

( , ) ( , ) ( , ) (1 ( , )) ( , )G x y α x y s x y α x y f x y= + − ,       (20) 

where ( , )α x y  is the interpolation function defined by  

0, ( , )
( , )

1 , ( , )
x y W

x y
x y W

α
∈⎧

= ⎨ ∉⎩
,                    (21) 

and W is the edge set of the image which may be obtained 
by an algorithm of edge detection, for example, Canny 
detection. 

To see the super-resolution effects of our method, we 
give two examples for images. In this paper, we assume 
that the pixels’ size do not changed in the super 
resolution process. So, raising resolution means the size 
of image/video increased. In all the examples of the paper, 
the original LR images/videos are all with smaller size, 
and the super-resolution HR images/videos are all with 
bigger size. 

Fig. 2 shows the first example. Fig. 2(a) is the LR 
image with the resolution 176×144. Fig. 2(b), Fig. 2(c), 
Fig. 2(e) is the obtained HR image with the resolution 
352×288 by the bilinear interpolation, the traditional 
space POCS and our space-frequency POCS, respectively.  

It is easy for us to see that Fig. 2(c) and Fig. 2(e) are 
both clearer than Fig. 2(b). However, the difference 
between Fig. 2(c) and Fig. 2(e) is not obvious. So we 
magnify the same region of Fig. 2(c) and Fig. 2(e) to the 
same 800% times. The region is bounded by a blue box in 
Fig. 2(c) and Fig. 2(e), separately. The magnified region 
corresponding to Fig. 2(c), Fig. 2(e) is Fig. 2(d), Fig. 2(f), 
respectively. 
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By contrast, we can see that the light spots in Fig. 2(e) 
are clearer than those in Fig. 2(d). 

        
(a)   Original LR image.             (b)   Bilinear interpolation method. 

      
(c)   Space POCS method.          (d)   Magnified region in (c). 

      
(e)  Our method.                  (f)   Magnified region in (e). 

Figure 2.  Image Ex. 1. 

Fig. 3 gives the second example. Fig. 3(a) is the LR 
image with the resolution 176×144. Fig. 3(b), Fig. 3(c), 
Fig. 3(e) is the obtained HR image with the resolution 
352×288 by the bilinear interpolation, the traditional 
space POCS and our space-frequency POCS, respectively.  

It is easy for us to see that Fig. 3(c) and Fig. 3(e) are 
both clearer than Fig. 3(b). However, the difference 
between Fig. 3(c) and Fig. 3(e) is not obvious. So we 
magnify the same region of Fig. 3(c) and Fig. 3(e) to the 
same 800% times. The region is bounded by a blue box in 
Fig. 3(c) and Fig. 3(e), separately. The magnified region 
corresponding to Fig. 3(c), Fig. 3(e) is Fig. 3(d), Fig. 3(f), 
respectively. 

In Fig. 3(d), we can see many black stripes, especially 
in the edge of the red region. These stripes are all artifacts. 
They make the edge seems to be wider and oscillating. 
Our method decreases the phenomena, seen in Fig. 3(f).  

Comparing the conventional space POCS method with 
our space-frequency POCS method from vision effects, 
we can get the result that our method may decrease the 

edge oscillation phenomena and artifacts produced by the 
conventional POCS method and make the image clearer.  

        
(a)   Original LR image.          (b)   Bilinear interpolation method. 

    
(c)   Space POCS method.              (d)   Magnified region in (c). 

    
(e)   Our method.                       (f)   Magnified region in (e). 

Figure 3.  Image Ex. 2. 

D.  PSNR 
In the last subsection, we show some visual results. In 

this subsection, a quantitative comparison among the 
bilinear interpolation, the traditional POCS method and 
our method will be given. We use PSNR to describe the 
quality of the super-resolution reconstruction. 

225510logPSNR
MSE

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
,              (22) 

where MSE is the mean square error defined as 

( )2

1 1
( , ) ( , )

y n x m

y x
f x y f' x y

MSE
m n

= =

= =

−
=

×

∑ ∑
,              (23) 

and  f(x, y), f’(x, y) is separately the real HR image and 
the HR image obtained by using some algorithm. m and n 
is the horizontal and vertical resolution, respectively. 

Consider the examples in the last subsection. Their 
PSNR by using the bilinear interpolation, the traditional 
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POCS and our method is listed in Table 1. From this table, 
we can see that in the two examples, the PSNRs of our 

method are greater than those of the conventional POCS 
and the bilinear interpolation approach. 

IV.  SPACE-FREQUENCE POCS FOR VIDEOS 

We can use the similar method for video super-
resolution. Motion estimation is dealt with in the process 
of image matching. For any frame in the video, we use 
the previous frame to solve the affine model, and use the 
current frame to modify the parameters of the model. The 
process is shown in Fig. 4. 

 
Figure 4.  Explanation of affine model. 

See examples. Fig. 5 shows the first video example 
consisted of three neighbor frames. The space resolution 
of the given LR video is 176×144. After super resolution, 
the row and column resolutions are both doubled. The 
HR video produced by our method is with the space 
resolution 352×288. 

Fig. 5(a), Fig. 5(b) and Fig. 5(c) are the given LR 
frames, where Fig. 5(b) is the current ith frame, Fig. 5(a) 
is the pervious (i-1)th frame, and Fig. 5(c) is the next 
(i+1)th frame. 

Fig. 5(d), Fig. 5(e) and Fig. 5(f) are the HR frames 
constructed by our space-frequency POCS method. They 
are corresponding to Fig. 5(a), Fig. 5(b) and Fig. 5(c) in 
order. So the frame number of Fig. 5(d), Fig. 5(e) and Fig. 
5(f) is the same as Fig. 5(a), Fig. 5(b) and Fig. 5(c), i.e. i-
1, i, i+1, respectively. 

Fig. 6 gives another video example. It shows the 
nonadjacent video frames. The space resolution of the 
given LR video and the HR video is also 176×144 and 
352×288, respectively. The HR video is constructed by 
using our method. 

Fig. 6(a), Fig. 6(b) and Fig. 6(c) are the given LR 
frames. They are nonadjacent. The frame number of Fig. 
6(a), Fig. 6(b) and Fig. 6(c) is assumed as i, j and k, 
respectively. 

Fig. 6(d), Fig. 6(e) and Fig. 6(f) are the HR frames 
constructed by our space-frequency POCS method. The 
frame number of Fig. 6(d), Fig. 6(e) and Fig. 6(f) is i, j 
and k, respectively. This means that Fig. 6(d), Fig. 6(e) 
and Fig. 6(f) is the HR frame corresponding to Fig. 6(a), 
Fig. 6(b) and Fig. 6(c), respectively. 
 

…                                                                … 

(a)   LR Frame i-1                                    (b)   LR Frame i                                     (c)   LR Frame i+1 

…            … 

(d)   HR Frame i-1                                      (e)   HR Frame i                                   (f)   HR Frame i+1 

Figure 5.  Video Ex. 1. 

 
Previous frame  

used to solve the affine parameters 
 

 
Current frame  

used to modify the affine parameters
 

TABLE I.   
COMPARISON OF PSNR 

Ex. 
PSNR(dB) 

Bilinear interpolation Space POCS Our method 

1 28.29 28.99 29.42 

2 17.72 18.43 18.73 
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…              …                            …              … 

(a)   LR Frame i                                      (b)   LR Frame j                                      (c)   LR Frame k 

…  …  …  … 

(d)   HR Frame i                                         (e)   HR Frame j                                      (f)   HR Frame k 

Figure 6.  Video Ex. 2. 

V.  CONCLUSIONS 

In this paper, we give a space-frequency POCS method.  
The method can be used to super resolution for either 
images or videos. Comparing with the existing space 
POCS, our method reduces the edge oscillation artifacts 
and increases the PSNR of images. 

However, to solve the constrained optimization 
problems, some iteration steps are used. So our method is 
slow in the implementation. We will consider its 
acceleration in future work. 

APPENDIX A  MATLAB CODE FOR AFFINE PARAMETERS 

% Affine Parameter Calculation  Matlab code 
function P = Affine(Image1, Image2, Num);  
% Initialization parameter vector 
P(1:6) = 0;  
for Level = 2:-1:0 
        % Get sampling step 

Step = 2.^Level; 
P = [P(1) P(2) P(3) P(4) P(5) P(6)]; 
% Compute correlation matrices 
Im1 = Corr(Image1, Step);  
Im2 = Corr(Image2, Step); 
for i=1:3 
        % Motion compensate 

Compen = Comp(Im2, P, Num-1); 
% Calculate spatial-temporal gradients 
[Gx Gy Gt] = Grad(Im1, Compen);  
% Calculate increments of parameters 
InP = InParameter(Gx, Gy, Gt, Num); 
% Calculate P  
P = P + InP;  

end  
end 
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